sonyps4.ru

Согласование сигнала с каналом. Виды сигналов: аналоговый, цифровой, дискретный

Сигнал может быть охарактеризован различными параметрами. Таких параметров, вообще говоря, очень много, но для задач, которые приходится решать на практике, существенно лишь небольшое их число. Например, при выборе прибора для контроля технологического процесса может потребоваться знание дисперсии сигнала; если сигнал используется для управления, существенным является его мощность и так далее. Рассматривают три основных параметра сигнала, существенных для передачи информации по каналу. Первый важный параметр - это время передачи сигнала T с . Второй характеристикой, которую приходится учитывать, является мощность P с сигнала, передаваемого по каналу с определенным уровнем помех P z . Чем больше значение P с по сравнению с P z , тем меньше вероятность ошибочного приема. Таким образом, представляет интерес отношение P с /P z . Удобно пользоваться логарифмом этого отношения, называемым превышением сигнала над помехой:

Третьим важным параметром является спектр частот F x . Эти три параметра позволяют представить любой сигнал в трехмерном пространстве с координатами L, T, F в виде параллелепипеда с объемом T x F x L x . Это произведение носит название объема сигнала и обозначается через V x

Информационный канал можно характеризовать также тремя соответствующими параметрами: временем использования канала Т к , шириной полосы частот, пропускаемых каналом F k , и динамическим диапазоном канала D k характеризующим его способность передавать различные уровни сигнала.

Величина

называется емкостью канала.

Неискаженная передача сигналов возможна только при условии, что сигнал по своему объему «вмещается» в емкость канала.

Следовательно, общее условие согласования сигнала с каналом передачи информации определяется соотношением

Однако соотношение выражает необходимое, но недостаточное условие согласования сигнала с каналом. Достаточным условием является согласование по всем параметрам:

Для информационного канала пользуются понятиями: скорость ввода информации, скорость передачи информации и пропускная способность канала.

Под скоростью ввода информации (потоком информации) I(X) понимают среднее количество информации, вводимое от источника сообщений в информационный канал в единицу времени. Эта характеристика источника сообщений и определяется только статистическими свойствами сообщений.

Скорость передачи информации I(Z,Y) – среднее количество информации, передаваемое по каналу в единицу времени. Она зависит от статистических свойств передаваемого сигнала и от свойств канала.

Пропускная способность С – наибольшая теоретически достижимая для данного канала скорость передачи информации. Это характеристика канала и не зависит от статистики сигнала.

С целью наиболее эффективного использования информационного канала необходимо принимать меры к тому, чтобы скорость передачи информации была как можно ближе к пропускной способности канала. Вместе с тем скорость ввода информации не должна превышать пропускную способность канала, иначе не вся информациябудет передана по каналу.

Это основное условие динамического согласования источника сообщений и информационного канала.

Одним из основных вопросов в теории передачи информации является определение зависимости скорости передачи информации и пропускной способности от параметров канала и характеристик сигналов и помех. Эти вопросы были впервые глубоко исследованы К. Шенноном.

Сигнал может быть охарактеризован различными параметрами. Таких параметров, вообще говоря, очень много, но для задач, которые приходится решать на практике, существенно лишь небольшое их число. Например, при выборе прибора для контроля технологического процесса может потребоваться знание дисперсии сигнала; если сигнал используется для управления, существенным является его мощность и так далее. Рассматривают три основных параметра сигнала, существенных для передачи информации по каналу. Первый важный параметр - это время передачи сигнала T с . Второй характеристикой, которую приходится учитывать, является мощность P с сигнала, передаваемого по каналу с определенным уровнем помех P z . Чем больше значение P с по сравнению с P z , тем меньше вероятность ошибочного приема. Таким образом, представляет интерес отношение P с /P z . Удобно пользоваться логарифмом этого отношения, называемым превышением сигнала над помехой:

Третьим важным параметром является спектр частот F x . Эти три параметра позволяют представить любой сигнал в трехмерном пространстве с координатами L, T, F в виде параллелепипеда с объемом T x F x L x . Это произведение носит название объема сигнала и обозначается через V x

Информационный канал можно характеризовать также тремя соответствующими параметрами: временем использования канала Т к , шириной полосы частот, пропускаемых каналом F k , и динамическим диапазоном канала D k характеризующим его способность передавать различные уровни сигнала.

Величина

называется емкостью канала.

Неискаженная передача сигналов возможна только при условии, что сигнал по своему объему «вмещается» в емкость канала.

Следовательно, общее условие согласования сигнала с каналом передачи информации определяется соотношением

Однако соотношение выражает необходимое, но недостаточное условие согласования сигнала с каналом. Достаточным условием является согласование по всем параметрам:

Для информационного канала пользуются понятиями: скорость ввода информации, скорость передачи информации и пропускная способность канала.

Под скоростью ввода информации (потоком информации) I(X) понимают среднее количество информации, вводимое от источника сообщений в информационный канал в единицу времени. Эта характеристика источника сообщений и определяется только статистическими свойствами сообщений.

Скорость передачи информации I(Z,Y) – среднее количество информации, передаваемое по каналу в единицу времени. Она зависит от статистических свойств передаваемого сигнала и от свойств канала.

Пропускная способность С – наибольшая теоретически достижимая для данного канала скорость передачи информации. Это характеристика канала и не зависит от статистики сигнала.

С целью наиболее эффективного использования информационного канала необходимо принимать меры к тому, чтобы скорость передачи информации была как можно ближе к пропускной способности канала. Вместе с тем скорость ввода информации не должна превышать пропускную способность канала, иначе не вся информациябудет передана по каналу.

Это основное условие динамического согласования источника сообщений и информационного канала.

Одним из основных вопросов в теории передачи информации является определение зависимости скорости передачи информации и пропускной способности от параметров канала и характеристик сигналов и помех. Эти вопросы были впервые глубоко исследованы К. Шенноном.

Конец работы -

Эта тема принадлежит разделу:

Информатика

Федеральное бюджетное государственное образовательное.. тула г..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Высшего профессионального образования
«Тульский государственный университет» Политехнический институт Кафедра "Автоматизированные станочные системы"

Понятие информатики
Информатика – это техническая наука, систематизирующая приемы создания, хранения, воспроизведения, обработки и передачи данных средствами вычислительной техники, а также принципы фу

История развития информатики
История компьютера тесным образом связана с попытками человека облегчить автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затрудни

Мировоззренческие экономические и правовые аспекты информационных технологий
Базовый юридический документ в России, имеющий отношение к информатике - Закон «Об информации, информатизации и защите информации». В законе решаются вопросы правового регулирования на информационн

Синтаксическая мера информации
Объем данных Vд. в сообщение измеряется количеством символов (разрядов) в этом сообщении. В различных системах счисления один разряд имеет различный вес и соответственно

Семантическая мера информации
Тезаурус- это совокупность сведений, которыми располагает пользователь или система. В зависимости от соотношений между смысловым содержанием информации S и тезаурусом польз

Алгоритмическая мера информации
Каждый согласится, что слово 0101….01 сложнее слова 00….0, а слово, где 0 и 1 выбираются из эксперимента – бросания монеты (где 0-герб,1 –решка), сложнее обоих предыдущих.

Количество и качество информации
Потребительские показатели качества: · репрезентативность, содержательность, достаточность · актуальность, своевременность, точность · достоверность, усто

Единицы измерения информации
В современные компьютеры мы можем вводить текстовую информацию, числовые значения, а также графическую и звуковую информацию. Количество информации, хранящейся в ЭВМ, измеряется ее

Информацияи энтропия
Можем ли мы ввести разумную меру информации? Над этим вопросом задумался американский математик и инженер Клод Шеннон. Результатом размышлений стала опубликованная им в 1948 г. стат

Сообщения и сигналы
Шеннону удалось придумать удивительно простую и глубокую модель передачи информации, без которой теперь не обходится ни один учебник. Он ввел понятия: источник сообщения, передатчик

Энтропия
Разные сообщения несут в себе разные объемы информации. Попробуем сравнить следующие два вопроса: 1. На каком из пяти курсов университета учится студент? 2. Как уп

Избыточность
Пусть источник сообщения передает предложение реального языка. Оказывается, каждый следующий символ не полностью случаен, и вероятность его появления не полностью предопределена сре

Сенсация
Понятия энтропии (непредсказуемости) сообщения и избыточности (предсказуемости) естественно соответствуют интуитивным представлениям о мере информации. Чем более непредсказуемо сооб

Понятие информационной технологии
Технологияпри переводе с греческого (techne) означает искусство, мастерство, умение, а это не что иное, как процессы. Под процессом следует понимать определенную совокупность действ

Новая информационная технология
К настоящему времени информационная технология прошла несколько эволюционных этапов, смена которых определялась главным образом развитием научно-технического прогресса, появлением н

Инструментарий информационной технологии
Инструментарий информационной технологии - один или несколько взаимосвязанных программных продуктов для определенного типа компьютера, технология работы в котором позволяет достичь

Составляющие информационной технологии
Используемые в производственной сфере такие технологические понятия, как норма, норматив, технологический процесс, технологическая операция и т.п., могут применяться и в информацион

Развитие информационных технологий
Эволюция информационных технологий наиболее ярко прослеживается на процессах хранения, транспортирования и обработки информации.

