sonyps4.ru

Динамический звук в разрушаемых уровнях Rainbow Six: Siege. И вновь о динамическом диапазоне

(от греч. ἀκούω (аку́о) - слышу) - наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием.

Акустическая система – это электрическое устройство (рис. 2), предназначенное для преобразования тока переменной частоты в звуковые колебания при помощи электро-акустического преобразования.

Громкоговоритель, динамик, динамическая головка (рис. 3) – основной элемент акустической системы, который, собственно, и преобразует ток переменной (звуковой) частоты в звуковые колебания или, просто, в звук.

Звуковой сигнал можно представить, как совокупность различных синусоидальных составляющих. Каждая составляющая характеризуется рядом параметров (рис. 4):

Звуковой диапазон от 20 до 20000 Гц (примерно) – это звук, который мы слышим. Естественно, это усреднённый интервал, и у каждого человека он индивидуален.

Громкость звука определяется амплитудой сигнала (рис. 5). Чем выше амплитуда звуковой волны, тем больше громкость.

Звуковое давление – это переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны.

Высота звука определяется частотой звуковой волны (или, периодом волны). Чем выше частота, тем выше звучание и, соответственно, наоборот (рис. 6).

Тембр звука – это «окраска звука». Дело в том, что звуки различных источников (музыкальные инструменты, голоса людей) представляют собой совокупность гармонических колебаний разных частот. Составляющая наибольшего периода (наименьшей частоты) называется основным тоном. Высота сложного звука определяется именно высотой его основного тона. Остальные составляющие сложного звука называют обертонами (у них высота больше, чем у основного) – рис. 7. Набор этих составляющих и создаёт «краску», тембр звука.

Динамический диапазон звука – это диапазон между самым тихим уровнем, и самым громким .

Инфразвук (от лат. infra - ниже, под) - упругие волны, аналогичные звуковым, но имеющие частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16-25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.

Ультразвук – это упругие колебания и волны с частотами приблизительно от 1,5- 2 ×104 Гц (15-20 кГц) и до 109Гц(1 ГГц). Ультразвуковую область частот подразделяют на три подобласти: ультразвук низких частот (1,5×104-105 Гц) - УзНЧ, ультразвук средних частот (105 - 107 Гц) - УзСЧ, ультразвук высоких частот (107-109 Гц) - УзВЧ. Каждая из этих подобластей характеризуется своими специфическими особенностями генерации, приёма, распространения и применения.

Гиперзвук – это упругие волны с частотой от 109 до 1012-1013 Гц. По физической природе гиперзвук ничем не отличается от ультразвука.

2. Воспроизведение звука
Для того, чтобы в воздухе возникла звуковая волна, необходим источник звуковых колебаний – некое тело или система тел, которые совершают механические колебания с частотой от 20 Гц до 20 кГц. Таким источником является, например, динамический громкоговоритель (динамик) – рис.3.

Динамический громкоговоритель (рис. 8) состоит из диффузора 6, дифузородержателя 5, центрирующий шайбы 4, звуковой катушки 3, и магнитной системы 1, 2, 8. Бумажный конус-диффузор 6 приклеен к металлическому или пластмассовому дифузородержателю 5 своим краем (гофром) 7 и центрирующий шайбой 4, назначение которой – центрировать положение звуковой катушки 3 в зазоре магнитной системы. Кольцевой магнит 2 и сердечник 1 (так называемый керн) приклеены к дифузородержателю 5 и шайбе из мягкого железа 8. Между керном 1 и магнитом 2 является зазор 0,5-2,0 мм, в котором создается сильное магнитное поле. На бумажном кольце, приклеенном к узкой части диффузора, намотанная тонким изолированным проводом (40-80 витков), звуковая катушка 3. Концы катушки приклеены к диффузору и соединены гибким проводом с выводами.

Принцип действия громкоговорителя очень прост и основан на явлении движения проводника с током в магнитном поле. На этот проводник действует сила Ампера. Если по звуковой катушке протекает переменный ток звуковой частоты, то соответственно меняется сила Ампера, действующая со стороны магнитного поля постоянного магнита. Катушка совершает колебания и вместе с ней совершает колебания диффузор, который и создаёт звуковую (поперечную) волну в воздухе – рис. 9.

Сам по себе динамик не может качественно воспроизвести звук . Для этого его надо поместить в полый корпус, и тогда динамик, установленный в корпусе будет представлять собой акустическую систему. Параметры корпуса (размеры, толщина стенок, расположение динамика, фазоинвертор и т.д.) должны быть рассчитаны по специальным формулам .
Всем известно, что для воспроизведения определённого диапазона частот используются разные динамики: низкочастотные, среднечастотные и высокочастотные. Есть динамики, которые называют широкополосными, но это – иллюзия. Ни один динамик не может качественно воспроизвести весь звуковой диапазон.

4. СТЕРЕОФОНИЯ
С точки зрения физики пространственная звуковая картина, которую воспринимает человек , является следствием интерференции звуковых волн. Причём, повторяю, анализатором звуковой картины является мозг.
Первые эксперименты 30-х годов ХХ века по получению объемного звучания (с помощью трех-семи каналов) дали удивительные результаты. Было установлено, что при воспроизведении даже 2-х раздельных каналов субъективное качество звука резко улучшается. А самое поразительное заключается в том, что эксперты предпочитали стереозвук даже в тех случаях, когда им предъявляли объективно более качественные, но монофонические фонограммы. Решающим преимуществом стала возможность пространственной локализации кажущихся источников звука. См. рис. 27 – распределение кажущихся источников звука на стереопанораме .

На начальном этапе разработчики решили ограничиться двумя каналами. Это, конечно, в первую очередь было обусловлено небогатыми возможностями аппаратуры тех времен: грампластинки реально позволяли разместить только два полноценных канала.
Стереозвук дает некоторую прозрачность звучания: партии отдельных инструментов становятся более различимыми на фоне оркестра. Кроме того, стереосистема способна воспроизвести подобие звуковой атмосферы помещения, в котором выполнялась запись. Началась эра 2-канальных стереофонических систем. Постепенно появились стереофонические грампластинки и стереопроигрыватели, стереомагнитофоны, стереофоническое радиовещание.
В свою очередь стереозвучание имеет существенный недостаток. Стереопанорама ограничена углом между направлениями на громкоговорители и получается плоской. Такое звучание лишено естественности реального звукового поля, когда человек способен воспринимать реальные источники практически со всех направлений и оценивать расстояние до источников звука. Создающееся у слушателя ощущение объемного звучания могло бы существенно обогатить тембры музыкальных инструментов и голосов певцов. При этом можно было бы имитировать реверберационный процесс , свойственный помещению, в котором произведена запись.
Одной из первых попыток преодоления недостатков, присущих стереофоническим системам, стала квадрофония. Для воспроизведения квадрофонических фонограмм используются 4 акустические системы: см. рис. 28 – распределение кажущихся источников звука на квадропанораме.
Первые бытовые квадросистемы появились в начале 70-годов прошлого века. Казалось, что их ждет славное будущее. Однако этого не произошло. Причин тому есть несколько. Одна из них традиционна для многих новинок техники и заключается в том, что производители квадрофонической аппаратуры так и не смогли прийти к единому стандарту записи и воспроизведения 4-канального звука. Свою роль сыграли несовершенство и большая стоимость аппаратуры четырехканальной записи-воспроизведения. Но главное заключается в другом: с переходом от «стерео» к «квадро» в те времена новое качество звука не возникло. Квадрофонические системы, так же как и стереофонические, не обеспечивали полной передачи свойств реального звукового поля. Недостатков было только два, но они существенны:

Следует заметить, что эти недостатки обусловлены не столько ограниченными возможностями четырехканального воспроизведения звука, сколько трудностями реализации панорамирования кажущихся источников звука при записи. При подготовке фонограмм для современных многоканальных систем этот фактор учитывается. Важную роль при этом играет компьютер, способный справиться с моделированием объемных реверберационных процессов и предоставляющий звукорежиссеру удобные регуляторы для перемещения источников звука по круговой панораме.
Но в те далекие времена квадрофония отступила, а стереофония победила и стала развиваться по линии миниатюризации аппаратуры, улучшения ее технических и потребительских качеств, перехода к новым носителям: компакт-кассетам и компакт-дискам. Перед звукозаписывающими компаниями и производителями аудиоаппаратуры все еще существовал широчайший фронт работ и ёмкий рынок сбыта. В который раз они предлагали слушателям смену фонотек. Накопленный на грампластинках за предшествующие десятилетия музыкальный материал, обновленный и адаптированный сначала под монофонические катушечные магнитофоны, затем реализованный на компакт-кассетах в стереоформате, в очередной раз предлагался меломанам, но теперь уже на лазерных дисках.

