sonyps4.ru

Обобщенные характеристики сигналов и каналов. Обобщенная структура канала связи

Сигнал может быть охарактеризован различными параметрами. Таких параметров, вообще говоря, очень много, но для задач, которые приходится решать на практике, существенно лишь небольшое их число. Например, при выборе прибора для контроля технологического процесса может потребоваться знание дисперсии сигнала; если сигнал используется для управления, существенным является его мощность и так далее. Рассматривают три основных параметра сигнала, существенных для передачи информации по каналу. Первый важный параметр - это время передачи сигнала T с . Второй характеристикой, которую приходится учитывать, является мощность P с сигнала, передаваемого по каналу с определенным уровнем помех P z . Чем больше значение P с по сравнению с P z , тем меньше вероятность ошибочного приема. Таким образом, представляет интерес отношение P с /P z . Удобно пользоваться логарифмом этого отношения, называемым превышением сигнала над помехой:

Третьим важным параметром является спектр частот F x . Эти три параметра позволяют представить любой сигнал в трехмерном пространстве с координатами L, T, F в виде параллелепипеда с объемом T x F x L x . Это произведение носит название объема сигнала и обозначается через V x

Информационный канал можно характеризовать также тремя соответствующими параметрами: временем использования канала Т к , шириной полосы частот, пропускаемых каналом F k , и динамическим диапазоном канала D k характеризующим его способность передавать различные уровни сигнала.

Величина

называется емкостью канала.

Неискаженная передача сигналов возможна только при условии, что сигнал по своему объему «вмещается» в емкость канала.

Следовательно, общее условие согласования сигнала с каналом передачи информации определяется соотношением

Однако соотношение выражает необходимое, но недостаточное условие согласования сигнала с каналом. Достаточным условием является согласование по всем параметрам:

Для информационного канала пользуются понятиями: скорость ввода информации, скорость передачи информации и пропускная способность канала.

Под скоростью ввода информации (потоком информации) I(X) понимают среднее количество информации, вводимое от источника сообщений в информационный канал в единицу времени. Эта характеристика источника сообщений и определяется только статистическими свойствами сообщений.

Скорость передачи информации I(Z,Y) – среднее количество информации, передаваемое по каналу в единицу времени. Она зависит от статистических свойств передаваемого сигнала и от свойств канала.

Пропускная способность С – наибольшая теоретически достижимая для данного канала скорость передачи информации. Это характеристика канала и не зависит от статистики сигнала.

С целью наиболее эффективного использования информационного канала необходимо принимать меры к тому, чтобы скорость передачи информации была как можно ближе к пропускной способности канала. Вместе с тем скорость ввода информации не должна превышать пропускную способность канала, иначе не вся информациябудет передана по каналу.

Это основное условие динамического согласования источника сообщений и информационного канала.

Одним из основных вопросов в теории передачи информации является определение зависимости скорости передачи информации и пропускной способности от параметров канала и характеристик сигналов и помех. Эти вопросы были впервые глубоко исследованы К. Шенноном.

Конец работы -

Эта тема принадлежит разделу:

Информатика

Федеральное бюджетное государственное образовательное.. тула г..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Высшего профессионального образования
«Тульский государственный университет» Политехнический институт Кафедра "Автоматизированные станочные системы"

Понятие информатики
Информатика – это техническая наука, систематизирующая приемы создания, хранения, воспроизведения, обработки и передачи данных средствами вычислительной техники, а также принципы фу

История развития информатики
История компьютера тесным образом связана с попытками человека облегчить автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затрудни

Мировоззренческие экономические и правовые аспекты информационных технологий
Базовый юридический документ в России, имеющий отношение к информатике - Закон «Об информации, информатизации и защите информации». В законе решаются вопросы правового регулирования на информационн

Синтаксическая мера информации
Объем данных Vд. в сообщение измеряется количеством символов (разрядов) в этом сообщении. В различных системах счисления один разряд имеет различный вес и соответственно

Семантическая мера информации
Тезаурус- это совокупность сведений, которыми располагает пользователь или система. В зависимости от соотношений между смысловым содержанием информации S и тезаурусом польз

Алгоритмическая мера информации
Каждый согласится, что слово 0101….01 сложнее слова 00….0, а слово, где 0 и 1 выбираются из эксперимента – бросания монеты (где 0-герб,1 –решка), сложнее обоих предыдущих.

Количество и качество информации
Потребительские показатели качества: · репрезентативность, содержательность, достаточность · актуальность, своевременность, точность · достоверность, усто

Единицы измерения информации
В современные компьютеры мы можем вводить текстовую информацию, числовые значения, а также графическую и звуковую информацию. Количество информации, хранящейся в ЭВМ, измеряется ее

Информацияи энтропия
Можем ли мы ввести разумную меру информации? Над этим вопросом задумался американский математик и инженер Клод Шеннон. Результатом размышлений стала опубликованная им в 1948 г. стат

Сообщения и сигналы
Шеннону удалось придумать удивительно простую и глубокую модель передачи информации, без которой теперь не обходится ни один учебник. Он ввел понятия: источник сообщения, передатчик

Энтропия
Разные сообщения несут в себе разные объемы информации. Попробуем сравнить следующие два вопроса: 1. На каком из пяти курсов университета учится студент? 2. Как уп

Избыточность
Пусть источник сообщения передает предложение реального языка. Оказывается, каждый следующий символ не полностью случаен, и вероятность его появления не полностью предопределена сре

Сенсация
Понятия энтропии (непредсказуемости) сообщения и избыточности (предсказуемости) естественно соответствуют интуитивным представлениям о мере информации. Чем более непредсказуемо сооб

Понятие информационной технологии
Технологияпри переводе с греческого (techne) означает искусство, мастерство, умение, а это не что иное, как процессы. Под процессом следует понимать определенную совокупность действ

Новая информационная технология
К настоящему времени информационная технология прошла несколько эволюционных этапов, смена которых определялась главным образом развитием научно-технического прогресса, появлением н

Инструментарий информационной технологии
Инструментарий информационной технологии - один или несколько взаимосвязанных программных продуктов для определенного типа компьютера, технология работы в котором позволяет достичь

Составляющие информационной технологии
Используемые в производственной сфере такие технологические понятия, как норма, норматив, технологический процесс, технологическая операция и т.п., могут применяться и в информацион

Развитие информационных технологий
Эволюция информационных технологий наиболее ярко прослеживается на процессах хранения, транспортирования и обработки информации.