Первое поколение ИТ
Первое поколение (1900-1955) связано с технологией перфокарт, когда запись данных представлялась на них в виде двоичных структур. Процветание компании IBM в период 1915-1960 гг. свя

Второе поколение ИТ
Второе поколение (программируемое оборудование обработки записей, 1955-1980 гг.) связано с появлением технологии магнитных лент, каждая из которых могла хранить информацию десяти ты

Третье поколение ИТ
Третье поколение (оперативные базы данных, 1965-1980 гг.) связано с внедрением оперативного доступа к данным в интерактивном режиме, основанном на использовании систем баз данных с

Четвертое поколение ИТ
Четвертое поколение (реляционные базы данных: архитектура «клиент - сервер», 1980-1995 гг.) явилось альтернативой низкоуровневому интерфейсу. Идея реляционной модели состоит в едино

Пятое поколение ИТ
Пятое поколение (мультимедийные базы данных, с 1995 г.) связано с переходом от традиционных хранящих числа и символы, к объектно-реляционным, содержащим данные со сложным поведением

Базовая информационная технология
Как уже отмечалось, понятие информационной технологии не может быть рассмотрено отдельно от технической (компьютерной) среды, т.е. от базовой информационной технологии. Апп

Предметная информационная технология
Под предметной технологией понимается последовательность технологических этапов по преобразованию первичной информации в результатную в определенной предметной области, независящая

Обеспечивающая информационная технология
Обеспечивающие информационные технологии - это технологии обработки информации, которые могут использоваться как инструментарий в различных предметных областях для решения различных

Функциональная информационная технология
Функциональная информационная технология образует готовый программный продукт (или часть его), предназначенный для автоматизации задач в определенной предметной, области и заданной

Свойства информационных технологий
В числе отличительных свойств информационных технологий, имеющих стратегическое значение для развития общества, представляется целесообразным выделить следующие семь наиболее важных

Кодирование и квантование сигналов
Физические сигналы являются непрерывными функциями времени. Чтобы преобразовать непрерывный, в частности, аналоговый сигнал в цифровую форму используются аналого-цифровые преобразов

Характеристики сигналов, передаваемых по каналу
Сигнал может быть охарактеризован различными параметрами. Таких параметров, очень много, но для задач, которые приходится решать на практике, существенно лишь небольшое их число. На

Модуляция сигналов
Сигналами называются физические процессы, параметры которых содержат информацию. В телефонной связи при помощи электрических сигналов передаются звуки разговора, в телевидении – изо

Виды и характеристики носителей
Если обозначить параметры носителя через a1 , a2 , …, an ,то носитель как функция времени может быть представлен в виде: UН =g(a

Спектры сигналов
Всё многообразие сигналов, используемых в информационных системах, можно разделить на 2 основные группы: детерминированные и случайные. Детерминированный сигнал характеризуется тем,

Периодические сигналы
Функция x(t) называется периодической, если при некотором постоянном Т выполняется равенство: x(t)=x(t+nT), где Т – период функции, n –

Тригонометрическая форма
Любой периодический сигнал x(t), удовлетворяющий условию Дирихле (x(t) – ограниченая, кусочно-непрерывная, имеет на протяжении периода конечное число экстремумов), мож

Комплексная форма
В математическом отношении удобнее оперировать комплексной формой ряда Фурье. Её получают, применяя преобразование Эйлера

Определение погрешности
При разложении периодических функций на сумму гармоник на практике часто ограничиваются несколькими первыми гармониками, а остальные не учитываются. Приближенно представляя функцию

Непериодические сигналы
Всякий непериодический сигнал можно рассматривать как периодический, период изменения которого равен ¥. В связи с этим спектральный анализ периодических процессов может быть обо

Модуляция и кодирование
5.1. Коды: прямой, обратный, дополнительный, модифицированный Одним из способов выполнения операции вычитания является замена знака вычитаемого на противоп

Прямой код числа
При кодировании прямым n-разрядным двоичным кодом один разряд (как правило, самый старший) отводится для знака числа. Остальные n-1 разрядов - для значащих цифр. Значение знакового разряда равно 0

Обратный код числа
Обратный код строится только для отрицательного числа. Обратный код двоичного числа является инверсным изображением самого числа, в котором все разряды исходного числа принимают инверсное (обратное

Дополнительный код числа
Дополнительный код строится только для отрицательного числа. Использование прямого кода усложняет структуру ЭВМ. В этом случае операция сложения двух чисел, имеющих разные знаки, должна быть замене

Модифицированный код числа
При сложении чисел, меньших единицы с фиксированной запятой, может получиться результат по абсолютной величине больший единицы, что ведет к искажению результатов вычислений. Переполнение разрядной

Систематические коды
Как уже указывалось, функции контроля можно осуществить при информационной избыточности. Такая возможность появляется при использовании специальных методов кодирования информации. В

Кодирование по методу четности-нечетности
Простым примером кода с обнаружением одной ошибки является код с битом чётности. Конструкция его такова: к исходному слову добавляется бит чётности. Если в исходном слове число единичек чётно, то з

Коды Хэмминга
Коды, предложенные американским ученым Р. Хэммингом (Рисунок 3.3), обладают способностью не только обнаружить, но и исправить одиночные ошибки. Эти коды – систематические.

Распределенная обработка данных
В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых можно было бы решать

Обобщенная структура компьютерной сети
Компьютерные сети являются высшей формой многомашинных ассоциаций. Основные отличия компьютерной сети от многомашинного вычислительного комплекса: Размерность. В сос

Характеристики канала передачи информации без помех
Рисунок 5.4 - Структура канала передаи информации без помех

Характеристики каналов передачи информации с помехами
Рисунок 5.5 - Структура канала передаи информации с помехами

Методы повышения помехоустойчивости передачи и приема
В основах всех способов повышения помехоустойчивости информационных систем лежит использование определенных различий между полезным сигналом и помехой. Поэтому для борьбы с помехами

Современные технические средства обмена данных и каналообразующей аппаратуры
Для передачи сообщений в вычислительных сетях используются различные типы каналов связи. Наиболее распространены выделенные телефонные каналы и специальные каналы для передачи цифро

Представление информации в цифровых автоматах (ЦА)
Коды как средство тайнописи появились в глубокой древности. Из­вестно, что еще древнегреческий историк Геродот к V в. до н.э. приводил примеры писем, понятных лишь адресату. Секретн

Информационные основы контроля работы цифровых автоматов
Алгоритмы выполнения арифметических операций обеспечат правильный результат только в случае, если машина работает без нарушений. При возникновении какого-либо нарушения нормального

Помехоустойчивость кода
Минимальное кодовое расстояние некоторого кода определяется как минимальное расстояние Хэмминга между любыми разрешенными кодовыми словами этого кода. У безызбыточного кода м

Метод контроля четности
Это простой способ обнаружения некоторых из возможных ошибок. Будем использовать в качестве разрешенных половину возможных кодовых комбинаций, а именно те из них, которые имеют четное число единиц

Метод контрольных сумм
Рассмотренный выше метод контроля четности может быть применен многократно для различных комбинаций разрядов передаваемых кодовых слов – и это позволит не только обнаруживать, но и

Коды Хэмминга
Коды, предложенные американским ученым Р. Хэммингом, обладают способностью не только обнаружить, но и исправить одиночные ошибки. Эти коды – систематические. По методу Хэмм

Контроль по модулю
Разнообразные задачи можно решать с помощью метода контроля, основанного на свойствах сравнений. Развитые на этой основе методы контроля арифметических и логических операций называют контролем п

Числовой метод контроля
При числовом методе контроля код заданного числа определяется как наименьший положительный остаток от деления числа на выбранный модуль р: rA = A-{A/p}p

Цифровой метод контроля
При цифровом методе контроля контрольный код числа образуется делением суммы цифр числа на выбранный модуль:

Выбор модуля для контроля
Достоинства числового метода контроля - в справедливости свойств сравнений для контрольных кодов, что облегчает контроль арифметических операций; достоинства цифрового метода в возм

Операция сложения по модулю 2
Операцию сложения по модулю 2 можно выразить через другие арифметические операции, например. Ес

Операция логического умножения
Операцию логического умножения двух чисел можно выразить через другие арифметические и логические операции:

Контроль арифметических операций
Арифметические операции выполняют на сумматорах прямого, обратного и дополнительного кодов. Предположим, что изображение чисел (операнды) хранятся в машине в некотором коде, т. е. о

Арифметические коды
Контроль по модулю, рассмотренный ранее, позволяет эффективно обнаруживать одиночные ошибки. Однако одиночная ошибка в одном разряде может привести к группе ошибок в нескольких разр

ЦАП и АЦП
Преобразование между аналоговыми и цифровыми величинами-основная операция, в вычислительных и управляющих системах, поскольку физические параметры, такие, как температура, перемещен

Уровни цифровой логики
В значительном большинстве ни цифроаналоговые, ни аналогоцифровые преобразователи практически почти невозможно применять без знания типа используемого на входе или выходе цифрового

Управляющий выходной сигнал строб-импульс
Большинство цифроналоговых преобразователей, за исключением преобразователей последовательных типов (таких, которые основаны на зарядке емкостей), имеют основную схему, реагирующую

Аналоговые сигналы
Обычно на вход аналогоцифровых преобразователей (АЦП) подаются сигналы в виде напряжения. Цифроаналоговые преобразователи (ЦАП) часто на выходе имеют сигналы в форме напряжения при

Цифроаналоговые преобразователи
Преобразование цифровых величин в пропорциональные аналоговые величины необходимо для того, чтобы результаты цифровых вычислений могли быть использованы и без труда поняты в аналого

Цифроаналоговое преобразование
На Рисунок 6.2 показана структурная схема ЦАП, который принимает 3-разрядное с дополнительным знаковым разрядом цифровое слово и преобразует его в эквивалентное напряжение. Основным

Основные типы ЦАП
Как упоминалось ранее, в настоящее время подавляющее большинство ЦАП, находящих сбыт, построены по двум основным схемам: в виде цепочки взвешенных резисторов и типа R-2R. Оба назван

ЦАП со взвешенными резисторами
Преобразователи со взвешенными резисторами (Рисунок 6.3) содержат источник опорного напряжения, набор ключей, набор двоично-взвешенных прецизионных резисторов и операционный усилите

ЦАП с цепочкой резисторов типа R-2R
ЦАП с цепочкой резисторов типа R -2R также содержат источник опорного напряжения, набор ключей и операционный усилитель. Однако вместо набора двоично-взвешенных резисторов они содер

Другие типы ЦАП
ЦАП в основном бывают либо с фиксированным внутренним (или внешним), либо с внешним переменным источником опорного напряжения (умножающие преобразователи). ЦАП с фиксированным источ

Аналоговые преобразователи
По существу аналогоцифровые преобразователи либо преобразуют аналоговый входной сигнал (напряжение или ток) в частоту или последовательность импульсов, длительность которой измеряют

Аналогоцифровое преобразование
На Рисунок 6.5 показана элементарная модель аналогоцифрового преобразования с ЦАП, составляющим простой блок в системе преобразования. Импульс установки в начальное состояние устана

Двухтактные интегрирующие АЦП
Двухтактный интегрирующий АЦП, как показано на Рисунок 6.6, содержит интегратор, некоторый логический узел управления, генератор тактовых импульсов, компаратор и выходной счетчик.