5. ПРОЩАЙ, СТЕРЕОФОНИЯ?!
Однако в самом конце XX века стереофония, кажется, все-таки начала сдавать свои позиции. Цифровые технологии записи звука, а также ёмкие, удобные и дешевые носители сняли ранее существовавшую проблему хранения многоканальных фонограмм большой длительности. Кроме того, в звуке, передающем акустические свойства окружающего пространства, появилась острая потребность. Виртуальные графические миры компьютерных игр становятся все более сложными и похожими на реальность, а значит, требуют и адекватного звукового оформления. Кинематограф, переживший кризис в состязании с телевидением, возродился в виде домашних кинотеатров и кинозалов нового формата, основное отличие которых от предшественников кроется не в изображении, а в принципиально новом звуке (хотя и качество изображения тоже улучшилось, благодаря DVD и современным проекционным средствам).
Новая эра в звукозаписи началась в результате исследований, выполненных инженерами Dolby Laboratories . Это был принципиально новый подход к передаче многоканального звука. Отличие от традиционного способа заключалось, прежде всего, в том, что для хранения аудиосигналов двух дополнительных каналов использовалось матричное кодирование, т.е. их подмешивание к основным двум каналам. Изменился и способ размещения акустических систем: дополнительно к традиционному для квадрофонии расположению акустических систем по углам помещения добавлен центральный канал, размещенный между правым и левым фронтальными каналами, чтобы сохранить широкую стереобазу для зрителей, сидящих на боковых местах, а за спинами размещен канал эффектов (Surround). Так появилась система нового кинотеатрального звучания Dolby Stereo . См. рис. 29 – размещение излучателей звука в системе Dolby Stereo.
Как уже было сказано, этот четырехканальный формат является матричным форматом, при котором звук, предназначенный для каждого из четырех каналов, кодируется и записывается на два канала, а при воспроизведении декодируется вновь в четыре канала: левый, центральный, правый и задний. Сигнал заднего канала, как правило, направляется на две тыловые акустические системы одновременно. Впервые формат Dolby Stereo был применен в фильме "Star Wars" в 1975 году.

Системой воспроизведения совершенно нового качества, совместимой со старым стандартом звукозаписи, стала система Dolby Pro Logic . В ней был применен декодер, реализующий пространственную фокусировку звуковых образов: технологию, используемую для снижения взаимного проникновения сигналов одного канала в другой. В Dolby Pro Logic также появилась возможность создавать задержку звукового сигнала в тыловом канале. Тем самым было обеспечено согласование геометрических и акустических характеристик конкретного помещения с характеристиками «эталонного кинозала», под который при производстве сводился мультитрековый звук. Очень важно, что к настоящему времени накоплено огромное количество музыки, фильмов, телепрограмм, записанных на различных современных носителях со звуком в формате Dolby Pro Logic. А потом наступила эпоха цифрового кодирования и цифровой записи многоканального объемного звука, и появилась система Dolby Digital . Для кодирования цифрового звука в ней используется алгоритм, называемый АС-3 (Dolby"s third generation audio coding algorithm – алгоритм кодирования звука Dolby третьего поколения). АС-3 представляет собой алгоритм компрессии многоканального звука (количество независимых каналов от 1 до 6) с потерями. Достижения в области психоакустики , учитывающие особенности человеческого слухового аппарата, используются в нём для принятия решения о том, какую часть информации в аудиосигнале можно отбросить, чтобы это было не очень заметно для человеческого уха. При кодировании алгоритмом АС-3 могут использоваться битрейты от 32 Кбит/с (для одного монофонического канала с минимальным качеством) до 640 Кбит/с (для каналов 5.1 с минимальными потерями качества). Типичный битрейт для 5.1 записей составляет 385 Кбит/с.
Используется сжатие данных с потерями, однако качество звука все равно получается выше, чем у предшествующих аналоговых систем.
Dolby Digital может обеспечить кодирование до 6 каналов в формате 5.1 , где 5 – это каналы с полным частотным диапазоном (20 – 20 000 Гц) и .1 – канал низкочастотных (менее 120 Гц) эффектов (LFE).
Объемность акустических сцен, более четкая детализация, естественность перемещений источников звука из фронтальной области в тыловую, стереофоническое звучание в тыловой области – все это обеспечило успех системы.
Обозначение «5.1 » указывает на количество каналов, но не несет в себе информации о каком-либо определённом способе кодирования многоканального звука. Используется пять каналов с полным частотным диапазоном (левый передний, центральный, правый передний, левый задний и правый задний), а также один низкочастотный канал (с диапазоном от 3 до 120 Гц), подключаемый к сабвуферу (рис. 30 - размещение излучателей звука в системе 5.1).
В этой системе 5.1 формируется круговая стереопанорама. Поскольку на сверхнизких частотах наш слух практически лишен способности определять направление на источник звука, место расположения сабвуфера не имеет существенного значения.
Сабвуфер применяется и в обычных стереосистемах. В его канал подается низкочастотная часть спектра суммарного сигнала стереоканалов, в результате чего обеспечивается гарантированное воспроизведение басовых звуков. Однако в системе 5.1 канал низкочастотных эффектов играет особую роль. Его стоит рассматривать не как низкочастотную компоненту многополосной акустической системы, а именно как независимый канал низкочастотных эффектов.
По мнению специалистов, формат 5.1 является наиболее перспективным, поскольку поддерживается основными разработчиками. Важно, что имеются подходящие носители (DVD).
И хотя пока не принят единый стандарт и одновременно существует несколько систем кодирования для 5.1, однако фиаско «первобытной» квадрофонии вряд ли повторится, даже если «выживет» не одна, а несколько различных систем кодирования. Принципиальное отличие формата 5.1 от квадрофонии тридцатилетней давности заключается в том, что в данном случае аудиосигнал имеет цифровую форму, поэтому создание универсального декодера, способного работать со звуком, закодированным различными системами, не вызовет особых трудностей и не приведёт к заметному удорожанию аппаратуры.
В успехе формата 5.1 заинтересованы производители аудио-, видеоаппаратуры, компьютеров, компьютерных комплектующих и программ. К нему с интересом относятся потребители: зрители, слушатели, геймеры. Звукорежиссеры и музыканты находят в этом формате новые выразительные средства для реализации творческих замыслов и усиления влияния на наши эмоции. Формат действительно придает воспроизводимому звуку новое качество: слушатель окружен им. Правда, виртуальный звуковой мир и в этом случае не дотягивает до реального. В синтезированном звуковом пространстве источник звука может находиться справа, слева, спереди, сзади, перемещаясь в этих «координатах». А у настоящего звукового пространства, кроме того, есть еще «верх» и «низ».

6. Некоторые выводы

  • «Стереофоническое» и «пространственное» звучание – это совсем не одно и то же, хотя само слово «СТЕРЕО» переводится с греческого как «ПРОСТРАНСТВО». Но, как мы видим, одно дело – назвать эффект или процесс, и совсем другое – реализовать его практически.
  • Почти за 80 лет борьбы за «реальный» звук, системы воспроизведения прошли несколько этапов:
    • ПСЕВДОстерео – это когда один сигнал в одной (или нескольких) звуковой колонке воспроизводился через разделительные фильтры различными динамиками;
    • КВАЗИстерео – это когда один сигнал искусственно разделялся на два с разными параметрами, затем каждый из них усиливался своим усилителем и воспроизводился свой звуковой колонкой, как в предыдущем случае;
    • СТЕРЕО – когда два сигнала записывались отдельно, воспроизводились отдельно, и каждый из них усиливался своим усилителем и воспроизводился свой звуковой колонкой, как в предыдущем случае;
    • ПСЕВДОквадро – когда стереосигнал каждого канала с ослаблением подавался на соответствующие тыловые колонки, левую и правую;
    • КВАЗИквадро – когда стереосигнал подвергался специальной обработке с помощью приставки и далее подавался на соответствующие тыловые колонки, левую и правую;
    • КВАДРО – когда четыре сигнала записывались отдельно, воспроизводились отдельно, и каждый из них усиливался своим усилителем и воспроизводился свой звуковой колонкой, двумя фронтальными и двумя тыловыми;
    • Dolby Stereo à Dolby Pro Logic à Dolby Digital.
  • Ни одна, даже самая современная система не может создать реальную звуковую панораму.

Акустика - у этого термина есть и другие значения.