Первое поколение ИТ
Первое поколение (1900-1955) связано с технологией перфокарт, когда запись данных представлялась на них в виде двоичных структур. Процветание компании IBM в период 1915-1960 гг. свя

Второе поколение ИТ
Второе поколение (программируемое оборудование обработки записей, 1955-1980 гг.) связано с появлением технологии магнитных лент, каждая из которых могла хранить информацию десяти ты

Третье поколение ИТ
Третье поколение (оперативные базы данных, 1965-1980 гг.) связано с внедрением оперативного доступа к данным в интерактивном режиме, основанном на использовании систем баз данных с

Четвертое поколение ИТ
Четвертое поколение (реляционные базы данных: архитектура «клиент - сервер», 1980-1995 гг.) явилось альтернативой низкоуровневому интерфейсу. Идея реляционной модели состоит в едино

Пятое поколение ИТ
Пятое поколение (мультимедийные базы данных, с 1995 г.) связано с переходом от традиционных хранящих числа и символы, к объектно-реляционным, содержащим данные со сложным поведением

Базовая информационная технология
Как уже отмечалось, понятие информационной технологии не может быть рассмотрено отдельно от технической (компьютерной) среды, т.е. от базовой информационной технологии. Апп

Предметная информационная технология
Под предметной технологией понимается последовательность технологических этапов по преобразованию первичной информации в результатную в определенной предметной области, независящая

Обеспечивающая информационная технология
Обеспечивающие информационные технологии - это технологии обработки информации, которые могут использоваться как инструментарий в различных предметных областях для решения различных

Функциональная информационная технология
Функциональная информационная технология образует готовый программный продукт (или часть его), предназначенный для автоматизации задач в определенной предметной, области и заданной

Свойства информационных технологий
В числе отличительных свойств информационных технологий, имеющих стратегическое значение для развития общества, представляется целесообразным выделить следующие семь наиболее важных

Кодирование и квантование сигналов
Физические сигналы являются непрерывными функциями времени. Чтобы преобразовать непрерывный, в частности, аналоговый сигнал в цифровую форму используются аналого-цифровые преобразов

Характеристики сигналов, передаваемых по каналу
Сигнал может быть охарактеризован различными параметрами. Таких параметров, очень много, но для задач, которые приходится решать на практике, существенно лишь небольшое их число. На

Модуляция сигналов
Сигналами называются физические процессы, параметры которых содержат информацию. В телефонной связи при помощи электрических сигналов передаются звуки разговора, в телевидении – изо

Виды и характеристики носителей
Если обозначить параметры носителя через a1 , a2 , …, an ,то носитель как функция времени может быть представлен в виде: UН =g(a

Спектры сигналов
Всё многообразие сигналов, используемых в информационных системах, можно разделить на 2 основные группы: детерминированные и случайные. Детерминированный сигнал характеризуется тем,

Периодические сигналы
Функция x(t) называется периодической, если при некотором постоянном Т выполняется равенство: x(t)=x(t+nT), где Т – период функции, n –

Тригонометрическая форма
Любой периодический сигнал x(t), удовлетворяющий условию Дирихле (x(t) – ограниченая, кусочно-непрерывная, имеет на протяжении периода конечное число экстремумов), мож

Комплексная форма
В математическом отношении удобнее оперировать комплексной формой ряда Фурье. Её получают, применяя преобразование Эйлера

Определение погрешности
При разложении периодических функций на сумму гармоник на практике часто ограничиваются несколькими первыми гармониками, а остальные не учитываются. Приближенно представляя функцию

Непериодические сигналы
Всякий непериодический сигнал можно рассматривать как периодический, период изменения которого равен ¥. В связи с этим спектральный анализ периодических процессов может быть обо

Модуляция и кодирование
5.1. Коды: прямой, обратный, дополнительный, модифицированный Одним из способов выполнения операции вычитания является замена знака вычитаемого на противоп

Прямой код числа
При кодировании прямым n-разрядным двоичным кодом один разряд (как правило, самый старший) отводится для знака числа. Остальные n-1 разрядов - для значащих цифр. Значение знакового разряда равно 0

Обратный код числа
Обратный код строится только для отрицательного числа. Обратный код двоичного числа является инверсным изображением самого числа, в котором все разряды исходного числа принимают инверсное (обратное

Дополнительный код числа
Дополнительный код строится только для отрицательного числа. Использование прямого кода усложняет структуру ЭВМ. В этом случае операция сложения двух чисел, имеющих разные знаки, должна быть замене

Модифицированный код числа
При сложении чисел, меньших единицы с фиксированной запятой, может получиться результат по абсолютной величине больший единицы, что ведет к искажению результатов вычислений. Переполнение разрядной

Систематические коды
Как уже указывалось, функции контроля можно осуществить при информационной избыточности. Такая возможность появляется при использовании специальных методов кодирования информации. В

Кодирование по методу четности-нечетности
Простым примером кода с обнаружением одной ошибки является код с битом чётности. Конструкция его такова: к исходному слову добавляется бит чётности. Если в исходном слове число единичек чётно, то з

Коды Хэмминга
Коды, предложенные американским ученым Р. Хэммингом (Рисунок 3.3), обладают способностью не только обнаружить, но и исправить одиночные ошибки. Эти коды – систематические.

Распределенная обработка данных
В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых можно было бы решать

Обобщенная структура компьютерной сети
Компьютерные сети являются высшей формой многомашинных ассоциаций. Основные отличия компьютерной сети от многомашинного вычислительного комплекса: Размерность. В сос

Характеристики канала передачи информации без помех
Рисунок 5.4 - Структура канала передаи информации без помех

Характеристики каналов передачи информации с помехами
Рисунок 5.5 - Структура канала передаи информации с помехами

Методы повышения помехоустойчивости передачи и приема
В основах всех способов повышения помехоустойчивости информационных систем лежит использование определенных различий между полезным сигналом и помехой. Поэтому для борьбы с помехами

Современные технические средства обмена данных и каналообразующей аппаратуры
Для передачи сообщений в вычислительных сетях используются различные типы каналов связи. Наиболее распространены выделенные телефонные каналы и специальные каналы для передачи цифро

Представление информации в цифровых автоматах (ЦА)
Коды как средство тайнописи появились в глубокой древности. Из­вестно, что еще древнегреческий историк Геродот к V в. до н.э. приводил примеры писем, понятных лишь адресату. Секретн

Информационные основы контроля работы цифровых автоматов
Алгоритмы выполнения арифметических операций обеспечат правильный результат только в случае, если машина работает без нарушений. При возникновении какого-либо нарушения нормального

Помехоустойчивость кода
Минимальное кодовое расстояние некоторого кода определяется как минимальное расстояние Хэмминга между любыми разрешенными кодовыми словами этого кода. У безызбыточного кода м

Метод контроля четности
Это простой способ обнаружения некоторых из возможных ошибок. Будем использовать в качестве разрешенных половину возможных кодовых комбинаций, а именно те из них, которые имеют четное число единиц

Метод контрольных сумм
Рассмотренный выше метод контроля четности может быть применен многократно для различных комбинаций разрядов передаваемых кодовых слов – и это позволит не только обнаруживать, но и

Коды Хэмминга
Коды, предложенные американским ученым Р. Хэммингом, обладают способностью не только обнаружить, но и исправить одиночные ошибки. Эти коды – систематические. По методу Хэмм

Контроль по модулю
Разнообразные задачи можно решать с помощью метода контроля, основанного на свойствах сравнений. Развитые на этой основе методы контроля арифметических и логических операций называют контролем п

Числовой метод контроля
При числовом методе контроля код заданного числа определяется как наименьший положительный остаток от деления числа на выбранный модуль р: rA = A-{A/p}p

Цифровой метод контроля
При цифровом методе контроля контрольный код числа образуется делением суммы цифр числа на выбранный модуль:

Выбор модуля для контроля
Достоинства числового метода контроля - в справедливости свойств сравнений для контрольных кодов, что облегчает контроль арифметических операций; достоинства цифрового метода в возм

Операция сложения по модулю 2
Операцию сложения по модулю 2 можно выразить через другие арифметические операции, например. Ес

Операция логического умножения
Операцию логического умножения двух чисел можно выразить через другие арифметические и логические операции:

Контроль арифметических операций
Арифметические операции выполняют на сумматорах прямого, обратного и дополнительного кодов. Предположим, что изображение чисел (операнды) хранятся в машине в некотором коде, т. е. о

Арифметические коды
Контроль по модулю, рассмотренный ранее, позволяет эффективно обнаруживать одиночные ошибки. Однако одиночная ошибка в одном разряде может привести к группе ошибок в нескольких разр

ЦАП и АЦП
Преобразование между аналоговыми и цифровыми величинами-основная операция, в вычислительных и управляющих системах, поскольку физические параметры, такие, как температура, перемещен

Уровни цифровой логики
В значительном большинстве ни цифроаналоговые, ни аналогоцифровые преобразователи практически почти невозможно применять без знания типа используемого на входе или выходе цифрового

Управляющий выходной сигнал строб-импульс
Большинство цифроналоговых преобразователей, за исключением преобразователей последовательных типов (таких, которые основаны на зарядке емкостей), имеют основную схему, реагирующую

Аналоговые сигналы
Обычно на вход аналогоцифровых преобразователей (АЦП) подаются сигналы в виде напряжения. Цифроаналоговые преобразователи (ЦАП) часто на выходе имеют сигналы в форме напряжения при

Цифроаналоговые преобразователи
Преобразование цифровых величин в пропорциональные аналоговые величины необходимо для того, чтобы результаты цифровых вычислений могли быть использованы и без труда поняты в аналого

Цифроаналоговое преобразование
На Рисунок 6.2 показана структурная схема ЦАП, который принимает 3-разрядное с дополнительным знаковым разрядом цифровое слово и преобразует его в эквивалентное напряжение. Основным

Основные типы ЦАП
Как упоминалось ранее, в настоящее время подавляющее большинство ЦАП, находящих сбыт, построены по двум основным схемам: в виде цепочки взвешенных резисторов и типа R-2R. Оба назван

ЦАП со взвешенными резисторами
Преобразователи со взвешенными резисторами (Рисунок 6.3) содержат источник опорного напряжения, набор ключей, набор двоично-взвешенных прецизионных резисторов и операционный усилите

ЦАП с цепочкой резисторов типа R-2R
ЦАП с цепочкой резисторов типа R -2R также содержат источник опорного напряжения, набор ключей и операционный усилитель. Однако вместо набора двоично-взвешенных резисторов они содер

Другие типы ЦАП
ЦАП в основном бывают либо с фиксированным внутренним (или внешним), либо с внешним переменным источником опорного напряжения (умножающие преобразователи). ЦАП с фиксированным источ

Аналоговые преобразователи
По существу аналогоцифровые преобразователи либо преобразуют аналоговый входной сигнал (напряжение или ток) в частоту или последовательность импульсов, длительность которой измеряют

Аналогоцифровое преобразование
На Рисунок 6.5 показана элементарная модель аналогоцифрового преобразования с ЦАП, составляющим простой блок в системе преобразования. Импульс установки в начальное состояние устана

Двухтактные интегрирующие АЦП
Двухтактный интегрирующий АЦП, как показано на Рисунок 6.6, содержит интегратор, некоторый логический узел управления, генератор тактовых импульсов, компаратор и выходной счетчик.

АЦП последовательного приближения
Основные причины, по которым в вычислительных системах с преобразованием информации почти повсеместно используется способ последовательного приближения, заключаются в надежности это

Преобразователи напряжения в частоту
На Рисунок 6.9 показан типичный преобразователь напряжения в частоту. В нем входной аналоговый сигнал интегрируется и подается на компаратор. Когда компаратор меняет свое состояние,

Параллельные АЦП
Последовательно-параллельный и просто параллельный преобразователи применяются главным образом там, где требуется максимально высокое быстродействие. Последовательное преобразование

Характеристики ЦАП
При анализе табличных данных необходимо проявлять большую тщательность, чтобы выяснить условия, при которых определяется каждый параметр, а параметры наверняка определяются по-разно

Характеристики АЦП
Характеристики АЦП подобны характеристикам ЦАП. Кроме того, почти все сказанное о характеристиках ЦАП справедливо и для характеристик АЦП. Они тоже чаще являются типовыми, нежели ми

Совместимость с системой
Перечень характеристик, даваемый фирмами изготовителями, является лишь отправной точкой при выборе подходящего АЦП или ЦАП. Некоторые системные требования, оказывающие влияние на вы

Совместимость преобразователей (взаимозаменяемость)
Большинство АЦП и ЦАП не являются универсально совместимыми по физическим, а некоторые и по электрическим параметрам. Физически корпуса различаются размерами, при этом наиболее расп

Позиционные системы счисления
Система счисления- совокупность приемов и правил для записи чисел цифровыми знаками. Наиболее известна десятичная система счисления, в которой для записи ч

Методы перевода чисел
Числа в разных системах счисления можно представить следующим образом:

Перевод чисел делением на основание новой системы
Перевод целых чисел осуществляется делением на основание q2 новой системы счисления, правильных дробей – умножением на основание q2. Действия деления и умножения выполняются п

Табличный метод перевода
В простейшем виде табличный метод заключается в следующем: имеется таблица всех чисел одной системы с соответствующими эквивалентами из другой системы; задача перевода сводится к нахождению соответ

Представление вещественных чисел в компьютере
Для представления вещественных чисел в современных компьютерах принят способ представления с плавающей запятой. Этот способ представления опирается на нормализованную (экспоненциал

Представление чисел с плавающей запятой
При представлении чисел с плавающей запятой часть разрядов ячейки отводится для записи порядка числа, остальные разряды - для записи мантиссы. По одному разряду в каждой группе отводится для изобра

Алгоритм представления числа с плавающей запятой
перевести число из P-ичной системы счисления в двоичную; представить двоичное число в нормализованной экспоненциальной форме; рассчитать смещённый порядок числа; ра

Понятие и свойства алгоритма
Теория алгоритмов имеет большое практическое значение. Алгоритмический тип деятельности важен не только как мощный тип деятельности человека, как одна из эффективных форм его труда.

Определение алгоритма
Само слово “алгоритм” происходит от algorithmi - латинской формы написания имени аль-Хорезми, под которым в средневековой Европе знали величайшего математика из Хорезма (город в сов

Свойства алгоритма
Данное выше определение алгоритма нельзя считать строгим - не вполне ясно, что такое “точное предписание” или “последовательность действий, обеспечивающая получение требуемого результата”. Алгоритм

Правила и требования, предъявляемые к построению алгоритма
Первое правило - при построении алгоритма, прежде всего необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (зак

Типы алгоритмических процессов
Типы алгоритмических процессов. Алгоритм применительно к вычислительной машине - точное предписание, т.е. набор операций и правил их чередования, при помощи которого, начиная с неко

Принципы Джона фон Неймана
В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом (Рисунок 8.5). Впервые

Функциональная и структурная организация компьютера
Рассмотрим устройство компьютера на примере самой распространенной компьютерной системы - персонального компьютера. Персональным компьютером (ПК) называют сравнительно недорогой уни

Выполнение арифметических операций с числами с фиксированной и плавающей запятой
9.6.1 Коды: прямой, обратный, дополнительный, Для машинного представления отрицательных чисел используют коды прямой, дополнительный, обратный.