АЦП последовательного приближения
Основные причины, по которым в вычислительных системах с преобразованием информации почти повсеместно используется способ последовательного приближения, заключаются в надежности это

Преобразователи напряжения в частоту
На Рисунок 6.9 показан типичный преобразователь напряжения в частоту. В нем входной аналоговый сигнал интегрируется и подается на компаратор. Когда компаратор меняет свое состояние,

Параллельные АЦП
Последовательно-параллельный и просто параллельный преобразователи применяются главным образом там, где требуется максимально высокое быстродействие. Последовательное преобразование

Характеристики ЦАП
При анализе табличных данных необходимо проявлять большую тщательность, чтобы выяснить условия, при которых определяется каждый параметр, а параметры наверняка определяются по-разно

Характеристики АЦП
Характеристики АЦП подобны характеристикам ЦАП. Кроме того, почти все сказанное о характеристиках ЦАП справедливо и для характеристик АЦП. Они тоже чаще являются типовыми, нежели ми

Совместимость с системой
Перечень характеристик, даваемый фирмами изготовителями, является лишь отправной точкой при выборе подходящего АЦП или ЦАП. Некоторые системные требования, оказывающие влияние на вы

Совместимость преобразователей (взаимозаменяемость)
Большинство АЦП и ЦАП не являются универсально совместимыми по физическим, а некоторые и по электрическим параметрам. Физически корпуса различаются размерами, при этом наиболее расп

Позиционные системы счисления
Система счисления- совокупность приемов и правил для записи чисел цифровыми знаками. Наиболее известна десятичная система счисления, в которой для записи ч

Методы перевода чисел
Числа в разных системах счисления можно представить следующим образом:

Перевод чисел делением на основание новой системы
Перевод целых чисел осуществляется делением на основание q2 новой системы счисления, правильных дробей – умножением на основание q2. Действия деления и умножения выполняются п

Табличный метод перевода
В простейшем виде табличный метод заключается в следующем: имеется таблица всех чисел одной системы с соответствующими эквивалентами из другой системы; задача перевода сводится к нахождению соответ

Представление вещественных чисел в компьютере
Для представления вещественных чисел в современных компьютерах принят способ представления с плавающей запятой. Этот способ представления опирается на нормализованную (экспоненциал

Представление чисел с плавающей запятой
При представлении чисел с плавающей запятой часть разрядов ячейки отводится для записи порядка числа, остальные разряды - для записи мантиссы. По одному разряду в каждой группе отводится для изобра

Алгоритм представления числа с плавающей запятой
перевести число из P-ичной системы счисления в двоичную; представить двоичное число в нормализованной экспоненциальной форме; рассчитать смещённый порядок числа; ра

Понятие и свойства алгоритма
Теория алгоритмов имеет большое практическое значение. Алгоритмический тип деятельности важен не только как мощный тип деятельности человека, как одна из эффективных форм его труда.

Определение алгоритма
Само слово “алгоритм” происходит от algorithmi - латинской формы написания имени аль-Хорезми, под которым в средневековой Европе знали величайшего математика из Хорезма (город в сов

Свойства алгоритма
Данное выше определение алгоритма нельзя считать строгим - не вполне ясно, что такое “точное предписание” или “последовательность действий, обеспечивающая получение требуемого результата”. Алгоритм

Правила и требования, предъявляемые к построению алгоритма
Первое правило - при построении алгоритма, прежде всего необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (зак

Типы алгоритмических процессов
Типы алгоритмических процессов. Алгоритм применительно к вычислительной машине - точное предписание, т.е. набор операций и правил их чередования, при помощи которого, начиная с неко

Принципы Джона фон Неймана
В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом (Рисунок 8.5). Впервые

Функциональная и структурная организация компьютера
Рассмотрим устройство компьютера на примере самой распространенной компьютерной системы - персонального компьютера. Персональным компьютером (ПК) называют сравнительно недорогой уни

Выполнение арифметических операций с числами с фиксированной и плавающей запятой
9.6.1 Коды: прямой, обратный, дополнительный, Для машинного представления отрицательных чисел используют коды прямой, дополнительный, обратный.

Операция сложения
Операция сложения чисел в прямом, обратном и дополнительном кодах выполняется на двоичных сумматорах соответствующего кода. Двоичный сумматор прямого кода (ДС

Операция умножения
Умножение чисел, представленных в формате с фиксированной запятой, осуществляется на двоичных сумматорах прямого, обратного и дополнительного кодов. Существует несколько ме

Операция деления
Деление двоичных чисел, представленных в формате с фиксированной запятой представляет последовательные операции алгебраического сложения делимого и делителя, а затем остатков и сдвига. Деление выпо

Файлы данных
В разных источниках по информатике и вычислительной технике определения термина "файл" так же, как и термина "операционная система", могут варьироваться. Наиболе

Файловые структуры
Программная часть файловой системы, определяемая ее назначением, должна содержать следующие компоненты: Ø средства взаимодействия с процессами пользователей, которые

Носители информации и технические средства для хранения данных
Устройства хранения информации называются накопителями. В основе их работы лежат разные принципы (в основном это магнитные или оптические устройства), но используются они для одной

Организация данныхна устройствах с прямым и последовательным доступом
Под организацией данных понимается способ расположения записей файла во внешней памяти (на носителе записи). Наибольшее распространение получили следующие два вида организации файло

Вычислительная техника
Совокупность технических и математических средств (вычислительные машины, устройства, приборы, программы и пр.), используемых для механизации и автоматизации процессов вычислений и

Древнейшие счетные инструменты
Древнейшим счетным инструментом, который сама природа предоставила в распоряжение человека, была его собственная рука. «Понятие числа и фигуры,- писал Ф. Энгельс,- взято не откуда-н

Развитие абака
Бирки и веревки с узелками не могли удовлетворить возраставшие в связи с развитием торговли потребности в средствах вычисления. Развитию же письменного счета препятствовали два обст

Логарифмы
Термин «логарифм» возник из сочетания греческих слов logos - отношение, соотношение и arithmos - число. Основные свойства логарифма позволяют заменить умножение, деление, в

Суммирующая машина Блеза Паскаля
В 1640 г. попытку создать механическую вычислительную машину предпринял Блез Паскаль (1623-1662). Существует мнение, что «на идею счетной машины Блеза Паскаля натолкнуло, п

Чарльз Бэббидж и его изобретение
В 1812 года Чарльз Бэббидж начинает размышлять о возможных способах машинного вычисления таблиц. Бэббидж (Babbage) Чарльз (26 декабря 1791, Лондон - 18 октября, 1871, там ж

Табулятор Холлерита
Вооруженные карандашом и бумагой или в лучшем случае суммирующей машиной американские статистики 19 века испытывали острую необходимость в автоматизации длительной, утомительной и о

Машина Ц3
Работы по созданию вычислительных машин интересовали накануне войны военные ведомства всех стран. При финансовой поддержке Германского авиационного исследовательского института Цузе

Машина электронная вычислительная общего назначения БЭСМ-6
1. Область применения: универсальная ЭВМ для решения широкого класс задач науки и техники (Рисунок 11.18 и Рисунок 11.19). 2. Описание машины: в структуре БЭСМ-6 впервые в

IBM 360
В 1964 году фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Модели имели единую систему команд

Альтаир 8800
В январе 1975 года вышел свежий номер журнала "Popular Electronics", на обложке которого был изображен Рисунок 11.22 Altair 8800, сердцем которого был новейший микропроцес

Компьютеры Apple
В 1976 году появился персональный компьютер Apple-1 (Рисунок 11.23). Он был разработан в середине 70-х Стивом Возняком. В то время он работал на компанию Hewlett-Packard, в

IBM 5150
12 августа 1981 года компания IBM выпустила персональный компьютерIBM 5150 (Рисунок 11.25). Компьютер стоил немалые деньги – 1565 долл. и имел всего лишь 16 Кб оперативной памяти и

Описание структуры проекта
Любая программа в Delphi состоит из файла проекта (файл с расширением dpr) и одного или нескольких модулей (файлы с расширениями pas). Каждый из таких файлов описывает программную е

Описание структуры модуля
Структура модуля Модули - это программные единицы, предназначенные для размещений фрагментов программ. С помощью содержащегося в них программного кода реализуется вс

Описание элементов программ
Элементы программы Элементы программы- это минимальные неделимые ее части, еще несущие в себе определенную значимость для компилятора. К элементам относятся:

Элементы языка программирования-алфавит
Алфавит Алфавит языка Object Pascal включает буквы, цифры, шестнадцатеричные цифры, специальные символы, пробелы и зарезервированные слова. Буквы - это букв

Элементы языка программирования-идентификаторы,константы, выражения
Идентификаторы Идентификаторы в Object Pascal - это имена констант, переменных, меток, типов, объектов, классов, свойств, процедур, функций, модулей, программ и поле