Не совсем правильное, зато довольно простое и понятное определение динамического диапазона .

Диффузор громкоговорителя при движении вперёд сжимает воздух впереди себя и разрежает его сзади. Такие сжатия и разрежения воздуха равномерно распределяются впереди и сзади диффузора. Огибая диффузор, они «накладываются» друг на друга и взаимно уничтожаются. При движении назад получается та же картина. Такой эффект называется акустическим «коротким замыканием ». Вместо того, чтобы передавать звуковые колебания диффузор перегоняет воздух с одной стороны на другую.

Математический расчёт акустических систем выходит далеко за пределы данной статьи.

Коронирующий электрод – это электрод, на котором возникает коронный электрический разряд.

Появился так называемый «широкий » или «широкоформатный » экран, который используется сейчас во всех кинотеатрах.

Ухо человека и весь слуховой аппарат служат ТОЛЬКО для передачи звуковых сигналов в мозг. Именно мозг обрабатывает и формирует в человеческом сознании пространственную (объёмную, стереофоническую) звуковую картину.

Звуковая панорама - это область пространства, в которой располагаются источники звука.

Реверберация - это процесс постепенного уменьшения интенсивности звука при его многократных отражениях от различных предметов в помещении. Практически этот эффект легко ощутить в пустом помещении – многократное отражение от стен.

Я лично с этим не согласен . Когда я слышал качественную квадрофоническую запись, я ощущал себя внутри оркестра. Может быть, мне это казалось, потому что я знал, что должен был услышать.

Возможно это и так , но по глубине (дальше-ближе) я различал источники звуки. А вот что выше или ниже – этого действительно не было.

Психоакустика - научная дисциплина, изучающая психологические и физиологические особенности восприятия звука человеком.

Термин битрейт используется в двух основных значениях:
- характеристика канала или устройства - максимальное количество бит, которое можно передать в единицу времени;
- величина потока данных, передаваемого в реальном времени (минимальный размер канала, который сможет пропустить этот поток без задержек). Частный случай - битрейт сжатого звука или видео.

Источник звуковых колебаний излучает в окружающее пространство энергию. Количество звуковой энергии, проходящей за секунду через площадь в 1 м2, расположенную перпендикулярно направлению распространения звуковых колебаний, называют интенсивностью (силой) звука.

Когда мы ведем обычный разговор, мощность потока энергии приблизительно равен 10 мкВт. Мощность самых громких звуков скрипки может составлять 60 мкВт, а мощность звуков органа - от 140 до 3200 мкВт.

Человек слышит звук в чрезвычайно широком диапазоне звуковых давлений (интенсивностей). Одной из опорных величин этого диапазона является стандартный порог слышимости - эффективное значение звукового давления, создаваемого гармоническим звуковым колебанием частоты 1000 Гц, едва слышимым человеком со средней чувствительностью слуха.

Порогу слышимости соответствует интенсивность звука Iзв0 = 10-12 Вт/м2 или звуковое давление pзв0 = 2Ч10-5 Па.

Верхний предел определяется значениями Iзв. макс. = 1 Вт/м2 или pзв. макс. = 20 Па. При восприятии звука такой интенсивности у человека появляются болевые ощущения.

В области звуковых давлений, существенно превышающих стандартный порог слышимости, величина ощущения пропорциональна не амплитуде звукового давления pзв, а логарифму отношения pзв/pзв0. Поэтому звуковое давление и интенсивность звука часто оценивают в логарифмических единицах децибелах (дБ) по отношению к стандартному порогу слышимости.

Диапазон изменения звуковых давлений от абсолютного порога слышимости до болевого порога составляет для разных частот от 90 дБ до 130 дБ.

Если ухо человека воспринимает одновременно два или несколько звуков различной громкости, то более громкий звук заглушает (поглощает) слабые звуки. Происходит так называемая маскировка звуков, и ухо воспринимает только один, более громкий, звук. Сразу после воздействия на ухо громкого звука снижается восприимчивость слуха к слабым звукам. Эта способность называется адаптацией слуха.

Таким образом, порог слышимости в значительной степени зависит от условий прослушивания: в тишине или же на фоне шума (или другого мешающего звука). В последнем случае порог слышимости повышается. Это свидетельствует о том, что помеха маскирует полезный сигнал.

Слуховой аппарат человека обладает определенной инерционностью: ощущение возникновения звука, а также его прекращения появляется не сразу.

Аудиосигнал является случайным процессом. Его акустические или электрические характеристики непрерывно изменяются во времени. Пытаться отследить случайные изменения реализаций этого хаоса - занятие, имеющее не много смысла. Обуздать его величество случай, придать ему черты детерминированности можно, используя усредненные параметры, такие, как уровень аудиосигнала.

Уровень аудиосигнала характеризует сигнал в определенный момент и представляет собой выраженное в децибелах выпрямленное и усредненное за некоторый предшествующий промежуток времени напряжение аудиосигнала.

Под динамическим диапазоном аудиосигнала понимают отношение максимального звукового давления к минимальному или отношение соответствующих напряжений. В таком определении нет сведений о том, какое давление и напряжение считается максимальным и минимальным. Наверное, поэтому определенный таким образом динамический диапазон сигнала, называется теоретическим. Наряду с этим динамический диапазон аудиосигнала можно определить и экспериментально как разность максимального и минимального уровней для достаточно длительного периода. Это значение существенно зависит от выбранного времени измерения и типа измерителя уровней.

Динамические диапазоны музыкальных и речевых акустических сигналов разных типов, измеренные с помощью приборов, составляют в среднем:

80 дБ для симфонического оркестра

45 дБ для хора

35 дБ для эстрадной музыки и солистов-вокалистов

25 дБ для речи дикторов

При записи уровни необходимо регулировать. Объясняется это тем, что исходные (необработанные) сигналы зачастую имеют большой динамический диапазон (например, до 80 дБ у симфонической музыки), а в домашних условиях аудиопрограммы прослушиваются в диапазоне порядка 40 дБ.

Ручной регулировке уровней присущ недостаток. Время реакции звукорежиссера составляет около 2 с даже если партитура композиции ему заранее известна. Это приводит к погрешности в поддержании максимальных уровней музыкальных программ до 4 дБ в обе стороны.

Усилители, акустические системы да и уши человека нужно защищать от перегрузок, вызванных резкими скачкообразными изменениями амплитуды аудиосигнала - ограничивать сигнал по амплитуде.

Динамический диапазон сигнала нужно согласовывать с динамическими диапазонами устройств записи, усиления, передачи.

Для увеличения дальности действия FM радиостанций динамический диапазон аудиосигнала нужно сжимать. Для снижения уровня шума в паузах динамический диапазон желательно увеличивать.

В конце концов, мода, диктующая свои условия во всех сферах человеческой деятельности, в том числе и в звукозаписи, требует насыщенного, плотного звучания современной музыки, которое достигается резким сужением ее динамического диапазона.

Звуковая волна (огибающая громкости) фрагмента оперы С. Рахманинова "Алеко",

и современной танцевальной музыки.

В классической музыке важны нюансы, танцевальная музыка должна быть "сильнодействующей".

Этим диктуется необходимость в применении устройств автоматической обработки уровней сигналов.

Партнерский материал

Введение

Одно из пяти чувств, доступных человеку, – слух. С помощью него мы слышим окружающий мир.

У большинства из нас есть звуки, которые мы помним из детства. У кого-то это голоса родных и близких, или скрип деревянных половиц в бабушкином доме, или, может быть, это стук колес поезда по железной дороге, которая была рядом. У каждого они будут своими.

Что вы ощущаете, когда слышите или вспоминаете звуки, знакомые из детства? Радость, ностальгию, грусть, тепло? Звук способен передавать эмоции, настроение, побуждать к действию или, наоборот, успокаивать и расслаблять.

Кроме этого, звук используется в самых разных сферах человеческой жизни – в медицине, в обработке материалов, в исследованиях морских глубин и многих, многих других.

При этом, с точки зрения физики, это всего лишь природное явление – колебания упругой среды, а значит, как и у любого природного явления, у звука есть характеристики, некоторые из которых можно измерить, другие – же только услышать.

Выбирая музыкальную аппаратуру, читая обзоры и описания, мы часто сталкиваемся с большим количеством этих самых характеристик и терминов, которые авторы используют без соответствующих уточнений и пояснений. И если некоторые из них понятны и очевидны каждому, то другие для неподготовленного человека не несут в себе никакого смысла. Поэтому мы решили простым языком рассказать вам про эти непонятные и сложные, на первый взгляд, слова.