Операция сложения
Операция сложения чисел в прямом, обратном и дополнительном кодах выполняется на двоичных сумматорах соответствующего кода. Двоичный сумматор прямого кода (ДС

Операция умножения
Умножение чисел, представленных в формате с фиксированной запятой, осуществляется на двоичных сумматорах прямого, обратного и дополнительного кодов. Существует несколько ме

Операция деления
Деление двоичных чисел, представленных в формате с фиксированной запятой представляет последовательные операции алгебраического сложения делимого и делителя, а затем остатков и сдвига. Деление выпо

Файлы данных
В разных источниках по информатике и вычислительной технике определения термина "файл" так же, как и термина "операционная система", могут варьироваться. Наиболе

Файловые структуры
Программная часть файловой системы, определяемая ее назначением, должна содержать следующие компоненты: Ø средства взаимодействия с процессами пользователей, которые

Носители информации и технические средства для хранения данных
Устройства хранения информации называются накопителями. В основе их работы лежат разные принципы (в основном это магнитные или оптические устройства), но используются они для одной

Организация данныхна устройствах с прямым и последовательным доступом
Под организацией данных понимается способ расположения записей файла во внешней памяти (на носителе записи). Наибольшее распространение получили следующие два вида организации файло

Вычислительная техника
Совокупность технических и математических средств (вычислительные машины, устройства, приборы, программы и пр.), используемых для механизации и автоматизации процессов вычислений и

Древнейшие счетные инструменты
Древнейшим счетным инструментом, который сама природа предоставила в распоряжение человека, была его собственная рука. «Понятие числа и фигуры,- писал Ф. Энгельс,- взято не откуда-н

Развитие абака
Бирки и веревки с узелками не могли удовлетворить возраставшие в связи с развитием торговли потребности в средствах вычисления. Развитию же письменного счета препятствовали два обст

Логарифмы
Термин «логарифм» возник из сочетания греческих слов logos - отношение, соотношение и arithmos - число. Основные свойства логарифма позволяют заменить умножение, деление, в

Суммирующая машина Блеза Паскаля
В 1640 г. попытку создать механическую вычислительную машину предпринял Блез Паскаль (1623-1662). Существует мнение, что «на идею счетной машины Блеза Паскаля натолкнуло, п

Чарльз Бэббидж и его изобретение
В 1812 года Чарльз Бэббидж начинает размышлять о возможных способах машинного вычисления таблиц. Бэббидж (Babbage) Чарльз (26 декабря 1791, Лондон - 18 октября, 1871, там ж

Табулятор Холлерита
Вооруженные карандашом и бумагой или в лучшем случае суммирующей машиной американские статистики 19 века испытывали острую необходимость в автоматизации длительной, утомительной и о

Машина Ц3
Работы по созданию вычислительных машин интересовали накануне войны военные ведомства всех стран. При финансовой поддержке Германского авиационного исследовательского института Цузе

Машина электронная вычислительная общего назначения БЭСМ-6
1. Область применения: универсальная ЭВМ для решения широкого класс задач науки и техники (Рисунок 11.18 и Рисунок 11.19). 2. Описание машины: в структуре БЭСМ-6 впервые в

IBM 360
В 1964 году фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Модели имели единую систему команд

Альтаир 8800
В январе 1975 года вышел свежий номер журнала "Popular Electronics", на обложке которого был изображен Рисунок 11.22 Altair 8800, сердцем которого был новейший микропроцес

Компьютеры Apple
В 1976 году появился персональный компьютер Apple-1 (Рисунок 11.23). Он был разработан в середине 70-х Стивом Возняком. В то время он работал на компанию Hewlett-Packard, в

IBM 5150
12 августа 1981 года компания IBM выпустила персональный компьютерIBM 5150 (Рисунок 11.25). Компьютер стоил немалые деньги – 1565 долл. и имел всего лишь 16 Кб оперативной памяти и

Описание структуры проекта
Любая программа в Delphi состоит из файла проекта (файл с расширением dpr) и одного или нескольких модулей (файлы с расширениями pas). Каждый из таких файлов описывает программную е

Описание структуры модуля
Структура модуля Модули - это программные единицы, предназначенные для размещений фрагментов программ. С помощью содержащегося в них программного кода реализуется вс

Описание элементов программ
Элементы программы Элементы программы- это минимальные неделимые ее части, еще несущие в себе определенную значимость для компилятора. К элементам относятся:

Элементы языка программирования-алфавит
Алфавит Алфавит языка Object Pascal включает буквы, цифры, шестнадцатеричные цифры, специальные символы, пробелы и зарезервированные слова. Буквы - это букв

Элементы языка программирования-идентификаторы,константы, выражения
Идентификаторы Идентификаторы в Object Pascal - это имена констант, переменных, меток, типов, объектов, классов, свойств, процедур, функций, модулей, программ и поле

Выражения на Object Pascal
Основными элементами, из которых конструируется исполняемая часть программы, являются константы, переменные и обращения к функциям. Каждый из этих элементов характеризуется своим зн

Целая и вещественная арифметика
Выражение состоит из операндов и операторов. Операторынаходятся между операндами и обозначают действия, которые выполняются над операндами. В качестве операндов выражения можно испо

Приоритет операций
При вычислении значений выражений следует учитывать, что операторы имеют разный приоритет. В Object Pascal определены следующие операции: Ø унарные not, @ ;

Встроенные функции. Построение сложных выражений
В языке Object Pascal основной программной единицей является подпрограмма. Различают два вида подпрограмм: процедуры и функции. Как процедура, так и функция, представляют собой посл

Типы данных
В математике переменные классифицируются в соответствии с некоторыми важными характеристиками. Производится строгое разграничение между вещественными, комплексными и логическими пер

Встроенные типы данных
Любой реально существующий тип данных, каким бы сложным он ни казался на первый взгляд, представляет собой простые составляющие (базовые типы), которые, как правило, всегда присутствуют в языке про

Целые типы
Диапазон возможных значений целых типов зависит от их внутреннего представления, которое может занимать один, два, четыре или восемь байтов. В Таблица 15.1 приведены характеристики целых т

Представление знака числа
Многие числовые поля не имеют знака, например, номер абонента, адрес памяти. Некоторые числовые поля предлагаются всегда положительные, например, норма выплаты, день недели, значение числа ПИ. Друг

Арифметическое переполнение
Арифметическое переполнение (arithmetic overflow) - потеря значащих цифр при вычислении значения выражения. Если в переменной можно хранить лишь неотрицательные значения (типы BYTE и WORD)