Выражения на Object Pascal
Основными элементами, из которых конструируется исполняемая часть программы, являются константы, переменные и обращения к функциям. Каждый из этих элементов характеризуется своим зн

Целая и вещественная арифметика
Выражение состоит из операндов и операторов. Операторынаходятся между операндами и обозначают действия, которые выполняются над операндами. В качестве операндов выражения можно испо

Приоритет операций
При вычислении значений выражений следует учитывать, что операторы имеют разный приоритет. В Object Pascal определены следующие операции: Ø унарные not, @ ;

Встроенные функции. Построение сложных выражений
В языке Object Pascal основной программной единицей является подпрограмма. Различают два вида подпрограмм: процедуры и функции. Как процедура, так и функция, представляют собой посл

Типы данных
В математике переменные классифицируются в соответствии с некоторыми важными характеристиками. Производится строгое разграничение между вещественными, комплексными и логическими пер

Встроенные типы данных
Любой реально существующий тип данных, каким бы сложным он ни казался на первый взгляд, представляет собой простые составляющие (базовые типы), которые, как правило, всегда присутствуют в языке про

Целые типы
Диапазон возможных значений целых типов зависит от их внутреннего представления, которое может занимать один, два, четыре или восемь байтов. В Таблица 15.1 приведены характеристики целых т

Представление знака числа
Многие числовые поля не имеют знака, например, номер абонента, адрес памяти. Некоторые числовые поля предлагаются всегда положительные, например, норма выплаты, день недели, значение числа ПИ. Друг

Арифметическое переполнение
Арифметическое переполнение (arithmetic overflow) - потеря значащих цифр при вычислении значения выражения. Если в переменной можно хранить лишь неотрицательные значения (типы BYTE и WORD)

Вещественные типы. Сопроцессор
В отличие от порядковых типов, значения которых всегда сопоставляются с рядом целых чисел и, следовательно, представляются в ПК абсолютно точно, значения вещественных типов

Текстовые типы
Текстовые (символьные) типы - это типы данных, состоящие из одного символа. В Windows используется код ANSI (по названию разработавшего этот код института - American National Standa

Логический тип
Логический тип данных, названный в честь английского математика XIX века Дж. Буля кажется очень простым. Но с ним связан ряд интересных моментов. Во-первых, к данным этого

Устройства вывода
К устройствам вывода, прежде всего, можно отнести мониторы и принтеры. Монитор - устройство визуального отображения информации (в виде текста, таблиц, рисунков, чертежей и др.). &

Перечень компонентов ввода и отображения текстовой информации
В библиотеке визуальных компонентов Delphi существует множество компонентов, позволяющих отображать, вводить и редактировать текстовую информацию. В Таблица 16.1 приведен их перечен

Отображение текста в надписях компонентов Label, StaticText и Panel
Для отображения различных надписей на форме используются в основном компоненты Label, StaticText (появившийся только в Delphi 3) и Panel

Окна редактирования Edit и MaskEdit
Для отображения текстовой информации, и даже с дополнительной возможностью прокрутки длинных текстов, можно использовать также окна редактирования Edit и Ma

Многострочные окна редактирования Memo и RichEdit
Компоненты Memo и RichEdit являются окнами редактирования многострочного текста. Они так же, как и окно Edit, снабжены многими фун

Ввод и отображение целых чисел - компоненты UpDown и SpinEdit
В Delphi имеются специализированные компоненты, обеспечивающие ввод целых чисел - UpDown и SpinEdit. Компонент UpDown превращает

Компоненты выбора из списков - ListBox, CheckBox, CheckListBox и ComboBox
Компоненты ListBox и ComboBox отображают списки строк. Они отличаются друг от друга прежде всего тем, что ListBox только отображае

Функция InputBox
Окно ввода - это стандартное диалоговое окно, которое появляется на экране в результате вызова функции InputBox. Значение функции InputBox - строка

Процедура ShowMessage
Вывести на экран окно с сообщением можно при помощи процедуры ShowMessageили функции MessageDlg. Процедура ShowMessageвыв

Объявление файла
Файл - это именованная структура данных, представляющая собой последовательность элементов данных одного типа, причем количество элементов последовательности практически не ограниче

Назначение файла
Объявление файловой переменной задает только тип компонентов файла. Для того чтобы программа могла выводить данные в файл или считывать данные из файла, необходимо указать конкретны

Вывод в файл
Непосредственно вывод в текстовый файл осуществляется при помощи инструкции write или writeln. В общем виде эти инструкции записываются следующим о

Открытие файла для вывода
Перед выводом в файл его необходимо открыть. Если программа, формирующая выходной файл, уже использовалась, то возможно, что файл с результатами работы программы уже есть на диске.

Ошибки открытия файла
Попытка открыть файл может завершиться неудачей и вызвать ошибку времени выполнения программы. Причин неудачи при открытии файлов может быть несколько. Например, программа попытаетс

Устройства ввода
К устройствам ввода можем отнести следующие: клавиатура, сканер, планшет. Клавиатура компьютера - устройство для ввода информации в компьютер и подачи управляющих сигналов.

Открытие файла
Открытие файла для ввода (чтения) выполняется вызовом процедуры Reset, имеющей один параметр - файловую переменную. Перед вызовом процедуры Reset с

Чтение чисел
Следует понимать, что в текстовом файле находятся не числа, а их изображения. Действие, выполняемое инструкциями read или readln, фактически состои

Чтение строк
В программе строковая переменная может быть объявлена с указанием длины или без нее. Например: stroka1:string; stroka2

Конец файла
Пусть на диске есть некоторый текстовый файл. Нужно в диалоговое окно вывести содержимое этого файла. Решение задачи довольно очевидно: надо открыть файл, прочитать первую строку, з

Функции цикла в программе. Циклы с пред- и постусловием
Алгоритмы решения многих задач являются циклическими, т. е. для дости­жения результата определенная последовательность действии должна быть выполнена несколько раз. Например, програ

Цикл FOR
Оператор forиспользуется, если некоторую последовательность действий надо выполнить несколько раз, причем число повторений заранее известно Например, вычислить значения функц

Команды BREAK и CONTINUE
Для немедленного завершения текущего оператора цикла можно использовать подпрограмму Breakбез параметров (это подпрограмма, играющая роль оператора). Например, когда в массиве с известными г

Вложенные циклы
Если цикл включает в себя один или несколько циклов, то содержащий внутри себя другие циклы называется внешним, а цикл, содержащийся в другом цикле

Объявление массива
Массив, как и любая переменная программы, перед использованием должен быть объявлен в разделе объявления переменных. В общем виде инструкция объявления массива выглядит следующим об

Вывод массива
Под выводом массива понимается вывод на экран монитора (в диалоговое окно) значений элементов массива. Если в программе необходимо вывести значения всех элементов массива,

Ввод массива
Под вводом массива понимается процесс получения от пользователя (или из файла) во время работы программы значений элементов массива. "Лобовое" решение задачи ввод

Использование компонента StringGrid
Для ввода массива удобно использовать компонент StringGrid. Значок компонента StringGrid находится на вкладке Additional (Рисунок 19.1).

Использование компонента Memo
В некоторых случаях для ввода массива можно использовать компонент Memo. Компонент Memo позволяет вводить текст, состоящий из достаточно большого количества строк, поэтому его удобн

Поискминимального (максимального) элемента массива
Задачу поиска минимального элемента массива рассмотрим на примере массива целых чисел. Алгоритм поиска минимального (максимального) элемента массива довольно очевиден: снач

Поиск в массиве заданного элемента
При решении многих задач возникает необходимость определить, содержит ли массив определенную информацию или нет. Например, проверить, есть ли в списке студентов фамилия Петров. Зада

Ошибки при использовании массивов
При использовании массивов наиболее распространенной ошибкой является выход значения индексного выражения за допустимые границы, указанные при объявлении массива. Если в ка

Библиографический список
1. Основы информатики: Учеб. пособие для вузов / А.Н. Морозевич, Н.Н. Говядинова, В.Г. Левашенко и др.; Под ред. А.Н. Морозевича. - Минск: Новое знание, 2001. - 544с., ил.

Предметный указатель
«абак», 167 array, 276 Break, 272 CD-ROM, 161 const, 298 Continue, 273

Сигнал может быть охарактеризован различными параметрами. Таких параметров, вообще говоря, очень много, но для задач, которые приходится решать на практике, существенно лишь небольшое их число. Например, при выборе прибора для контроля технологического процесса может потребоваться знание дисперсии сигнала; если сигнал используется для управления, существенным является его мощность и так далее. Рассматривают три основных параметра сигнала, существенных для передачи информации по каналу. Первый важный параметр - это время передачи сигнала T с . Второй характеристикой, которую приходится учитывать, является мощность P с сигнала, передаваемого по каналу с определенным уровнем помех P z . Чем больше значение P с по сравнению с P z , тем меньше вероятность ошибочного приема. Таким образом, представляет интерес отношение P с /P z . Удобно пользоваться логарифмом этого отношения, называемым превышением сигнала над помехой:

Третьим важным параметром является спектр частот F x . Эти три параметра позволяют представить любой сигнал в трехмерном пространстве с координатами L, T, F в виде параллелепипеда с объемом T x F x L x . Это произведение носит название объема сигнала и обозначается через V x

Информационный канал можно характеризовать также тремя соответствующими параметрами: временем использования канала Т к , шириной полосы частот, пропускаемых каналом F k , и динамическим диапазоном канала D k характеризующим его способность передавать различные уровни сигнала.

Величина

называется емкостью канала.

Неискаженная передача сигналов возможна только при условии, что сигнал по своему объему «вмещается» в емкость канала.

Следовательно, общее условие согласования сигнала с каналом передачи информации определяется соотношением

Однако соотношение выражает необходимое, но недостаточное условие согласования сигнала с каналом. Достаточным условием является согласование по всем параметрам:

Для информационного канала пользуются понятиями: скорость ввода информации, скорость передачи информации и пропускная способность канала.