Если вспомнить своё знакомство с портативным звуком, то началось оно довольно давно, и был это вот такой кассетный плеер, подаренный мне родителями на Новый год.

Он иногда жевал пленку, и тогда приходилось распутывать ее скрепками и крепким словом. Он поглощал батарейки с аппетитом, которому позавидовал бы Робин Бобин Барабек (который скушал сорок человек), а значит, и мои, на тот момент весьма скудные сбережения обычного школьника. Но все неудобства меркли по сравнению с главным плюсом - плеер давал непередаваемое ощущение свободы и радости! Так я «заболел» звуком, который можно взять с собой.

Однако я погрешу против истины, если скажу, что с того времени всегда был неразлучен с музыкой. Были периоды, когда было не до музыки, когда в приоритете было совсем другое. Однако все это время я старался быть в курсе происходящего в мире портативного аудио, и, так сказать, держать руку на пульсе.

Когда появились смартфоны, оказалось, что эти мультимедийные комбайны умеют не только звонить и обрабатывать огромные объемы данных, но, что было намного важней для меня, хранить и воспроизводить огромное количество музыки.

Первый раз я «подсел» на «телефонный» звук, когда послушал, как звучит один из музыкальных смартфонов, в котором были использованы самые передовые на тот момент компоненты обработки звука (до этого, признаюсь, не воспринимал всерьез смартфон в качестве устройства для прослушивания музыки). Я очень хотел себе этот телефон, но не мог себе его позволить. При этом я начал следить за модельным рядом этой компании, зарекомендовавшей себя в моих глазах как производитель качественного звука, однако получалось так, что наши с ней пути постоянно расходились. С того времени я владел различной музыкальной техникой, но не перестаю искать для себя по-настоящему музыкальный смартфон, который бы мог по праву носить такое имя.

Характеристики

Среди всех характеристик звука профессионал с ходу может огорошить вас десятком определений и параметров, на которые, по его мнению, вы обязательно, ну вот прям непременно должны обратить внимание и, не дай бог, какой-то параметр не будет учтен – беда…

Скажу сразу, я не сторонник подобного подхода. Ведь обычно мы выбираем оборудование не для «международного конкурса аудиофилов», а всё же для себя любимых, для души.

Все мы разные, и все мы ценим в звуке что-то свое. Кому-то нравится звук «побасовее», кому-то, наоборот, чистый и прозрачный, для кого-то окажутся важными определенные параметры, а для кого-то – совершенно другие. Все ли параметры одинаково важны и какими они бывают? Давайте разбираться.

Случалось ли вам сталкиваться с тем, что одни наушники играют на вашем телефоне так, что приходится делать тише, а другие, наоборот, заставляют выкручивать громкость на полную и всё равно не хватает?

В портативной технике немаловажную роль в этом играет сопротивление. Зачастую именно по значению этого параметра можно понять, будет ли вам хватать громкости.

Сопротивление

Измеряется в Омах (Ом).

Георг Симон Ом - немецкий физик, вывел и подтвердил на опыте закон, выражающий связь между силой тока в цепи, напряжением и сопротивлением (известен как закон Ома ).

Данный параметр еще называют импеданс.

Значение почти всегда бывает указано на коробке либо в инструкции к аппаратуре.

Бытует мнение, что высокоомные наушники играют тихо, а низкоомные наушники - громко, и для высокоомных наушников нужен источник звука помощнее, а низкоомным хватит и смартфона. Также часто можно услышать выражение – не всякий плеер сможет «раскачать» эти наушники.

Запомните, на одном и том же источнике низкоомные наушники будут звучать громче. Несмотря на то, что с точки зрения физики это не совсем верно и есть нюансы, фактически это самый простой способ описать значение этого параметра.

Для портативной техники (портативные плееры, смартфоны) чаще всего выпускаются наушники с сопротивлением 32 Ом и ниже, однако следует иметь в виду, что для различного типа наушников низким будет считаться разное сопротивление. Так, для полноразмерных наушников импеданс до 100 Ом считается низкоомным, выше 100 Ом – высокоомным. Для наушников же внутриканального типа («затычки» или вкладыши) показатель сопротивления до 32 Ом считается низкоомным, выше 32 ОМ – высокоомным. Поэтому, выбирая наушники, обращайте внимание не только на само значение сопротивления, но и на тип наушников.

Важно : чем выше сопротивление наушников, тем чище будет звук и тем дольше будет работать плеер или смартфон в режиме воспроизведения, т.к. высокоомные наушники потребляют меньше тока, а это, в свою очередь, означает меньше искажений сигнала.

АЧХ (амплитудно-частотная характеристика)

Часто в обсуждении того или иного устройства, будь то наушники, колонки или автомобильный сабвуфер, можно услышать характеристику - «качает/не качает». Узнать, будет ли устройство, например, «качать» либо больше подойдет для любителей вокала, можно и не слушая его.

Для этого достаточно найти в описании устройства его АЧХ.

График позволяет понять, как устройство воспроизводит и другие частоты. При этом чем меньше перепадов, тем точнее аппаратура может передать исходный звук, а значит, тем ближе звук получится к оригиналу.

Если в первой трети нет ярко выраженных «горбов», то значит наушники не сильно «басовитые», а если наоборот, то они будут «качать», то же относится и к другим участкам АЧХ.

Таким образом, глядя на АЧХ, мы можем понять, какой у аппаратуры тембральный/тональный баланс. С одной стороны, можно подумать, что идеальным балансом будет считаться прямая линия, но так ли это?

Давайте попробуем разобраться подробнее. Так уж получилось, что человек для общения использует в основном средние частоты (СЧ) и, соответственно, лучше всего способен различать именно эту полосу частот. Если сделать устройство с «идеальным» балансом в виде прямой линии, боюсь, что прослушивание музыки на таком оборудовании вам не очень понравится, так как скорее всего высокие и низкие частоты будут звучать не так хорошо, как средние. Выход – искать свой баланс с учетом физиологических особенностей слуха и назначения оборудования. Для голоса один баланс, для классической музыки – другой, для танцевальной – третий.

По графику выше видно, какой баланс у данных наушников. Низкие и высокие частоты выражены больше, в отличие от средних, которых меньше, что характерно для большинства продуктов. Однако наличие «горба» на низких частотах не обязательно означает качество этих самых низких частот, так как они могут оказаться хоть и в большом количестве, но плохого качества – бубнящие, гудящие.

На итоговый результат будет влиять множество параметров, начиная от того, насколько грамотно была рассчитана геометрия корпуса, и заканчивая тем, из каких материалов сделаны элементы конструкции, и узнать это зачастую можно, только послушав наушники.

Чтобы до прослушивания примерно представлять, насколько качественным будет наш звук, после АЧХ следует обратить внимание на такой параметр, как коэффициент гармонических искажений.

Коэффициент гармонических искажений


По сути, это основной параметр, определяющий качество звучания. Вопрос только в том, что для вас качество. Например, всем известные наушники Beats by Dr. Dre на частоте 1кГц имеют коэффициент гармонических искажений почти 1,5% (выше 1.0% считается довольно посредственным результатом). При этом, как ни странно, указанные наушники популярны у потребителей.

Этот параметр желательно знать для каждой конкретной группы частот, потому что для разных частот допустимые значения разнятся. Например, для низких частот допустимым значением можно считать и 10%, а вот для высоких уже не более того самого 1%.

Не все производители любят указывать этот параметр на своих продуктах, т.к., в отличие от той же громкости, его довольно непросто соблюсти. Поэтому, если на устройстве, которое вы выбираете, есть подобный график и в нем вы видите величину не более 0,5%, следует присмотреться к этому устройству повнимательнее – это очень хороший показатель.

Мы уже знаем, как выбрать наушники/колонки, которые будут играть громче на вашем устройстве. Но как понять, насколько громко они будут играть?

Для этого существует параметр, о котором вы скорее всего не раз слышали. Его очень любят использовать ночные клубы в своих рекламных материалах, чтобы показать, насколько громко будет на вечеринке. Этот параметр измеряется в децибелах.

Чувствительность (громкость, уровень шума)

Децибел (дБ), единица измерения интенсивности звука – названа так в честь Александра Грэма Бэлла.

Александр Грэм Белл - учёный, изобретатель и бизнесмен шотландского происхождения, один из основоположников телефонии, основатель компании Bell Labs (бывш. Bell Telephone Company), определившей всё дальнейшее развитие телекоммуникационной отрасли в США.

Данный параметр неразрывно связан с сопротивлением. Достаточным принято считать уровень в 95-100 дБ (на самом деле это очень много).