Вещественные типы. Сопроцессор
В отличие от порядковых типов, значения которых всегда сопоставляются с рядом целых чисел и, следовательно, представляются в ПК абсолютно точно, значения вещественных типов

Текстовые типы
Текстовые (символьные) типы - это типы данных, состоящие из одного символа. В Windows используется код ANSI (по названию разработавшего этот код института - American National Standa

Логический тип
Логический тип данных, названный в честь английского математика XIX века Дж. Буля кажется очень простым. Но с ним связан ряд интересных моментов. Во-первых, к данным этого

Устройства вывода
К устройствам вывода, прежде всего, можно отнести мониторы и принтеры. Монитор - устройство визуального отображения информации (в виде текста, таблиц, рисунков, чертежей и др.). &

Перечень компонентов ввода и отображения текстовой информации
В библиотеке визуальных компонентов Delphi существует множество компонентов, позволяющих отображать, вводить и редактировать текстовую информацию. В Таблица 16.1 приведен их перечен

Отображение текста в надписях компонентов Label, StaticText и Panel
Для отображения различных надписей на форме используются в основном компоненты Label, StaticText (появившийся только в Delphi 3) и Panel

Окна редактирования Edit и MaskEdit
Для отображения текстовой информации, и даже с дополнительной возможностью прокрутки длинных текстов, можно использовать также окна редактирования Edit и Ma

Многострочные окна редактирования Memo и RichEdit
Компоненты Memo и RichEdit являются окнами редактирования многострочного текста. Они так же, как и окно Edit, снабжены многими фун

Ввод и отображение целых чисел - компоненты UpDown и SpinEdit
В Delphi имеются специализированные компоненты, обеспечивающие ввод целых чисел - UpDown и SpinEdit. Компонент UpDown превращает

Компоненты выбора из списков - ListBox, CheckBox, CheckListBox и ComboBox
Компоненты ListBox и ComboBox отображают списки строк. Они отличаются друг от друга прежде всего тем, что ListBox только отображае

Функция InputBox
Окно ввода - это стандартное диалоговое окно, которое появляется на экране в результате вызова функции InputBox. Значение функции InputBox - строка

Процедура ShowMessage
Вывести на экран окно с сообщением можно при помощи процедуры ShowMessageили функции MessageDlg. Процедура ShowMessageвыв

Объявление файла
Файл - это именованная структура данных, представляющая собой последовательность элементов данных одного типа, причем количество элементов последовательности практически не ограниче

Назначение файла
Объявление файловой переменной задает только тип компонентов файла. Для того чтобы программа могла выводить данные в файл или считывать данные из файла, необходимо указать конкретны

Вывод в файл
Непосредственно вывод в текстовый файл осуществляется при помощи инструкции write или writeln. В общем виде эти инструкции записываются следующим о

Открытие файла для вывода
Перед выводом в файл его необходимо открыть. Если программа, формирующая выходной файл, уже использовалась, то возможно, что файл с результатами работы программы уже есть на диске.

Ошибки открытия файла
Попытка открыть файл может завершиться неудачей и вызвать ошибку времени выполнения программы. Причин неудачи при открытии файлов может быть несколько. Например, программа попытаетс

Устройства ввода
К устройствам ввода можем отнести следующие: клавиатура, сканер, планшет. Клавиатура компьютера - устройство для ввода информации в компьютер и подачи управляющих сигналов.

Открытие файла
Открытие файла для ввода (чтения) выполняется вызовом процедуры Reset, имеющей один параметр - файловую переменную. Перед вызовом процедуры Reset с

Чтение чисел
Следует понимать, что в текстовом файле находятся не числа, а их изображения. Действие, выполняемое инструкциями read или readln, фактически состои

Чтение строк
В программе строковая переменная может быть объявлена с указанием длины или без нее. Например: stroka1:string; stroka2

Конец файла
Пусть на диске есть некоторый текстовый файл. Нужно в диалоговое окно вывести содержимое этого файла. Решение задачи довольно очевидно: надо открыть файл, прочитать первую строку, з

Функции цикла в программе. Циклы с пред- и постусловием
Алгоритмы решения многих задач являются циклическими, т. е. для дости­жения результата определенная последовательность действии должна быть выполнена несколько раз. Например, програ

Цикл FOR
Оператор forиспользуется, если некоторую последовательность действий надо выполнить несколько раз, причем число повторений заранее известно Например, вычислить значения функц

Команды BREAK и CONTINUE
Для немедленного завершения текущего оператора цикла можно использовать подпрограмму Breakбез параметров (это подпрограмма, играющая роль оператора). Например, когда в массиве с известными г

Вложенные циклы
Если цикл включает в себя один или несколько циклов, то содержащий внутри себя другие циклы называется внешним, а цикл, содержащийся в другом цикле

Объявление массива
Массив, как и любая переменная программы, перед использованием должен быть объявлен в разделе объявления переменных. В общем виде инструкция объявления массива выглядит следующим об

Вывод массива
Под выводом массива понимается вывод на экран монитора (в диалоговое окно) значений элементов массива. Если в программе необходимо вывести значения всех элементов массива,

Ввод массива
Под вводом массива понимается процесс получения от пользователя (или из файла) во время работы программы значений элементов массива. "Лобовое" решение задачи ввод

Использование компонента StringGrid
Для ввода массива удобно использовать компонент StringGrid. Значок компонента StringGrid находится на вкладке Additional (Рисунок 19.1).

Использование компонента Memo
В некоторых случаях для ввода массива можно использовать компонент Memo. Компонент Memo позволяет вводить текст, состоящий из достаточно большого количества строк, поэтому его удобн

Поискминимального (максимального) элемента массива
Задачу поиска минимального элемента массива рассмотрим на примере массива целых чисел. Алгоритм поиска минимального (максимального) элемента массива довольно очевиден: снач

Поиск в массиве заданного элемента
При решении многих задач возникает необходимость определить, содержит ли массив определенную информацию или нет. Например, проверить, есть ли в списке студентов фамилия Петров. Зада

Ошибки при использовании массивов
При использовании массивов наиболее распространенной ошибкой является выход значения индексного выражения за допустимые границы, указанные при объявлении массива. Если в ка

Библиографический список
1. Основы информатики: Учеб. пособие для вузов / А.Н. Морозевич, Н.Н. Говядинова, В.Г. Левашенко и др.; Под ред. А.Н. Морозевича. - Минск: Новое знание, 2001. - 544с., ил.

Предметный указатель
«абак», 167 array, 276 Break, 272 CD-ROM, 161 const, 298 Continue, 273

Коммуникация, связь, радиоэлектроника и цифровые приборы

Объем сигнала и объем канала. Так например при исследовании условий прохождения радиосигнала между сотовым телефоном и базовой станцией радиоканала под каналом связи понимается пространство между антеннами сотового телефона и базовой станции при синтезе оптимального приёмника демодулятора совокупность технических средств от выхода модулятора передающего устройства до входа демодулятора приёмного устройства и среды распространения сигнала. Часть системы связи расположенная до входа канала является для него источником сигнала а часть...

Основные характеристики классификация каналов передачи и электросвязи по видам сообщений. Объем сигнала и объем канала.