Под скоростью ввода информации (потоком информации) I(X) понимают среднее количество информации, вводимое от источника сообщений в информационный канал в единицу времени. Эта характеристика источника сообщений и определяется только статистическими свойствами сообщений.

Скорость передачи информации I(Z,Y) – среднее количество информации, передаваемое по каналу в единицу времени. Она зависит от статистических свойств передаваемого сигнала и от свойств канала.

Пропускная способность С – наибольшая теоретически достижимая для данного канала скорость передачи информации. Это характеристика канала и не зависит от статистики сигнала.



С целью наиболее эффективного использования информационного канала необходимо принимать меры к тому, чтобы скорость передачи информации была как можно ближе к пропускной способности канала. Вместе с тем скорость ввода информации не должна превышать пропускную способность канала, иначе не вся информациябудет передана по каналу.

Это основное условие динамического согласования источника сообщений и информационного канала.

Одним из основных вопросов в теории передачи информации является определение зависимости скорости передачи информации и пропускной способности от параметров канала и характеристик сигналов и помех. Эти вопросы были впервые глубоко исследованы К. Шенноном.

Коммуникация, связь, радиоэлектроника и цифровые приборы

Объем сигнала и объем канала. Так например при исследовании условий прохождения радиосигнала между сотовым телефоном и базовой станцией радиоканала под каналом связи понимается пространство между антеннами сотового телефона и базовой станции при синтезе оптимального приёмника демодулятора совокупность технических средств от выхода модулятора передающего устройства до входа демодулятора приёмного устройства и среды распространения сигнала. Часть системы связи расположенная до входа канала является для него источником сигнала а часть...

Основные характеристики классификация каналов передачи и электросвязи по видам сообщений. Объем сигнала и объем канала.

В существующей научно-технической и учебной литературе, посвящённой различным системам связи, отсутствует единое конкретное понятие «канал связи». Обычно под каналом связи понимают часть системы связи, характеристики которой в процессе её исследования (анализа или синтеза) можно принять известными и неизменными, или же наоборот, часть системы связи, подвергающуюся исследованиям. Так, например, при исследовании условий прохождения радиосигнала между сотовым телефоном и базовой станцией (радиоканала) под каналом связи понимается пространство между антеннами сотового телефона и базовой станции, при синтезе оптимального приёмника (демодулятора) – совокупность технических средств от выхода модулятора передающего устройства до входа демодулятора приёмного устройства и среды распространения сигнала.

Часть системы связи, расположенная до входа канала , является для него источником сигнала, а часть системы, расположенная после выхода канала – его получателем.

Не смотря на столь неконкретное определение, каналы связи имеют определённые общие признаки и могут быть классифицированы по ним.

Основными признаками классификации каналов являются:

1) назначение системы (вид передаваемых сообщений): телефонные, телеграфные, факсимильные, звукового вещания, передачи данных, телевизионные, телеметрические и смешанные;

2) тип среды распространения: проводные (воздушные, кабельные, ВОЛС), волноводные, радио;

3) диапазон частот: для целей электросвязи в соответствие с Регламентом радиосвязи используются девять диапазонов частот – с четвертого (ОНЧ – СДВ) по двенадцатый (ГВЧ – децимиллиметровые) (табл. 1.2.1);

4) характер сигналов на входе и выходе системы:

Непрерывные (аналоговые) каналы – сигналы на входе и выходе непрерывные;

Дискретные (по уровню) – сигналы на входе и выходе дискретные;

Дискретно-непрерывные или непрерывно-дискретные (полунепрерывные) – сигнал на входе дискретный, на выходе непрерывный или наоборот.

Всякий дискретный или полунепрерывный канал содержит внутри себя непрерывный канал. Дискретность и непрерывность канала не связана с характером передаваемых сообщений: можно передавать дискретные сообщения по непрерывному каналу и непрерывные сообщения по дискретному.

Общими признаками непрерывных каналов являются:

а) большинство каналов можно считать линейными. В таких каналах выходной сигнал является суммой откликов отдельных входных сигналов и помех (применим принцип суперпозиции), а продукты нелинейных преобразований в канале малы по сравнению с выходными сигналами;

б) на выходе канала даже в отсутствие полезного сигнала всегда имеются помехи;

в) сигнал при передаче по каналу претерпевает задержку по времени и затухание по уровню;

г) в реальных каналах всегда имеют место искажения сигнала, обусловленные несовершенством характеристик канала и, нередко, изменениями параметров канала во времени.

Различают каналы чисто временные (с сосредоточенными параметрами), в которых сигналы на входе и выходе описываются функциями одного скалярного параметра (времени t ), и пространственно-временные каналы (с распределёнными параметрами), в которых сигналы на входе и (или) выходе описываются функциями более одного скалярного параметра (например, времени t и пространственных координат х, у, z ). Такие сигналы называют полями .

Каналы классифицируются также по следующим признакам:

Ширина полосы частот, занимаемых каналом (канал тональной частоты, широкополосные каналы);

Скорость передачи (основной цифровой канал, групповой цифровой канал – первичный, вторичный, третичный, четвертичный);

Способ организации двухсторонней связи (двухпроводный однополосный, двухпроводный двухполосный, четырехпроводный однополосный);

Протяженность или территориальный признак (международные, междугородние, магистральные, зоновые и местные).

1.5.2 Основные параметры каналов связи

Канал связи характеризуется так же, как и сигнал, тремя основными параметрами:

Временем T к , в течение которого по каналу возможна передача;

- динамическим диапазоном D к (отношение допустимой мощности передаваемого сигнала к мощности помехи, выраженное в децибелах);

- полосой пропускания канала F к .

Обобщённой характеристикой канала является его ёмкость (объём):

(1.5.1)

Необходимым условием неискажённой передачи по каналу сигналов с объёмом является:

(1.5.2)

В простейшем случае сигнал согласуют с каналом по всем трём параметрам, т.е. добиваются выполнения условий:

(1.5.3)

При этих условиях объём сигнала полностью «вписывается» в объём канала.

Неравенство (1.5.2) может выполняться и тогда, когда одно или два из неравенств (1.5.3) не выполнены. Это означает, что можно производить «обмен» длительности на ширину спектра или ширину спектра на динамический диапазон и т.д.

Наряду с приведёнными выше основными параметрами канала его частотные свойства характеризуются частотным коэффициентом передачи , а временные – импульсной характеристикой h к (t ,τ) . Из п. 1.2.5 следует, что эти характеристики позволяют описать преобразования входных сигналов во временной или частотной области, осуществляемые как каналом в целом, так и его отдельными элементами.


А также другие работы, которые могут Вас заинтересовать

12059. Валютная система и валютная политика России 245 KB
ВВЕДЕНИЕ Валютная система это совокупность двух понятий валютного механизма и валютных отношений. Под валютным механизмом понимаются правовые нормы и институты представляющие их на национальном и международном уровнях. Валютные отношения это повседневные свя
12060. Разработка экономического обоснования целесообразности открытия автосервиса ООО «Нижегородец» 396.5 KB
Реферат Выпускная квалификационная работа бакалавра 51 с. 2 разд. 6 рис. 11 табл. 14 источников. БИЗНЕСПЛАН АВТОСЕРСВИС НИЖЕГОРОДЕЦ ВЫСОКИЙ УРОВЕНЬ СПРОСА АВТОМОЙКА ШИНОМОНТАЖ ИНСТРУМЕНТЫ Объектом работы является деятельность ООО Нижегородец. Целью выпускн...
12061. ДЕЙСТВУЮЩАЯ ПРАКТИКА ОРГАНИЗАЦИИ УЧЕТА ЗАРАБОТНОЙ ПЛАТЫ 978.5 KB
СОДЕРЖАНИЕ ВВЕДЕНИЕ ГЛАВА 1. МЕТОДИЧЕСКИЕ ОСНОВЫ ОРГАНИЗАЦИИ УЧЕТА ОПЛАТЫ ТРУДА 1.1. Сущность понятие оплаты труда и ее формы 1.2. Исследование нормативной базы по оплате труда 1.3. Особенности деятельности предприятия и его учетная политика. ГЛАВА 2. ДЕЙСТВУЮ...
12062. Проблеми та перспективи розвитку валютних операцій в АКБ «Фінанси та кредит» та у банках України 411 KB
Вступ Актуальність обраної теми полягає в тому що валютні операції банків займають важливе місце серед статей прибутку сучасного банку але питання здійснення зазначених операцій є досить складним і потребує детального вивчення. Сьогодні банк може запропонувати кл
12063. ШЛЯХИ ПІДВИЩЕННЯ ПРИБУТКОВОСТІ КОМЕРЦІЙНИХ БАНКІВ 325 KB
ВСТУП Банківська система є важливою складовою економічної системи держави. Забезпечення стабільного прозорого функціонування банківських установ є однією з умов забезпечення конкурентоспроможності української економіки. У вітчизняній еконо
12064. НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ДЕЯТЕЛЬНОСТИ ОАО «СБЕРЕГАТЕЛЬНОГО БАНКА» НА ВАЛЮТНОМ РЫНКЕ 450 KB
Сделки покупки-продажи иностранной валюты Наличные сделки покупки-продажи today omorrow spot Срочные сделки покупки-продажи forward futures option swap Сделки с разрывами даты валютирования Чистая балансовая позиция Открытая валютна...
12065. ОБЩАЯ ХАРАКТЕРИСТИКА ДЕЯТЕЛЬНОСТИ ЛЕНИНСКОГО ОТДЕЛЕНИЯ № 4158 АК СБ РФ 127.5 KB
Введение Расчетнокассовый центр одно из центральных звеньев банковской системы. Развитие их деятельности необходимое условие реального создания банковского механизма. Процесс экономических преобразований начался с реформирования банковс...
12066. Основные направления совершенствования денежно-кредитной политики в Российской Федерации 173 KB
Введение Денежнокредитная политика одно из четырех направлений единой финансовой политики государства обеспечивающих устойчивость экономики и достижение экономического роста. Именно она контролирует инфляцию и рост денежной массы. Наличие в Российской Федерац
12067. Совершенствование системы финансового анализа банковской деятельности 1.49 MB
Введение Актуальность темы. Банки неотъемлемая составляющая современного денежного хозяйства их деятельность тесно связана с потребностями производства. Банки создают основу рыночного механизма с помощью которого функционирует экономика

Характеристики сигналов связи

Сообщения и соответствующие им сигналы по своей структуре могут быть непрерывными или дискретными.