Например, рекорд громкости был установлен группой Kiss 15 июля 2009 года на концерте в Оттаве. Громкость звука составила 136 дБ. По этому параметру группа Kiss обошла целый ряд знаменитых конкурентов, среди которых такие группы, как The Who, Metallica и Manowar.

При этом неофициальный рекорд принадлежит американской команде The Swans. По неподтверждённым сведениям, на нескольких концертах этой группы звук достигал громкости в 140 дБ.

Если захотите повторить или превзойти этот рекорд, помните, что громкий звук может быть расценен как нарушение общественного порядка – для Москвы, например, нормы предусматривают уровень звука, эквивалентный ночью 30 дБА, днем – 40 дБА, максимальный - 45 дБА ночью, 55 дБА днем.

И если с громкостью более-менее понятно, то вот следующий параметр понять и отследить не так-то просто, как предыдущие. Речь идет о динамическом диапазоне.

Динамический диапазон

По сути, это разница между самым громкими и тихими звуками без отсечения частот (перегрузки).

Каждый, кто хоть раз бывал в современном кинотеатре, испытывал на себе, что такое широкий динамический диапазон. Это тот самый параметр, благодаря которому вы слышите и, например, звук выстрела во всей его красе, и шорох ботинок крадущегося по крыше снайпера, который этот выстрел произвел.

Больший диапазон у вашей аппаратуры означает большее количество звуков, которое без потерь сможет передать ваше устройство.

При этом оказывается, что недостаточно передать максимально широкий динамический диапазон, нужно умудриться сделать это так, чтобы каждую частоту было не просто слышно, а слышно качественно. За это отвечает один из тех параметров, который без труда сможет оценить практически каждый при прослушивании высококачественной записи на интересующей его аппаратуре. Речь идет о детализации.

Детализация

Это умение аппаратуры разделять звук по частотам – низкие, средние, высокие (НЧ, СЧ, ВЧ).


Именно от этого параметра зависит то, насколько отчетливо будет слышно отдельные инструменты, то, насколько детальной будет музыка, не превратится ли она в просто в мешанину звуков.

Однако даже при самой лучшей детализации различная аппаратура может давать совершенно разные впечатления от прослушивания.

Это зависит от умения аппаратуры локализовать источники звука .

В обзорах музыкальной техники данный параметр нередко делят на две составляющих – стереопанорама и глубина.

Стереопанорама

В обзорах этот параметр обычно описывают как широкий или узкий. Давайте разберемся, что это такое.

Из названия понятно, что речь идет про ширину чего-либо, но чего?

Представьте, что вы сидите (стоите) на концерте вашей любимой группы или исполнителя. И перед вами на сцене в определенном порядке расставлены инструменты. Одни ближе к центру, другие дальше.


Представили? Пусть они начнут играть.

А теперь закройте глаза и попробуйте отличить, где находится тот или иной инструмент. Думаю, у вас без труда это получится.

А если инструменты поставить перед вами в одну линию друг за другом?

Доведем ситуацию до абсурда и сдвинем инструменты вплотную друг к другу. И… посадим трубача на рояль.

Как думаете, понравится вам такое звучание? Получится разобрать, где какой инструмент?

Последние два варианта чаще всего можно слышать в некачественной аппаратуре, производителю которой неважно, какой звук выдает его продукт (как показывает практика, цена при этом совсем не показатель).

Качественные наушники, колонки, музыкальные системы должны уметь выстраивать правильную стереопанораму в вашей голове. Благодаря этому, слушая музыку через хорошую аппаратуру, можно услышать, где расположен каждый инструмент.

Однако даже при умении аппаратуры создавать великолепную стереопанораму такое звучание все равно будет ощущаться неестественным, плоским из-за того, что в жизни мы воспринимаем звук не только в горизонтальной плоскости. Поэтому не менее важным оказывается такой параметр, как глубина звука.

Глубина звука

Вернемся на наш вымышленный концерт. Пианиста и скрипача отодвинем немного вглубь нашей сцены, а гитариста и саксофониста поставим чуть вперед. Вокалист же займет по праву принадлежащее ему место перед всеми инструментами.


На своей музыкальной аппаратуре вы это услышали?

Поздравляем, ваше устройство умеет создавать эффект пространственного звучания через синтез панорамы мнимых источников звука. А если проще, то у вашей аппаратуры хорошая локализация звука.

Если речь идет не о наушниках, то данный вопрос решается достаточно просто – используются несколько излучателей, расставленных вокруг, позволяющих разделить источники звука. Если же речь идет о ваших наушниках и в них это слышно, поздравляем вас второй раз, у вас весьма неплохие наушники по данному параметру.

Ваша аппаратура имеет широкий динамический диапазон, отлично сбалансирована и удачно локализует звук, но готова ли она к резким перепадам звука и стремительному нарастанию и спаду импульсов?

Как у нее с атакой?

Атака

Из названия, по идее, понятно, что это что-то стремительное и неотвратимое, как удар батареи «Катюш».

А если серьезно, вот что нам говорит об этом Википедия : Атака звука - первоначальный импульс звукоизвлечения, необходимый для образования звуков при игре на каком-либо музыкальном инструменте или при пении вокальных партий; некоторые нюансировочные характеристики различных способов звукоизвлечения, исполнительских штрихов, артикуляции и фразировки.

Если попытаться перевести это на понятный язык, то это скорость нарастания амплитуды звука до достижения заданного значения. А если еще понятней - если у вашей аппаратуры плохо с атакой, то яркие композиции с гитарами, живыми ударными и быстрыми перепадами звука будут звучать ватно и глухо, а значит, прощай хороший hard rock и иже с ним…

Кроме всего прочего, в статьях часто можно встретить такой термин, как сибилянты.

Сибилянты

Дословно – свистящие звуки. Согласные звуки, при произношении которых поток воздуха стремительно проходит между зубами.

Помните этого товарища из диснеевского мультфильма про Робина Гуда?

Вот в его речи очень, очень много сибилянтов. И если ваша аппаратура так же свистит и шипит, то увы, это не очень хороший звук.

Ремарка: кстати, сам Робин Гуд из этого мультфильма подозрительно похож на Лиса из не так давно вышедшего на экраны диснеевского же мультфильма «Зверополис». Дисней, ты повторяешься:)

Песок

Еще один субъективный параметр, который невозможно измерить. А можно только услышать.


По своей сути близок к сибилянтам, выражается в том, что на большой громкости, при перегрузке, высокие частоты начинают распадаться на части и появляется эффект сыплющегося песка, а иногда и высокочастотное дребезжание. Звук становится каким-то шершавым и при этом рыхлым. Чем раньше это происходит, тем хуже, и наоборот.

Попробуйте дома, с высоты в несколько сантиметров, медленно высыпать горсть сахарного песка на металлическую крышку от кастрюли. Услышали? Вот, это оно.

Ищите звук, в котором нет песка.

Частотный диапазон

Одним из последних непосредственных параметров звука, который хотелось бы рассмотреть, является частотный диапазон.

Измеряется в герцах (Гц).

Генрих Рудольф Герц, основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал существование электромагнитных волн. Именем Герца с 1933 года называется единица измерения частоты, которая входит в международную метрическую систему единиц СИ.

Это тот параметр, который вы с вероятностью в 99% найдете в описании практически любой музыкальной техники. Почему же я оставил его на потом?

Начать следует с того, что человек слышит звуки, находящиеся в определенном частотном диапазоне, а именно от 20 Гц до 20000 Гц. Всё, что выше этого значения, – ультразвук. Все, что ниже, – инфразвук. Они недоступны человеческому слуху, зато доступны братьям нашим меньшим. Это знакомо нам из школьных курсов физики и биологии.


На деле же у большинства людей реальный слышимый диапазон куда скромнее, причем, у женщин слышимый диапазон сдвинут вверх относительно мужского, поэтому мужчины лучше различают низкие, а женщины высокие частоты.

Зачем же тогда производители на своих продуктах указывают диапазон, выходящий за рамки нашего восприятия? Может быть, это только маркетинг?

И да, и нет. Человек не только слышит, но и чувствует, ощущает звук.

Доводилось ли вам стоять вблизи играющей большой колонки или сабвуфера? Вспомните свои ощущения. Звук не только слышен, он еще и ощущается всем телом, имеет давление, силу. Поэтому чем больший диапазон указан на вашей аппаратуре, тем лучше.


Однако всё же не стоит придавать этому показателю слишком большое значение - редко встретишь аппаратуру, частотный диапазон которой уже границ человеческого восприятия.