В существующей научно-технической и учебной литературе, посвящённой различным системам связи, отсутствует единое конкретное понятие «канал связи». Обычно под каналом связи понимают часть системы связи, характеристики которой в процессе её исследования (анализа или синтеза) можно принять известными и неизменными, или же наоборот, часть системы связи, подвергающуюся исследованиям. Так, например, при исследовании условий прохождения радиосигнала между сотовым телефоном и базовой станцией (радиоканала) под каналом связи понимается пространство между антеннами сотового телефона и базовой станции, при синтезе оптимального приёмника (демодулятора) – совокупность технических средств от выхода модулятора передающего устройства до входа демодулятора приёмного устройства и среды распространения сигнала.

Часть системы связи, расположенная до входа канала , является для него источником сигнала, а часть системы, расположенная после выхода канала – его получателем.

Не смотря на столь неконкретное определение, каналы связи имеют определённые общие признаки и могут быть классифицированы по ним.

Основными признаками классификации каналов являются:

1) назначение системы (вид передаваемых сообщений): телефонные, телеграфные, факсимильные, звукового вещания, передачи данных, телевизионные, телеметрические и смешанные;

2) тип среды распространения: проводные (воздушные, кабельные, ВОЛС), волноводные, радио;

3) диапазон частот: для целей электросвязи в соответствие с Регламентом радиосвязи используются девять диапазонов частот – с четвертого (ОНЧ – СДВ) по двенадцатый (ГВЧ – децимиллиметровые) (табл. 1.2.1);

4) характер сигналов на входе и выходе системы:

Непрерывные (аналоговые) каналы – сигналы на входе и выходе непрерывные;

Дискретные (по уровню) – сигналы на входе и выходе дискретные;

Дискретно-непрерывные или непрерывно-дискретные (полунепрерывные) – сигнал на входе дискретный, на выходе непрерывный или наоборот.

Всякий дискретный или полунепрерывный канал содержит внутри себя непрерывный канал. Дискретность и непрерывность канала не связана с характером передаваемых сообщений: можно передавать дискретные сообщения по непрерывному каналу и непрерывные сообщения по дискретному.

Общими признаками непрерывных каналов являются:

а) большинство каналов можно считать линейными. В таких каналах выходной сигнал является суммой откликов отдельных входных сигналов и помех (применим принцип суперпозиции), а продукты нелинейных преобразований в канале малы по сравнению с выходными сигналами;

б) на выходе канала даже в отсутствие полезного сигнала всегда имеются помехи;

в) сигнал при передаче по каналу претерпевает задержку по времени и затухание по уровню;

г) в реальных каналах всегда имеют место искажения сигнала, обусловленные несовершенством характеристик канала и, нередко, изменениями параметров канала во времени.

Различают каналы чисто временные (с сосредоточенными параметрами), в которых сигналы на входе и выходе описываются функциями одного скалярного параметра (времени t ), и пространственно-временные каналы (с распределёнными параметрами), в которых сигналы на входе и (или) выходе описываются функциями более одного скалярного параметра (например, времени t и пространственных координат х, у, z ). Такие сигналы называют полями .

Каналы классифицируются также по следующим признакам:

Ширина полосы частот, занимаемых каналом (канал тональной частоты, широкополосные каналы);

Скорость передачи (основной цифровой канал, групповой цифровой канал – первичный, вторичный, третичный, четвертичный);

Способ организации двухсторонней связи (двухпроводный однополосный, двухпроводный двухполосный, четырехпроводный однополосный);

Протяженность или территориальный признак (международные, междугородние, магистральные, зоновые и местные).

1.5.2 Основные параметры каналов связи

Канал связи характеризуется так же, как и сигнал, тремя основными параметрами:

Временем T к , в течение которого по каналу возможна передача;

- динамическим диапазоном D к (отношение допустимой мощности передаваемого сигнала к мощности помехи, выраженное в децибелах);

- полосой пропускания канала F к .

Обобщённой характеристикой канала является его ёмкость (объём):

(1.5.1)

Необходимым условием неискажённой передачи по каналу сигналов с объёмом является:

(1.5.2)

В простейшем случае сигнал согласуют с каналом по всем трём параметрам, т.е. добиваются выполнения условий:

(1.5.3)

При этих условиях объём сигнала полностью «вписывается» в объём канала.

Неравенство (1.5.2) может выполняться и тогда, когда одно или два из неравенств (1.5.3) не выполнены. Это означает, что можно производить «обмен» длительности на ширину спектра или ширину спектра на динамический диапазон и т.д.

Наряду с приведёнными выше основными параметрами канала его частотные свойства характеризуются частотным коэффициентом передачи , а временные – импульсной характеристикой h к (t ,τ) . Из п. 1.2.5 следует, что эти характеристики позволяют описать преобразования входных сигналов во временной или частотной области, осуществляемые как каналом в целом, так и его отдельными элементами.


А также другие работы, которые могут Вас заинтересовать

12059. Валютная система и валютная политика России 245 KB
ВВЕДЕНИЕ Валютная система это совокупность двух понятий валютного механизма и валютных отношений. Под валютным механизмом понимаются правовые нормы и институты представляющие их на национальном и международном уровнях. Валютные отношения это повседневные свя
12060. Разработка экономического обоснования целесообразности открытия автосервиса ООО «Нижегородец» 396.5 KB
Реферат Выпускная квалификационная работа бакалавра 51 с. 2 разд. 6 рис. 11 табл. 14 источников. БИЗНЕСПЛАН АВТОСЕРСВИС НИЖЕГОРОДЕЦ ВЫСОКИЙ УРОВЕНЬ СПРОСА АВТОМОЙКА ШИНОМОНТАЖ ИНСТРУМЕНТЫ Объектом работы является деятельность ООО Нижегородец. Целью выпускн...
12061. ДЕЙСТВУЮЩАЯ ПРАКТИКА ОРГАНИЗАЦИИ УЧЕТА ЗАРАБОТНОЙ ПЛАТЫ 978.5 KB
СОДЕРЖАНИЕ ВВЕДЕНИЕ ГЛАВА 1. МЕТОДИЧЕСКИЕ ОСНОВЫ ОРГАНИЗАЦИИ УЧЕТА ОПЛАТЫ ТРУДА 1.1. Сущность понятие оплаты труда и ее формы 1.2. Исследование нормативной базы по оплате труда 1.3. Особенности деятельности предприятия и его учетная политика. ГЛАВА 2. ДЕЙСТВУЮ...
12062. Проблеми та перспективи розвитку валютних операцій в АКБ «Фінанси та кредит» та у банках України 411 KB
Вступ Актуальність обраної теми полягає в тому що валютні операції банків займають важливе місце серед статей прибутку сучасного банку але питання здійснення зазначених операцій є досить складним і потребує детального вивчення. Сьогодні банк може запропонувати кл
12063. ШЛЯХИ ПІДВИЩЕННЯ ПРИБУТКОВОСТІ КОМЕРЦІЙНИХ БАНКІВ 325 KB
ВСТУП Банківська система є важливою складовою економічної системи держави. Забезпечення стабільного прозорого функціонування банківських установ є однією з умов забезпечення конкурентоспроможності української економіки. У вітчизняній еконо
12064. НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ДЕЯТЕЛЬНОСТИ ОАО «СБЕРЕГАТЕЛЬНОГО БАНКА» НА ВАЛЮТНОМ РЫНКЕ 450 KB
Сделки покупки-продажи иностранной валюты Наличные сделки покупки-продажи today omorrow spot Срочные сделки покупки-продажи forward futures option swap Сделки с разрывами даты валютирования Чистая балансовая позиция Открытая валютна...
12065. ОБЩАЯ ХАРАКТЕРИСТИКА ДЕЯТЕЛЬНОСТИ ЛЕНИНСКОГО ОТДЕЛЕНИЯ № 4158 АК СБ РФ 127.5 KB
Введение Расчетнокассовый центр одно из центральных звеньев банковской системы. Развитие их деятельности необходимое условие реального создания банковского механизма. Процесс экономических преобразований начался с реформирования банковс...
12066. Основные направления совершенствования денежно-кредитной политики в Российской Федерации 173 KB
Введение Денежнокредитная политика одно из четырех направлений единой финансовой политики государства обеспечивающих устойчивость экономики и достижение экономического роста. Именно она контролирует инфляцию и рост денежной массы. Наличие в Российской Федерац
12067. Совершенствование системы финансового анализа банковской деятельности 1.49 MB
Введение Актуальность темы. Банки неотъемлемая составляющая современного денежного хозяйства их деятельность тесно связана с потребностями производства. Банки создают основу рыночного механизма с помощью которого функционирует экономика