Непрерывные сигналы определяются бесконечным множеством значений на конечном интервале времени. Такие сигналы описываются на некотором достаточно большом интервале времени непрерывными функциями времени. Типичным примером непрерывного сигнала может служить телефонный сигнал, отображающий речь, музыку, изменение температуры и т. д. (рис. 1.2).

Дискретными называются сигналы, характеризующиеся конечным числом значений на интервале времени их существования. Примером дискретного сигнала могут служить сигналы телеграфной связи, отображающие буквы алфавита и знаки определенными сочетаниями дискретных состояний сигнала (рис. 1.3).

Рис. 1.2. Телефонный сигнал Рис. 1.3. Телеграфные сигналы

Следует отметить, что и любой непрерывный сигнал для передачи сообщения с определенной точностью можно дискретизировать. Эта возможность основана на том, что все реальные сигналы имеют ограниченные спектры частот, т. е. описываются функциями с конечным множеством значений на конечном интервале времени.

Функции, описывающие сигналы связи, могут быть периодическими и непериодическими функциями времени. Из курса теории радиосигналов известно , что сигнал (функция) любого вида может быть разложен на гармонические составляющие: периодические сигналы – с помощью рядов Фурье, непериодические – с помощью интеграла Фурье.

Совокупность амплитуд гармонических составляющих называется спектром амплитуд или просто спектром сигнала.

Для анализа сигналов удобнее пользоваться не полными аналитическими описаниями сигналов (полная реализация которых не всегда возможна), а некоторыми обобщенными показателями или параметрами.

Такими обобщенными физическими параметрами сигнала являются:

– длительность сигнала Т С ;

–ширина спектра частот ;

– динамический диапазон D C ;

Длительность Т С характеризует время существования сигнала и, следовательно, время, на которое необходимо предоставить канал связи для передачи сигнала.

Ширина спектра частот характеризует форму сигнала и полосу пропускания канала, которую необходимо иметь для передачи сигнала по каналу.

Динамический диапазон сигнала Д характеризует превышение мощности сигнала P C над мощностью соответствующих сигналу помех P П , записанное в логарифмической форме:

Более точно динамическим диапазоном сигнала следует считать логарифм отношения его наибольшей мгновенной мощности и наименьшей мгновенной мощности. Но так как в канале связи минимальная мощность сигнала всегда должна превышать мощность помех, то в качестве обобщенного параметра выбрано превышение сигнала над помехой.

Виды модуляции

Виды модуляции

Передача первичных сигналов связи в исходном виде осуществляется только по проводным линиям небольшой протяженности. При организации дальней проводной и радиосвязи необходимо пользоваться специальным переносчиком - вспомогательным высокочастотным (обычно гармоническим) колебанием, с помощью которого первичные сигналы преобразуются в радиосигналы. Процесс преобразования непрерывных первичных сигналов в радиосигналы называют модуляцией, а дискретных первичных сигналов – манипуляцией.

Модуляцией (манипуляцией) называется процесс взаимодействия двух колебаний (НЧ и ВЧ), при котором изменяется один или несколько параметров высокочастотного колебания (амплитуда, частота, фаза) по закону первичного низкочастотного колебания.

В зависимости от того, какой из параметров изменяется под воздействием модулирующего сигнала, различают три основных вида модуляции: амплитудную (АМ), частотную (ЧМ) и фазовую (ФМ).

Указанными видами модуляции не исчерпываются технические возможности передачи сообщений по радиоканалам. Например, в технике радиорелейной, тропосферной и спутниковой связи широко применяются различные виды импульсной модуляции, при которых параметры периодической последовательности коротких импульсов (амплитуда, длительность, частота следования) изменяются по закону модулирующего колебания.

В технике военной радиосвязи для передачи непрерывных сообщений широко используются амплитудная, однополосная и частотная модуляции. Для передачи дискретных сообщений находят применение амплитудная, частотная и фазовая манипуляции.

Амплитудная модуляция

При амплитудной модуляции амплитуда несущего колебания изменяется в соответствии с изменением мгновенного значения модулирующего сигнала. На рис. 1.5 представлены формы модулирующего, модулируемого и амплитудно-модулированных сигналов.

Для простоты анализа в качестве модулирующего первичного сигнала взято гармоническое колебание низкой частоты W. В качестве модулируемого колебания взято высокочастотное колебание несущей частоты w. Амплитудно-модулированное (АМ) колебание представляет собой высокочастотное колебание, амплитуда которого изменяется по закону изменения напряжения низкой частоты.

Степень воздействия модулирующего колебания на колебание несущей частоты оценивается коэффициентом (глубиной) амплитудной модуляции, который определяется выражением

где – амплитуда несущего высокочастотного колебания;

– превышение амплитуды АМ колебания над амплитудой несущего колебания.

Рис. 1.5. Принцип амплитудной модуляции

Амплитудно-модулированное колебание является сложным и не является простой суммой колебаний высокой и низкой частот. Покажем это.

Пусть колебания высокой и низкой частот являются гармоническими и определяются выражениями:

.

В процессе модуляции амплитуда напряжения ВЧ сигнала изменяется по закону низкочастотного сигнала:

Тогда мгновенное значение модулированного напряжения можно записать в виде

Применив тригонометрическую формулу

. (1)

Полученный результат показывает, что АМ колебание представляет собой сумму трех высокочастотных колебаний, имеющих частоты , и , и не содержит в себе низкой частоты W полезного сигнала.

Частоты и называются соответственно верхней и нижней боковыми частотами. Амплитуды колебаний боковых частот не превышают половины (при т = 1) амплитуды несущей частоты. Спектральный состав амплитудно-модулированного колебания показан на рис. 1.6.

Рис. 1.6. Спектр АМ сигнала

Выше был рассмотрен спектр модулированного сигнала, когда в качестве первичного сигнала принималось простое гармоническое колебание. Реальные сигналы различных видов связи (телефонных и телеграфных) являются сложными и в частотном спектре занимают определенную полосу.

Как правило, передаваемый сигнал не является гармоническим и состоит из большого количества синусоидальных колебаний с разными амплитудами и частотами:

.

Поэтому и в структуре модулированного сигнала вместо боковых частот появятся боковые полосы. Очевидно, что спектр АМ сигнала в этом случае будет иметь в своем составе несущую частоту со и две боковых полосы частот: верхнюю , и нижнюю , (рис. 1.7).

Рис. 1.7. Структура спектра телефонного АМ сигнала

Ширина полосы частот АМ телефонного сигнала может быть определена как разность между наибольшей верхней боковой частотой и наименьшей нижней боковой частотой:

т. е. ширина полосы АМ телефонного сигнала вдвое больше наивысшей частоты спектра первичного сигнала звуковой частоты. Считая F B = 3400 Гц, получим ширину спектра, равную DF c = 6800 Гц.

Колебание несущей частоты имеет постоянную амплитуду и не содержит в себе полезного сигнала. Передавать это колебание, в принципе, не обязательно. Несущая частота нужна в приемнике лишь для того, чтобы восстановить форму первичного сигнала. Полная информация о передаваемом сигнале заключена в равной степени в каждой из боковых полос частот.

Таким образом, недостатками амплитудной модуляции являются:

1. Широкая занимаемая полоса частот: она вдвое превышает ширину спектра передаваемого сигнала. Уменьшение полосы частот позволило бы увеличить количество каналов (рабочих частот) в пределах данного диапазона.

2. Нерациональное использование мощности передатчика. Действительно, амплитуда колебаний боковой частоты определяется выражением

где m - коэффициент амплитудной модуляции.

Несложно показать, что отношение между мощностями колебаний несущей и боковой частот будет равно

Поскольку m 1, то мощность, затрачиваемая на излучение колебаний несущей частоты, значительно превышает полезную мощность, затрачиваемую на излучение колебаний боковых частот. Реально на передачу полезной информации расходуется около 10 % мощности передатчика .

Недостатки, свойственные амплитудной модуляции, устраняются при переходе к так называемой однополосной модуляции.

Однополосная модуляция

Вид модуляции, при которой в спектре АМ сигнала сохраняется лишь одна боковая полоса, называется однополосной модуляцией (ОМ), а само колебание называется однополосно-модулированным сигналом.

Из анализа выражения (1) следует, что однополосная модуляция является особым видом амплитудно-частотной (фазовой) модуляции, при которой амплитуда высокочастотного колебания изменяется по закону изменения мгновенных амплитуд модулирующего сигнала (первичного электрического сигнала), а изменение частоты (фазы) происходит в соответствии с законом изменения мгновенной частоты модулирующего сигнала.

В настоящее время при работе в телефонном режиме на частотах до 20...30 МГц однополосная модуляция является основным видом управления колебаниями в радиопередатчиках.

Однополосная модуляция (ОМ) имеет ряд неоспоримых преимуществ по сравнению с применявшейся ранее амплитудной модуляцией (АМ).

Во-первых, ширина спектра сигнала при ОМ сокращается вдвое по сравнению со спектром сигнала при АМ, что позволяет в два раза увеличить число рабочих частот в одном и том же диапазоне и уменьшить вдвое мощность шума на выходе радиоприемника, что в свою очередь приводит к улучшению помехозащищенности канала связи.