Дополнительные характеристики

Все вышеперечисленные характеристики напрямую относятся к качеству воспроизводимого звука. Однако на итоговый результат, а значит, и на удовольствие от просмотра/прослушивания, влияет и то, какого качества у вас исходный файл и какой источник звука вы используете.

Форматы

Эта информация у всех на слуху, и большинство и так об этом знает, но на всякий случай напомним.

Всего выделяют три основных группы звуковых форматов файлов:

  • аудиоформаты без сжатия, такие как WAV, AIFF
  • аудиоформаты со сжатием без потерь (APE, FLAC)
  • аудиоформаты со сжатием с потерями (MP3, Ogg)

Более подробно об этом рекомендуем прочесть, обратившись к Википедии .

Мы же для себя отметим, что использовать форматы APE, FLAC имеет смысл, если у вас аппаратура профессионального либо полупрофессионального уровня. В остальных же случаях обычно хватает возможностей формата MP3, пережатого из качественного источника с битрейтом от 256 кбит/сек (чем выше битрейт, тем меньше было потерь при сжатии звука). Однако это скорее дело вкуса, слуха и индивидуальных предпочтений.

Источник

Не менее важным является и качество источника звука.

Раз уж речь изначально шла про музыку на смартфонах, давайте рассмотрим именно этот вариант.

Еще не так давно звук был аналоговым. Помните бобины, кассеты? Это аналоговый звук.


И в ваших наушниках вы слышите аналоговый звук, который прошел две стадии преобразования. Сначала его из аналогового преобразовали в цифровой, а затем перед подачей на наушник/колонку обратно преобразовали в аналоговый. И от того, какого качества было это преобразование, в итоге будет зависеть результат – качество звучания.

В смартфоне за этот процесс отвечает ЦАП – цифро-аналоговый преобразователь.

Чем качественнее ЦАП, тем качественнее будет звук, который вы услышите. И наоборот. Если ЦАП в устройстве посредственный, то какими бы ни были ваши колонки или наушники, о высоком качестве звука можно забыть.

Все смартфоны можно разделить на две основных категории:

  1. Смартфоны с выделенным ЦАП
  2. Смартфоны со встроенным ЦАП

На данный момент производством ЦАП для смартфонов занимается большое количество производителей. Что выбрать, вы можете решить, воспользовавшись поиском и прочитав описание того или иного устройства. Однако не забывайте, что и среди смартфонов со встроенным ЦАП, и среди смартфонов с выделенным ЦАП есть образцы с очень хорошим звуком и не очень, потому как немаловажную роль играют оптимизация операционной системы, версия прошивки и то приложение, через которое вы слушаете музыку. Кроме этого, существуют программные аудиомоды ядра, позволяющие улучшить итоговое качество звучания. И если инженеры и программисты в компании делают одно дело и делают его грамотно, то результат оказывается заслуживающим внимания.

При этом важно знать, что при прямом сравнении двух устройств, одно из которых оснащено качественным встроенным ЦАП, а другое – хорошим выделенным ЦАП, выигрыш неизменно будет за последним.

Заключение

Звук – неисчерпаемая тема.

Надеюсь, что благодаря этому материалу многое в музыкальных обзорах и текстах стало для вас понятнее и проще, а незнакомая ранее терминология обрела дополнительный смысл и значение, ведь всё легко, когда знаешь.

Обе части нашего ликбеза про звук написаны при поддержке компании Meizu. Вместо обычного расхваливания аппаратов мы решили сделать для вас полезные и интересные статьи и обратить внимание на важность источника воспроизведения при получении качественного звука.

Зачем это нужно для Meizu? На днях начался предзаказ нового музыкального флагмана Meizu Pro 6 Plus , поэтому компании важно, чтобы обычный пользователь знал о нюансах качественного звука и ключевой роли источника воспроизведения. Кстати, оформив оплаченный предзаказ до конца года, вы получите в подарок к смартфону гарнитуру Meizu HD50.

А еще мы подготовили для вас музыкальную викторину с развернутыми комментариями по каждому вопросу, рекомендуем попробовать свои силы:

Люди, увлеченные домашним звуком, демонстрируют интересный парадокс. Они готовы перелопатить комнату прослушивания, соорудить колонки с экзотическими излучателями, но смущенно отступают перед музыкальной консервой, будто волк перед красным флажком. А собственно, почему нельзя за флажок заступить, а из консервы попытаться приготовить что-то более съедобное?

Периодически на форуме возникают жалобные вопросы: «Посоветуйте хорошо записанные альбомы». Оно и понятно. Специальные аудиофильские издания хоть и порадуют слух первую минуту, но до конца их никто не слушает, уж больно уныл репертуар. Что же касается всей остальной фонотеки, то проблема, кажется, очевидна. Можно экономить, а можно не экономить и вбухать прорву денег в компоненты. Все равно мало кому нравится слушать свою любимую музыку на высокой громкости и возможности усилителя здесь ни при чем.

Сегодня даже в Hi-Res альбомах срезаны пики фонограммы и громкость загнана в клиппинг. Считается, что большинство слушает музыку на всяком барахле, а потому надо «поддать газку», сделать своего рода тонкомпенсацию.


Разумеется, делается это не специально, чтобы расстроить аудиофилов. О них вообще мало кто вспоминает. Вот разве что догадались сбагривать им мастер-файлы, с которых копируется основной тираж - компакт-диски, MP3 и прочее. Разумеется, мастер уже давно сплющен компрессором, никто сознательно не будет готовить специальные версии для HD Tracks. Разве что выполняется определенная процедура для винилового носителя, который по этой причине и звучит более гуманно. А для цифрового пути все заканчивается одинаково - большим толстым компрессором.

Итак, в настоящее время все 100% издаваемых фонограмм, за вычетом классической музыки, подвергаются компрессии при мастеринге. Кто-то выполняет эту процедуру более-менее умело, а кто-то совсем по-дурацки. В результате мы имеем пилигримов на форумах с линейкой плагина DR за пазухой, мучительные сравнения изданий, бегство в винил, где тоже нужно майнить первопресссы.

Самые отмороженные при виде всех этих безобразий превратились буквально в аудиосатанистов. Без шуток, они читают звукорежиссерское святое писание задом наперед! Современные программы редактирования звука имеют кое-какой инструмент восстановления звуковой волны, подвергшейся клиппингу.

Изначально этот функционал предназначался для студий. При микшировании бывают ситуации, когда клиппинг попал на запись, а переделать сессию по ряду причин уже невозможно, и здесь приходит на помощь арсенал аудиоредактора - деклиппер, декомпрессор и т.п.

И вот уже к подобному софту все смелее тянут ручки обычные слушатели, у которых идет кровь из ушей после очередной новинки. Кто-то предпочитает iZotope, кто-то Adobe Audition, кто-то операции разделяет между несколькими программами. Смысл восстановления прежней динамики заключается в программном исправлении клиппированных пиков сигнала, которые, упираясь в 0 дБ, напоминают шестеренку.

Да, о 100%-м возрождении исходника речи не идет, поскольку имеют место процессы интерполяции по довольно умозрительным алгоритмам. Но все-таки некоторые результаты обработки мне показались интересными и достойными изучения.

Например, альбом Ланы Дель Рей «Lust For Life», стабильно погано матерящейся, тьфу, мастерящейся! В оригинале песни «When the World Was at War We Kept Dancing» было вот так.


А после череды деклипперов и декомпрессоров стало вот так. Коэффициент DR изменился с 5 на 9. Скачать и послушать образец до и после обработки можно .


Не могу сказать, что метод универсальный и годится для всех угробленных альбомов, но в данном случае я предпочел сохранить в коллекции именно этот вариант, обработанный активистом рутрекера, взамен официального издания в 24 бит.

Даже если искусственное вытягивание пиков из звукового фарша не вернет истинную динамику музыкального исполнения, ваш ЦАП все равно скажет спасибо. Ему ведь так тяжело было работать без ошибок на предельных уровнях, где велика вероятность возникновения так называемых межсемпловых пиков (ISP) . А теперь до 0 дБ будут допрыгивать лишь редкие сполохи сигнала. Кроме того, притихшая фонограмма при сжатии во FLAC или другой lossless-кодек теперь будет меньше по размеру. Больше «воздуха» в сигнале экономит пространство хард-драйва.

Попробуйте оживить свои самые ненавистные альбомы, убитые на «войне громкости». Для запаса динамики сначала нужно понизить уровень трека на -6 дБ, а затем запустить деклиппер. Те, кто не верит компьютерам, могут просто воткнуть между CD-плеером и усилителем студийный экспандер. Данное устройство по сути занимается тем же самым - как может восстанавливает и вытягивает пики сжатого по динамике аудиосигнала. Стоят подобные устройства из 80-90-х не сказать чтобы очень дорого, и в качестве эксперимента попробовать их будет весьма интересно.