«Многоканальная связь на ж. д. транспорте»

Конспект лекций

для студентов V курса

специализация СПИ

1. Общие сведения о системах и сетях телекоммуникаций. 2

1.1. Основные понятия и определения. 2

1.2. Первичные и вторичные сети. 3

1.3. Классификация и перспективы развития МСП.. 4

2. Параметры типовых первичных сигналов. 6

2.1. Обобщенная система параметров первичного сигнала. 6

2.2. Основные параметры типовых первичных сигналов. 9

2.2.1. Телефонный сигнал . 9

2.3.3. Факсимильный сигнал. 12

2.3.4. Сигнал дискретной информации (СДИ) 12

2.3.5. Телевизионный сигнал. 12

3. Принципы временного уплотнения сигналов. 13

3.1. Общие принципы формирования основного цифрового канала. 13

3.2. Временное объединение аналоговых сигналов. 13

. 14

. 15

3.3. Объединение цифровых потоков. 18

3.3.1. Посимвольное синхронное объединение . 18

3.3.2. Объединение асинхронных цифровых потоков . 21

3.3.3 Процедура согласования скоростей . 23

4. Плезиохронная цифровая иерархия. 27

4.1. Стандарты плезиохронной иерархии. 27

4.2. Группообразование с двухсторонним согласованием скоростей. 31

4.2.1. Временное группообразование вторичного цифрового сигнала . 31

4.2.2. Временное группообразование третичного и четверичного цифрового сигнала . 32

4.3. Группообразование с односторонним согласованием скоростей. 34

5. СИСТЕМА ПЕРЕДАЧИ Е1. 38

5.1. Физический уровень Е1. 38

5.1.1 Линейное кодирование . 39

5.1.2 Уровни сигналов, электрические параметры интерфейса, форма импульса . 41

5.2. Канальный уровень Е1. 43

5.2.1. Цикловая и сверхцикловая структура Е1 . 43

5.2.2. Процедуры контроля ошибок передачи. Использование избыточного кода CRC-4 . 45

5.3. Сетевой уровень Е1. 47

5.4. Структура систем передачи Е1. 49

6. Синхронная цифровая иерархия. 51

6.1. Сравнение SDH и PDH.. 51

6.2. Особенности построения синхронной иерархии. 52

6.3. Сборка модулей STM-N.. 54

6.4. Правила образования транспортного модуля STM-1. 55

6.5. Процесс формирования модуля STM-1 из потока трибов Е1. 57

6. 6. Назначение заголовков и указателей. 61

6.7. Особенности технической реализации синхронных муьлтиплексоров. 62

6. 8. Методы контроля четности. 64

6. 9. Резервирование. 65


1. Общие сведения о системах и сетях телекоммуникаций

1.1. Основные понятия и определения

Многоканальные системы передачи представляют собой большие и сложные технические системы, которые воплощают в себе самые современные знания и технологии, полученные в разных областях науки и техники. Чтобы дать компактное и в то же время исчерпывающее описание этих систем, нужно использовать общепринятые (желательно согласованные на международном уровне) термины и определения различных объектов, процессов и устройств, относящихся к этой области.

Информацией называют совокупность сведений, данных о каких-либо событиях, явлениях или предметах окружающего нас мира. Для передачи или хранения информации используют различные знаки (символы), которые являются своеобразной формой представления информации. Такими знаками могут быть слова и фразы человеческой речи на том или ином языке, буквы и слова письменной речи, жесты и рисунки, математические и нотные знаки и т. п. Совокупность знаков, отображающих ту или иную информацию, называют сообщением.

Сообщение может иметь электрическую или неэлектрическую природу. В большинстве случаев интерес представляют сообщения неэлектрической природы. Источник и получатель сообщений разделены некоторой средой, в которой источник образует возмущения. Именно эти возмущения отображают сообщения и воспринимаются получателем. Например, при разговоре источником сообщений является голосовой аппарат человека, в качестве сообщения выступает изменяющееся в пространстве и во времени воздушное давление – акустические волны, а получателем служит человеческое ухо.

Процесс передачи (транспортирования) сообщения от источника к получателю в соответствии с принятыми правилами называют связью. При этом используют какой-либо материальный носитель сообщения (бумагу, магнитную ленту и т. д.) и/или физический процесс, отображающий (несущий) передаваемое сообщение. Последний называют сигналом. Тип сигнала определяется характером физического процесса передачи информации. Сигнал называют электрическим, если физический процесс представляет собой передачу электрического тока (напряжения), звуковым – если используется передача акустических колебаний и т. д.

Совокупность средств, обеспечивающих передачу сообщений от источника к получателю, образует канал связи.

Передача сообщений посредством электрических сигналов называется электросвязью, соответственно канал связи, который обеспечивает такую передачу, – каналом электросвязи.

Для передачи каких-либо сообщений неэлектрической природы по каналу электросвязи они должны подвергнуться определенным преобразованиям, которые выполняют первичные преобразователи сообщений (ППС). ППС представляет собой устройство, которое формирует в пункте передачи первичный электрическийсигнал (ПЭС) – электромагнитное колебание, изменение параметров которого соответствует сообщению неэлектрической природы. Примерами ПЭС являются телефонный, телеграфный, телевизионный, сигнал звукового вещания и другие сигналы. В качестве типовых ППС можно назвать микрофон, фотодиод, телевизионную передающую камеру и т. д.