Во-вторых, при однополосной модуляции повышается эффективность использования мощности передатчика, так как отпадает необходимость затраты электроэнергии на генерирование мощных колебаний несущей частоты. При заданной мощности передатчика это эквивалентно увеличению дальности связи. Переход от АМ к ОМ обеспечивает общий энергетический выигрыш примерно в 8 раз .

Еще одним достоинством однополосной модуляции является более высокий промышленный КПД, поскольку в паузах передачи информации несущая не генерируется и, следовательно, снижается потребление энергии от источников питания. Чем мощнее передатчик, тем больше выигрыш в потреблении энергии. Так, например, расход электроэнергии при АМ составляет 3,5...4,5 кВт на 1 кВт полезной мощности, а при ОМ – всего от 1,1 до 2 кВт.

Наряду с достоинствами однополосной модуляции следует отметить некоторые трудности ее технической реализации.

Для демодуляции однополосного сигнала в приемном устройстве на детектор (демодулятор) приемника необходимо подать колебание несущей частоты. В противном случае информация о частоте первичного сигнала будет потеряна. Источником колебания восстановленной несущей является специальный гетеродин, причем частота этой несущей должна быть восстановлена с высокой степенью точности ( 25 Гц).

Вторая трудность внедрения однополосных сигналов в практику связана с необходимостью подавления несущей и второй боковой полосы частот в тракте передачи.

Существует несколько способов формирования однополосных радиосигналов: фильтровый, фазофильтровый, фазокомпенсационный, синтетический и др. В настоящее время широкое применение находит фильтровый способ, который предполагает выделение с помощью фильтров одной из боковых полос амплитудно-модулированного сигнала.

Несмотря на указанные технические трудности, однополосная модуляция нашла широкое применение в коротковолновой военной радиосвязи.

Частотная модуляция

При частотной модуляции (ЧМ или РЗ) амплитуда модулированного несущего колебания остается неизменной, а меняется только его частота в соответствии с изменением амплитуды первичного сигнала. На рис. 1.8 показаны формы исходного (модулирующего) и частотно-модулированного сигналов.

Максимальное отклонение частоты от среднего значения несущей называется девиацией частоты:

Отношение

называется индексом частотной модуляции. Здесь W, (F ) – частота первичного сигнала.

Рис. 1.8. Принцип частотной модуляции

Также как АМ колебание, частотно-модулированное колебание является сложным. Разложение ЧМ сигнала на гармонические составляющие требует достаточно сложных математических преобразований с использованием функции Бесселя.

Выполнение этих преобразований показывает, что спектр колебания при частотной модуляции состоит из колебаний с частотами w 0 (f 0 ) и бесконечного числа боковых частот, расположенных попарно симметрично относительно несущей частоты w 0 и отличающихся от последней на n W, где n - любое целое число.

Амплитуды боковых составляющих определяются выражением

,

где – амплитуда ВЧ колебания;

– функция Бесселя n -го порядка от аргумента .

Пример спектра ЧМ сигнала показан на рис. 1.9.

Рис. 1.9. Спектр ЧМ сигнала

По величине индекса частотной модуляции различают:

– узкополосную ЧМ, когда < 1, т.е. < F ;

– широкополосную ЧМ, когда >1, т.е. > F ;.

Теоретически спектр ЧМ колебаний бесконечно широк. Практически, начиная с некоторых частот, амплитуды гармоник столь малы, что ими можно пренебречь. На этом основании ширина спектра ЧМ колебаний определяется как диапазон частот, расположенный симметрично относительно несущей, за пределами которого нет гармоник с амплитудами, превосходящими 0,01 .

Приближенно ширина спектра определяется формулой

(2)

Например, при девиации частоты = 5 кГц и наивысшей частоте спектра звукового сигнала F = 3,4 кГц, принятых для военной радиосвязи, ширина спектра ЧМ сигнала составит DF C » 2(5+3,4)=16,8 кГц.

При большом индексе частотной модуляции, когда >>1, формула (2) принимает вид

,

т. е. ширина спектра практически равна удвоенной девиации частоты.

При малом индексе частотной модуляции << 1ширина спектра будет равна

т. е. составит такую же величину, как и при амплитудной модуляции.

В технике радиосвязи при работе в телефонном режиме на частотах выше 20...30 МГц частотная модуляция нашла широкое применение, а в УКВ радиостанциях малой мощности (до 100 Вт) она является основным видом модуляции. Сигналы при ЧМ имеют более широкий спектр, чем при ОМ, но это обстоятельство при большой частотной емкости диапазона не является решающим при выборе вида модуляции. Кроме того, аппаратура, где применяется только частотная модуляция, значительно упрощается, что очень важно для маломощных радиостанций.

1. Назначение и основные эксплуатационно-технические
характеристики радиопередатчика

Радиопередатчиком называется радиотехническое устройство, преобразующее первичные электрические сигналы в радиосигналы определенной мощности, необходимой для обеспечения радиосвязи на заданное расстояние с требуемой надежностью.

Независимо от вида передаваемых сигналов передатчик выполняет следующие функции:

1) формирование сетки (множества) высокочастотных несущих колебаний в рабочем диапазоне с заданной дискретностью;

2) модуляция (или манипуляция) несущих колебаний по закону передаваемых первичных сигналов;

3) усиление сформированных радиосигналов до заданной мощности за счет энергии местных источников питания;

4) преобразование усиленных радиосигналов в электромагнитные волны.

В состав любого радиопередатчика, обобщенная структурная схема которого представлена на рис.2.1, входят следующие основные элементы: возбудитель, усилитель мощности, согласующее антенное устройство и система электропитания.

Рис. 2.1. Структурная схема радиопередатчика

Основными техническими характеристиками любого радиопередатчика являются:

– диапазон и количество рабочих частот;

– виды радиосигналов;

– мощность и коэффициент полезного действия;

– стабильность частоты излучаемых радиосигналов;

– уровень побочных излучений;

– время перестройки передатчика с одной частоты на другую.

1. Диапазон рабочих частот характеризуется двумя параметрами: граничными частотами диапазона и , а также коэффициентом перекрытия диапазона по частоте

.

В УКВ диапазоне обычно не превышает 1,3 (в некоторых случаях может достигать величины 3,0). Для передатчиков КВ диапазона значение коэффициента перекрытия колеблется в пределах 10-20.

При заданном интервале между соседними частотами (шаге сетки) диапазон частот определяет общее количество рабочих частот N, на которое может быть настроен передатчик:

Обычно интервалы между соседними частотами равны 0,01; 0,1; 1,0; 10 и
25 кГц.

2. Виды радиосигналов, используемых для радиосвязи, можно разделить на две группы: телефонные, формируемые в процессе модуляции, и телеграфные, формируемые в процессе манипуляции.

В настоящее время при формировании телефонных радиосигналов наиболее широко используются методы однополосной (ОМ) и частотной (ЧМ) модуляции и практически не применяются устаревшие методы амплитудной (АМ) модуляции. При работе телеграфными радиосигналами применяются методы амплитудного (АТ), частотного (ЧТ и ДЧТ) и относительного фазового (ОФТ) телеграфирования.

3. Мощность радиопередатчика является одной из важнейших характеристик и в значительной степени определяет уровень сигнала в точке приема, а следовательно, дальность радиосвязи и ее надежность. Под мощностью радиопередатчика понимается средняя мощность радиосигнала, подводимая к передающей антенне.

Для всех видов телефонных радиосигналов (кроме ОМ) средняя мощность измеряется при отсутствии первичного сигнала (в режиме молчания). Для телефонных радиосигналов с ОМ мощность радиопередатчика определяется пиковой мощностью радиосигнала при максимальном (пиковом) значении первичного модулирующего сигнала. При работе радиопередатчиков телеграфными радиосигналами мощность оценивается средней мощностью, подводимой к антенне при передаче положительной (токовой) посылки первичного электрического сигнала или, как принято говорить, «в режиме нажатого ключа».

Общий (промышленный) КПД радиопередатчика определяется отношением мощности, подводимой к антенне, к общей мощности, потребляемой его цепями от первичного источника питания. В современных радиопередатчиках средней и большой мощности общий КПД составляет 25...30 % .

4. Стабильность частоты излучаемых радиосигналов определяет устойчивость и надежность радиосвязи, обеспечивает вхождение в связь без поиска корреспондентов и без подстройки приемника. Количественно стабильность частоты оценивается либо абсолютной, либо относительной нестабильностью.

Под абсолютной нестабильностью частоты понимается разность между ее текущим (измеренным) значением/и номинальным (требуемым) значением :

Относительная нестабильность частоты позволяет сравнивать передатчики, работающие в различных диапазонах, и определяется отношением абсолютной нестабильности к номинальному значению частоты, на котором осуществляется измерение:

Относительная нестабильность частоты современных радиопередатчиков составляет = 10 -6 ... 10 -7 и выше.

Принято различать два вида побочных излучений: излучения на гармониках основной частоты, возникающие в результате нелинейного режима усиления радиосигнала в УМ, и излучения на комбинационных частотах, возникающие в результате нелинейных преобразований при формировании сигналов на рабочей частоте в возбудителе. Последние являются наиболее опасными, поскольку могут находиться в непосредственной близости от спектра основного радиосигнала и практически не фильтруются в усилительных каскадах передатчика.

Относительный уровень побочных излучений оценивается отношением мощности побочного излучения Р пи к мощности основного излучения Р А и выражается в децибелах:

В соответствии с современными требованиями гармоники основного излучения (вторые и более высокие) должны быть подавлены на выходе радиопередатчика не менее чем на 65 дБ.