Контроллер динамического диапазона DBX 3BX обрабатывает сигнал раздельно в трех полосах - НЧ, СЧ и ВЧ

Когда-то эквалайзеры были само собой разумеющимся компонентом аудиосистемы, и никто их не боялся. Сегодня не требуется выравнивать завал высоких частот магнитной ленты, но с безобразной динамикой надо что-то решать, братцы.

Слушая музыку, очень часто можно столкнуться с засилием «басов» в записанной фонограмме. Такое положение сложилось в ходе эволюционного развития , когда стремились расширить спектр музыкального произведения как в сторону высоких частот, так и в сторону низких.

Для воспроизведения низкочастотных составляющих спектра звуковых частот нередко используются специальные громкоговорители сабвуферы. Жителям многоквартирных домов порой не дают покоя ритмичные удары, приходящие по стенам и перекрытиям: это «работают барабаны» ударных музыкальных инструментов.

Мы воспринимаем звуки благодаря органам слуха (ушам), а в области низких частот еще и всем телом (за счет так называемой «костной проводимости»). С возрастом диапазон воспринимаемых верхних частот сужается, а в области низких наблюдается подъем, поскольку кости становятся более потными и лучше проводят НЧ-колебания. В результате, пожилой чеповек воспринимает звукочастотный спектр музыкального произведения совсем по-другому, чем молодежь. «Барабаны» начинают раздражать.

Что же делать? Как снова сделать музыку нормальной и «душевной». Для этого можно использовать усилитель со специальной приставкой экспандером (расширителем динамического диапазона), которая, не умаляя значения низких частот в фонограмме, позволяет поднять уровень средних и высоких.

В отличие от темброблока, подъем уровня этих частот происходит в динамическом режиме: чем громче звук, тем больше усиление УМЗЧ. На качество звука несомненно влияет динамический диапазон тракта звукопередачи (отношение наибольшей звуковой мощности к наименьшей). Заявляемый для наиболее распространенных сейчас носителей (CD, DVD и пр.) динамический диапазон звука 96 дБ не совсем такой.

То есть, если рассматривать отношение самого громкого сигнала к уровню шумов в паузе цифра, безусловно, правильная. Однако это справедливо только для сигналов максимальной амплитуды.
Реальные же звуковые сигналы имеют довольно большой пик-фактор, так что от 96 дБ необходимо отнять примерно 15.. .20 дБ. Вот уже осталось менее 80 дБ. Затем необходимо учесть, что в цифровых трактах качество сигналов сильно ухудшается при уменьшении их амплитуды.

И сигнал с уровнем -60 дБ передается всего лишь 6 разрядами цифрового кода, а при этом говорить о сколько-нибудь приличном звучании уже не приходится. Таким образом, динамический диапазон CD реально составляет величину, существенно меньшую, чем 96 дБ. А динамический диапазон реальных сигналов может быть гораздо больше. Например, для симфонического оркестра он может доходить до 120 дБ.

И как его «впихнуть» в ограниченный диапазон тракта? Таким образом, при передаче или во время записи сжатие динамического диапазона необходимо. Оно производится автоматически с помощью специального устройства компрессора или вручную оператором-тонмейстером. Восстановление естественного динамического диапазона на воспроизводящей стороне можно осуществить, если взять устройство с характеристикой, обратной компрессору.Такое устройство называется «экспандером».

Для безыскаженной работы экспандера необходимо, чтобы расширение динамического диапазона осуществлялось по закону, обратному компрессированию. Сохранить эту закономерность трудно, если учесть, что компрессирование часто осуществляется вручную. Из-за этого экспандеры широкого применения не нашли.

Тем не менее, они позволяют расширить динамический диапазон усилителя на 10… 14 дБ при малом уровне искажений, особенно если выбрать кривую регулировки с учетом оптимального слухового восприятия. Такие экспандеры даже при ручном компрессировании заметно улучшают качество воспроизведения.

Структурная схема расширителя динамического диапазона (экспандер)

Принцип действия экспандера поясняет структурная схема на рис.1. Между первым (У 1) и вторым (У2) каскадами усилителя включается делитель, состоящий из постоянного резистора Rc и регулируемого Ri, функции которого выполняет лампа или транзистор (сопротивлением конденсатора Ск на средних и высоких частотах можно пренебречь).

При таком включении делителя коэффициент усиления усилителя зависит от сопротивления Ri, определяющего коэффициент передачи напряжения с первого каскада на второй. Изменение сопротивления Ri осуществляется схемой управления. Сигнал с выхода У1 через дифференцирующую цепочку ДЦ поступает на регулятор ширины динамического диапазона Rд, с него на каскад усиления УЗ экспандера.

Дифференцирующая цепочка предотвращает срабатывание экспандера при пиках напряжения в области басов, обладающих ярко выраженным ударным характером (барабан, контрабас и т.д.). С выхода УЗ сигнал подается на детектор Д, выделяющий постоянное управляющее напряжение, которое через интегрирующую цепочку ИЦ подается на управляющий элемент Ri.

Когда напряжение звуковой частоты на входе усилителя УЗ незначительно, управляющее напряжение близко к нулю, сопротивление Ri мало, и на вход второго каскада У2 сигнал практически не поступает, так как коэффициент передачи делителя Rc-Ri совсем мал. По мере возрастания входного сигнала управляющее напряжение и сопротивление Ri увеличиваются, что приводит к увеличению коэффициента передачи делителя Rc-Ri и коэффициента усиления усилителя.

При максимальных уровнях входных сигналов Ri=max, и коэффициент усиления усилителя достигает предельного значения, что соответствует максимальному расширению динамического диапазона. Регулятор громкости РГ часто устанавливается перед вторым каскадом усиления, чтобы регулирование громкости не вызывало изменения заданного динамического диапазона.

Конденсатор Ск обеспечивает тон- коррекцию в области низких частот при малых уровнях низкочастотного сигнала. Его действие аналогично действию конденсаторов в тон-компенсированных регуляторах громкости, поэтому частотная характеристика экспандера в области низких частот совпадает с кривой чувствительности уха.

АЧХ расширителя динамического диапазона (экспандер)

Постоянная времени нарастания управляющего напряжения на выходе интегрирующей цепочки составляет 0,2…0,3 с, времени спада - 0,5…0.6. Амплитудно-частотные характеристики экспандера, показывающие расширение динамического диапазона, приведены на рис.2.

На низких частотах имеется подъем частотной характеристики, соответствующий особенностям звукового восприятия. Естественно, при возрастании громкости в процессе расширения динамического диапазона уровень уже поднятых басов не должен подниматься в такой же мере, как уровень средних и высоких частот.

Физиологически правильное расширение динамического диапазона с увеличением частоты достигается за счет конденсатора Ск, емкостное сопротивление которого на низких частотах велико. Благодаря тому, что величина максимального расширения динамического диапазона зависит от частоты и быстро уменьшается на частотах ниже 300 Гц, при сравнительно небольшом запасе выходной мощности усилителя получается расширение динамического диапазона порядка 10…12 дБ.

Усилитель с экспандером, описанный я опробовал в нескольких конструкциях (в стереоварианте, в единой конструкции с приемником и пр.). В процессе экспериментов «родился» модернизированный вариант лампового УМЗЧ с экспандером (рис.3). Изменения схемы усилителя коснулись темброблока, оконечного каскада и цепей питания.

Параметры усилителя по отношению к изменились в лучшую сторону, хотя коэффициент усиления УМЗЧ незначительно снизился за счет ультралинейного включения ламп в оконечном каскаде и темброблока, работающего в цепи усиления сигнала. Частотный диапазон УМЗЧ расширен и составляет 20…20000 Гц с неравномерностью около 1,5…2 дБ. Глубина регулировки тембра в области НЧ и ВЧ ±20 дБ.

Лампы оконечного каскада следует выбирать из одной партии. Если есть возможность, лучше отобрать идентичные по параметрам экземпляры, используя измеритель параметров радиоламп. Выходной трансформатор должен быть с симметричными секциями первичной обмотки. Они наматываются на узких каркасах (каждая), которые затем одеваются на сердечник. Вторичные обмотки аналогично.

Можно применить и готовый трансформатор, например, от магнитофона «Дмпро-И» или другой ламповой техники, имеющей двухтактный выходной каскад, построенный по ультралинейной схеме. Такой трансформатор обеспечит удовлетворительное качество звучания, хотя и с немного повышенным коэффициентом искажений из-за неполной симметрии выходного каскада.