Нормы по подавлению комбинационных частот следующие:

¨ в полосе частот, отстоящих от спектра основного сигнала на
(± 3,5)…(± 25) кГц – не менее 80 дБ;

¨ 4 от ± 25 кГц и до ± 10 % от установленной частоты – не менее 120 дБ;

¨ свыше ± 10 % от установленной частоты – не менее 140 дБ.

6. Время перестройки передатчика с одной частоты на другую в значительной степени определяет надежность радиосвязи, особенно в условиях сложной помеховой обстановки. Современные радиопередатчики, имеющие системы заранее подготовленных частот (ЗПЧ), обеспечивают перестройку с одной ЗПЧ на другую в течение единиц секунд. В настоящее время предъявляются более жесткие требования к указанной характеристике. Так, при использовании радиостанций в частотно-адаптивных радиолиниях время перестройки должно ограничиваться единицами миллисекунд.

Кроме рассмотренных выше характеристик важное значение имеют также эксплуатационные и конструктивные характеристики радиопередатчиков:

– время готовности к работе, которое измеряется с момента включения радиопередатчика и до момента достижения номинальных значений параметров, в том числе требуемой стабильности частоты. В зависимости от типов радиопередатчиков и используемых в них усилительных элементов это время составляет от единиц секунд до десятков минут;

– время непрерывной работы. Радиопередатчики большой мощности, как правило, должны быть рассчитаны на непрерывную работу в течение суток, средней мощности - на непрерывную работу в течение нескольких часов, а для переносных радиостанций в ряде случаев предусматривается работа в течение меньших отрезков времени. Эта характеристика определяет выбор источников питания, системы охлаждения и конструкции выходных каскадов усилителей мощности;

– надежность, оцениваемая наработкой на отказ, которая должна составлять для серийно выпускаемых радиопередатчиков средней и большой мощности на втором году их эксплуатации 2.. .3 тыс. ч;

– устойчивость к механическим воздействиям (вибростойкость, ударо-стойкость) и независимость работы радиопередатчика от климатических условий. Эти требования вытекают из необходимости надежной работы радиопередатчика в различных, порой весьма сложных условиях эксплуатации;

– габариты, масса и т. д.

Требования к основным техническим характеристикам современных радиопередатчиков чрезвычайно высоки и обычно находятся в противоречии.

Синтезаторы частот

Практические схемы синтезаторов частот (в дальнейшем просто синтезаторов) весьма разнообразны. Несмотря на это, можно отметить общие принципы, лежащие в основе построения современных синтезаторов:

– современные синтезаторы содержат, как правило, один опорный кварцевый генератор, частоту колебаний которого называют первичной опорной частотой;

– широкое применение делителей, умножителей, преобразователей частоты и датчиков опорных частот, обеспечивающих синтез сетки частот с использованием одного опорного колебания;

– обеспечение синтезаторами принципа декадной установки частоты возбудителя.

По методам образования выходных колебаний системы синтеза частот можно разделить на два класса:

1) системы прямого (пассивного) синтеза частот;

2) системы косвенного (активного) синтеза частот.

Системы прямого синтеза не содержат автогенераторов и предполагают получение заданных выходных частот из частоты опорного генератора путем простых арифметических действий над ней: умножения, деления, сложения и вычитания. Появляющиеся при этом побочные колебания ослабляются непосредственной фильтрацией с помощью перестраиваемых или коммутируемых полосовых фильтров.

В системах, косвенного синтеза для получения выходных частот используется дополнительный автогенератор с параметрической стабилизацией частоты. Нестабильность частоты этого автогенератора устраняется различными методами, которые будут рассмотрены ниже.

Системы синтеза частот того или другого класса могут быть выполнены на аналоговых элементах или с использованием цифровой элементной базы. Системы синтеза частот, осуществляемого цифровыми методами, называют системами цифрового синтеза, а устройства, использующие такие системы, – цифровыми синтезаторами.

Цифровые синтезаторы частот

Широкое использование логических интегральных схем в технике связи обусловило появление новых типов синтезаторов частот, которые принято называть цифровыми. Наибольшее распространение получили цифровые синтезаторы, выполненные по методу косвенного синтеза с фазовой автоматической подстройкой частоты.

Наиболее простая схема цифрового синтезатора с системой ИФАП представлена на рис. 2.9.

В состав схемы входят управляемый генератор (УГ), формирующие устройства (ФУ), делитель с переменным коэффициентом деления (ДПКД), импульсно-фазовый детектор (ИФД) и ФНЧ.

Рис. 2.9. Система ИФАП цифрового синтезатора частоты

Колебания УГ, преобразованные с помощью формирующего устройства в импульсную последовательность той же частоты, поступают на ДПКД. На выходе делителя имеет место последовательность импульсов с частотой следования , где N - коэффициент деления ДПКД, величина которого изменяется в необходимых пределах внешними органами управления. Последовательность с выхода ДПКД поступает на вход ИФД, где сравнивается с эталонной импульсной последовательностью.

На выходе ИФД выделяется управляющее напряжение, зависящее от разности фаз (частот) сравниваемых колебаний, и приводит систему в стационарное состояние, при котором соблюдается условия:

Из приведенного выражения видно, что выходная частота генератора полностью определяется эталонной частотой и установленным значением коэффициента деления N. При этом относительная нестабильность частоты УГ определяется относительной нестабильностью частоты опорного колебания.

Таким образом, применение цифровых элементов позволило заменить преобразователи частоты делителями, что существенно уменьшает уровень побочных колебаний на выходе синтезатора. Кроме того, использование ДПКД резко увеличило полосу схватывания системы ФАП, поэтому в сравнительно узкодиапазонных синтезаторах не требуется применение систем автопоиска.

Рассмотренные выше синтезаторы частот, независимо от методов их построения, находят широкое применение не только в возбудителях радиопередатчиков, но и в целом ряде различных радиотехнических устройств. В супергетеродинных радиоприемниках синтезаторы частот выполняют функции гетеродинов. Синтезаторы широко используются в измерительных приборах (генераторах, частотомерах, анализаторах спектра и пр.), в телеметрических устройствах, в различных приборах, предназначенных для физических исследований, и т. д.

4. Тракты формирования радиосигналов

Одной из функций возбудителя является преобразование первичных электрических сигналов в высокочастотные сигналы (радиосигналы). Это преобразование рассматривается как формирование радиосигналов.

В современных военных радиостанциях широко используются следующие виды радиосигналов:

¨ телефонные с однополосной модуляцией (ОМ);

¨ телефонные с частотной модуляцией (ЧМ);

¨ телеграфные с амплитудной манипуляцией (АТ – амплитудное телеграфирование);

¨ телеграфные с частотной манипуляцией (ЧТ – частотное телеграфирование);

¨ телеграфные с двойной частотной манипуляцией (ДЧТ);

¨ телеграфные с относительной фазовой манипуляцией (ОФТ).

Каждый вид радиосигналов требует специальных устройств, которые реализуют тот или иной метод формирования. Все формирующие устройства обычно объединяются в один конструктивный и функциональный блок – блок формирования радиосигналов (БФС).

Независимо от вида формируемых радиосигналов к БФС предъявляются следующие общие требования:

– минимальный уровень нелинейных и частотных искажений первичного сигнала в процессе формирования радиосигнала;

– минимальный уровень побочных колебаний в процессе формирования радиосигналов;

– малый уровень собственных шумов на выходе БФС;

– высокая стабильность частоты формируемых радиосигналов.

Выполнение указанных требований легче обеспечить при сравнительно малых уровнях сигналов и относительно низких частотах. Поэтому в большинстве случаев радиосигналы первоначально формируются в БФС на одной фиксированной частоте, измеряемой сотнями килогерц или единицами мегагерц, а затем с помощью ряда преобразований частоты (в такте преобразования радиосигналов) спектр сигнала переносится в область более высоких частот, а при последнем преобразовании - на рабочую частоту возбудителя. Все опорные колебания, обеспечивающие преобразование сигнала и перенос его спектра на рабочую частоту, вырабатываются синтезатором.

Рассмотрим принципы формирования отдельных видов радиосигналов.

4.1. Формирование радиосигналов с однополосной

модуляцией

В настоящее время при работе радиостанций в телефонном режиме на частотах до 20...30 МГц основным видом модуляции стала однополосная модуляция (ОМ), которая имеет ряд неоспоримых преимуществ по сравнению с применявшейся ранее амплитудной модуляцией (см. занятие № 1).

Существуют различные способы формирования ОМ сигналов: фильтровый, фазофильтровый, фазокомпенсационный, синтетический и др. В современной аппаратуре находит широкое применение только один из них – фильтровый способ. Этот способ прост в реализации и обеспечивает получение высоких качественных показателей возбудителей. Фильтровый способ предполагает выделение с помощью полосового фильтра одной из боковых полос амплитудно-модулированного сигнала. Принцип формирования ОМ сигнала поясняется рис. 2.10.

Рис. 2.10. Фильтровый способ формирования ОМ сигналов

На входы балансного модулятора подаются первичный электрический сигнал, имеющий спектр F , и гармонический сигнал с частотой в качестве несущего колебания. На выходе модулятора, собранного по балансной схеме, получается спектр АМ сигнала в составе нижней боковой полосы частот (), верхней боковой полосы частот () и подавленной несущей . Узкополосный фильтр на выходе модулятора предназначен для выделения необходимой боковой полосы частот (на рис. 2.10 – верхней) и подавления второй боковой полосы и остатка несущей.

В военной радиосвязи первичный сигнал занимает полосу частот
F = 300...3400 Гц, поэтому расстояние на частотной оси между подавляемой и не подавляемой боковыми полосами составит всего 600 Гц. Необходимость эффективного подавления (60 дБ) второй боковой полосы частот, столь близко расположенной на оси частот к выделяемому сигналу, предъявляет жесткие требования к полосовому фильтру. В современных возбудителях применяются, как правило, кварцевые фильтры, рассчитанные на стандартные промежуточные частоты (чаще всего = 128 кГц).



Загрузка...