Вторичную обмотку обратной связи с большим количеством витков (в трансформаторе от магнитофона «Днтро-1Г) можно использовать, например, для работы с трансляционной линией. Выходные каскады на триодах имеют низкое выходное сопротивление (импеданс), что упрощает выходные трансформаторы и способствует хорошему демпфированию акустических систем.

Это влечет за собой увеличение межвитковой емкости в них и. как следствие, завал частотной характеристики в области высоких частот. Из-за большой разницы в количествах витков эффект демпфирования нагрузки в таких усилителях ослаблен. Попытка соединить положительные качества УМЗЧ с выходом на триодах и пентодах привела к ультралинейной схеме включения ламп.

Действительно, если соединить экранные сетки ламп VL4 и VL5 с их анодами, получим триоды, а с источником анодного питания пентоды. Подключая экранные сетки к части витков первичной обмотки выходного трансформатора Т2, получаем компромиссный вариант со всеми вытекающими последствиями.

Сигналы от различных источников (микрофона, телевизора, радиоприемника или трансляционной линии) выбираются переключателем SA1 и через разделительный конденсатор С1 поступают в цепь управляющей сетки левого (по схеме) триода лампы VL1. Резисторы R1 и R2 служат делителем напряжения, поступающего из трансляционной линии, R3 уменьшает щелчки при коммутации SA1, R4 обеспечивает утечку для управляющей сетки триода.

Резистор R8 определяет режим триода по постоянному току и одновременно является звеном отрицательной обратной связи по току 34, что уменьшает шумы и искажения каскада. Резисторы R5, R6 и R9 в анодной цепи левого триода лампы VL1 служат для согласования входов экспандера и последующего каскада. Конденсаторы С2 и С6 разделительные по постоянному току.

Конденсатор С12 и резистор R22 осуществпяют частотную коррекцию сигнала, необходимую для нормальной работы экспандера. Для уменьшения шорохов, тресков и наводок регулятор громкости перенесен со входа усилителя на вход его второго каскада: перемещением движка потенциометра R10 производится регулировка громкости.

С движка этого потенциометра сигнал поступает на управляющую сетку второго триода VL1, усиливается им и с анодной нагрузки (R12) через разделительный конденсатор С7 подается на темброблок для коррекции. Резистор R11 обеспечивает автоматическое смещение рабочей точки этого триода, а конденсатор С5 устраняет отрицательную обратную связь по току в области высоких частот.

Переменные резисторы R47 и R50 осуществляют изменение АЧХ в области высоких и низких звуковых частот соответственно. С темброблока скорректированный 34-сигнал поступает на управляющую сетку триода VL2a. Утечка сетки осуществляется через резисторы R48, R50, R51. Резистор R20 обеспечивает отрицательное смещение на управляющей сетке этого триода и отрицательную обратную связь по току 34.

Усиленный этим триодом сигнал с резистора анодной нагрузки R21 через конденсатор С17 подается в цепь управляющей сетки триода VL3. Резистор R30 обеспечивает утечку сетки этого триода. R32 и R33 автоматическое смещение на сетке этого триода, а также обратную связь по току 34 и согласование отрицательной обратной связи с выхода УЗЧ (через R44 со вторичной обмотки выходного трансформатора Т2).

Триод VL26 служит фазовращателем: сигналы на нагрузках R35 и R37 равны и противоположны по фазе для обеспечения поочередной работы ламп оконечного каскада, выполненного по так называемой «пушпульной» (англ. Push-pull) двухтактной схеме на пентодах VL4 и VL5. Противофазные сигналы подаются в цепи управляющих сеток пентодов через разделительные конденсаторы С19 и С20. Конденсаторы С21 и С22 устраняют отрицательную обратную связь по току 34 в оконечном каскаде.

Цепочки R42-C23 и R43-C24 выравнивают сопротивления секций первичной обмотки выходного трансформатора Т2 для токов 34 разных частот (при их отсутствии возможен даже междувитковый пробой в обмотках Т2). Ультралинейная схема включения выходных ламп промежуточная между триодным и пентодным включением. Симметричным перемещением отводов по секциям первичной обмотки можно установить наиболее желаемый режим работы каскада.

Чем ближе отводы к анодам ламп, тем качественней звук, но ниже выходная мощность. При самостоятельном изготовлении выходного трансформатора можно сделать ряд симметричных выводов от первичной обмотки Т2 и при настройке их переключать. Выходной трансформатор выполнен на сердечнике Ш 19×33. Обмотка 1-2 содержит 72 витка провода ПЭЛ 00,69 мм, обмотка 3-4 - 800 витков ПЭЛ 00,15 мм, обмотка 5-6-7 800+600 витков ПЭЛ 00,15 мм. обмотка 7-8-9 - 600+800 витков ПЭЛ 00,15 мм. Дроссель фильтра питания рассчитан на ток 150 мА (сердечник Ш 19×28, содержит 3000 витков ПЭЛ 00,2 мм).

Экспандер работает так. В режиме молчания, при замкнутых контактах SA2, между цепью прохождения сигнала и общим проводом включена последовательная цепочка C4-VL7. Эпектронно-оптический индикатор VL7 (лампа 6Е1П) выступает здесь в роли переменного резистора, управляемого амплитудой напряжения усиливаемого сигнала. Характеристика экспандера частотнозависимая.

В области высоких и средних звуковых частот увеличение громкости звука приводит к увеличению динамического сопротивления лампы VL7, что вызывает увеличение уровня усиливаемого сигнала, т.е. чем громче сигнал, тем больше коэффициент усиления УЗЧ. Максимальное расширение составляет 10… 14 дБ (VL7 практически закрыта).

На низких частотах экспандер фактически не работает за счет выбора параметров корректирующей цепочки C12-R22, которая пропускает на управляющую сетку левого (по схеме) триода VL6 только ВЧ и частично СЧ-составляющие (через С12), нижние частоты ослаблены большим сопротивлением R22.
Переменным резистором R46 регулируется глубина расширения динамического диапазона.

Конденсатор С13 разделительный, сравнительно небольшой емкости, чтобы снизить уровень НЧ-составляющих. Катод лампы соединен напрямую с общим проводом, и смещение рабочей точки осуществляется только за счет тока сетки. Правый триод VL6 работает как диод, осуществляя выпрямление переменного напряжения 34.

Следом идет интегрирующая цепочка для сглаживания пульсаций выпрямленного напряжения и обеспечения управления лампой VL7 с соответствующей динамикой. Резистором R29 производится начальная установка режима индикации лампы VL7 «узкий» светящийся сектор без сигнала и нижнем по схеме положении движка R46.

Питание усилителя от сети переменного тока осуществляется через трансформатор Т1 (от старых радиол I класса). Напряжения указаны на схеме, допустимо их отличие до ±10%. Поточнее лишь следует подобрать напряжение накала (6,3 В), особенно при самостоятельной намотке силового трансформатора. Лампа предварительных каскадов VL1 питается от отдельной обмотки накала, между проводами которой включен подстроечный балансировочный резистор R52.

В полностью собранном усилителе с подключенной акустической системой и отключенном экспандере устанавливают максимальную громкость, регуляторы тембра в положение максимальной полосы (подъем низких и высоких частот). Вращением движка R52 на выходе устанавливается минимальный уровень фона переменного тока и шумов.

Накал к другим лампам подводится скрученными между собой проводами (от другой обмотки 6,3 В). Соединение одного из проводов накала с общим проводом осуществляется непосредственно у одной из ламп (экспериментально, по минимуму фона). УЗЧ выполнен на таком же шасси, как в оригинале , с той же расстановкой ламп.Он позволяет почувствовать всю прелесть «мягкого лампового» звука.

Очень приятно звучат женские соло и дуэты, классическая музыка, эстрадные песни. Следует учитывать, что расширение динамического диапазона на 10 дБ означает увеличение мощности в 10 раз. Данный усилитель имеет выходную мощность порядка 12 Вт, поэтому не стоит пытаться «выдавить» из УЗЧ больше, чем он может дать. Кроме роста искажений, ничего «путного» не получится.

Внимание! Радиолюбителям, привыкшим к низковольтным транзисторным устройствам, следует быть особо осторожными при наладке этого усилителя, поскольку его цепи высоковольтные. Перепайку деталей можно осуществлять только при отключенном напряжении питания и спустя 20…30 с, чтобы успели разрядиться электролитические конденсаторы.



Загрузка...