Первичный электрический сигнал может передаваться непосредственно по физической цепи, содержащей пару металлических проводников, но, как правило, ПЭС подвергается дополнительным преобразованиям. Например, для передачи по волоконно-оптической линии связи ПЭС преобразуется в определенного вида оптический сигнал, для направленной передачи в открытом пространстве – в высокочастотный радиосигнал и т. д. На приемной стороне осуществляются обратные преобразования и снова восстанавливается ПЭС. Далее он поступает на обратный преобразователь сообщения (ОПС) – устройство, которое преобразует электрический сигнал в сообщение неэлектрической природы. Типовыми ОПС являются громкоговоритель, светодиод, кинескоп телевизора и др.

Различные виды электросвязи классифицируют либо по типу передаваемых ПЭС (например, телефонная, видеотелефонная, телеграфная, факсимильная, телевизионная и т. п.), либо по типу линии передачи (спутниковая, волоконно-оптическая, радиорелейная и т. п.), если канал электросвязи является универсальным.

Системой электросвязи называют совокупность технических средств и среды распространения, обеспечивающих передачу сигналов электросвязи. В качестве среды распространения используют проводные и беспроводные линии (или радиолинии).

Проводными называются линии, в которых электромагнитные сигналы распространяются в пространстве вдоль непрерывной направляющей среды. К проводным относятся металлические воздушные и кабельные линии, волноводы, световоды. В радиолиниях сообщения передаются посредством радиоволн в открытом пространстве. Этот вид связи обеспечивает большую дальность, пригоден для подвижных источников и получателей сообщения, но зато в большей степени подвержен воздействию внешних помех.

1.2. Первичные и вторичные сети

Понятия "первичные и вторичные сети" были одними из основных в терминологии Взаимоувязанной сети связи (ВСС) России (а до этого – в терминологии ЕАСС) и определяли архитектуру ее построения.

Под первичной сетью понимается совокупность типовых физических цепей, типовых каналов передачи и сетевых трактов, образованных на базе сетевых узлов, сетевых станций, оконечных устройств первичной сети и соединяющих их линий передачи.

Вторичная сеть определяется как совокупность линий и каналов вторичной сети, образованных на базе первичной сети, станций и узлов коммутации или станций и узлов переключений, предназначенная для организации связи между двумя определенными точками или более. Границами вторичной сети являются ее стыки с абонентскими оконечными устройствами. В зависимости от основного вида электросвязи вторичную сеть называли телефонной, телеграфной, передачи данных, сетью распространения программ телевизионного вещания, передачи газет и др. По территориальному признаку вторичные сети разделяли на междугородные и зоновые (внутризоновые и местные).

На базе вторичных сетей организуются системы, представляющие собой комплекс технических средств, осуществляющих электросвязь определенного вида и включающие в себя соответствующую вторичную сеть и подсистемы: нумерации, сигнализации, учета стоимости и расчета с абонентами, технического обслуживания и управления.

На современном этапе, с появлением новых услуг связи , помимо телефонной, с появлением большого количества независимых провайдеров, которые эти услуги поставляют, а также таких технологий как АТМ и MPLS и других, стандарты которых захватывают как первичную, так и вторичные сети передачи информации границы между первичными и вторичными сетями постоянно стираются.

Бурное развитие современных технологий приводит к тому, что нормативная база резко отстала от существующего положения на сетях.

На сегодняший момен, на мой взгляд, следует остановиться на следующих определениях: следует оставить понятие первичной сети, как транспортной сети (линии передачи с оконечным оборудованием); вторичная сеть – сеть услуг (телефонная связь, передача данных и т. д.)

1.3. Классификация и перспективы развития МСП

Многоканальные системы передачи (МСП) представляют собой комплекс технических средств, обеспечивающих одновременную и независимую передачу нескольких сигналов с требуемым качеством по одной линии передачи. МСП классифицируются по следующим признакам.

1. По виду направляющей среды: проводные и беспроводные.

В свою очередь различают: а) проводные по воздушным линиям – ВСП; по кабельным линиям – КСП; по волоконно-оптическим линиям – ВОСП; б) беспроводные по радиорелейным линиям передачи – РРСП; по спутниковым линиям – ССП.

2. По числу источников сообщений (числу каналов N): а) малоканальные – N< 12 (обычно по воздушным линиям связи); б) среднеканальные – N= 12 – 60 (обычно КСП по симметричным кабелям или РРСП); в) многоканальные – N > 300 (обычно КСП по коаксиальным кабелям или РРСП, а также ВОСП); г) сверхмногоканальные – N >> 3000 (только ВОСП или КСП по «большим» коаксиальным кабелям, например система К-3600).

Для унификации МСП число источников сообщений (каналов) определяют по числу эквивалентных телефонных сообщений, которые могут быть переданы в МСП.

3 По форме передаваемых сигналов: а) аналоговые (АСП) – используемые для передачи аналоговых электрических сигналов, которые за конечный интервал времени могут принимать бесконечное множество состояний (рис. 1.4,а). Примером таких АСП являются системы типа В-12, К-1920 и т. п.; б) дискретные – используемые для передачи дискретных сигналов, которые на конечном интервале времени имеют конечное (дискретное, счетное) число состояний (рис. 1.4,б); в) цифровые (ДСП) – используемые для передачи цифровых сигналов, которые дискретны по времени и имеют два разрешенных уровня «1» и «0» мгновенных значений (рис. 1.4,в). Примером ЦСП является аппаратура типа ИКМ-30, ИКМ-1920 и т. п.

Рис. 1.4 а. Рис. 1.4 б. Рис. 1.4 в.

Основные тенденции развития МСП:

1. постоянный и неуклонный переход от АСП к ЦСП;

2. преимущественное развитие ВОСП, особенно магистральных с большим числом каналов;

3. увеличение доли ССП;

4. повышение надежности, улучшение качественных показателей МСП.

2. Параметры типовых первичных сигналов

2.1. Обобщенная система параметров первичного сигнала

Спектральная плотность Gx(f) случайного процесса характеризует распределение мощности отдельных спектральных компонент сигнала x(t) . Если сигнал x(t) периодический, то функция Gx(f) дискретна; если сигнал x(t) непериодический, то функция Gx(f) непрерывна.

Передать сигнал без искажений, не передавая его спектр, невозможно. Любое сокращение спектра, допущенное при передаче, ведет к искажению сигнала.

Все реально существующие сигналы связи представляют собой случайные процессы с бесконечно широким спектром. При этом, основная энергия сосредоточена в относительно узкой полосе частот. Поскольку передать весь спектр сигнала невозможно, то по линии связи передают ту часть спектра сигнала, в которой сосредоточена основная энергия, и при этом искажения не превышают допустимых значений.

На рисунке 2.1 приведены характерные зависимости Gx(f) :

Рис. 2.1. Характерные зависимости спектральной плотности Gx(f) :

а) для случая, когда спектр сигнала сосредоточен в основном в полосе частот Fн < f < Fв, где Fн, Fв – нижние и верхние граничные частоты (рис. 2.1 а);

Если Fв/Fн >> 1, то сигнал считается широкополосным; при Fв/Fн ≈ 1 – узкополосным.

б) когда 0 < f < Fв т. е. Fн = 0 (рис. 2.1, б);

в) когда сигнал имеет бесконечно широкий и равномерный спектр, этот вариант является удобной математической моделью и соответствует условному сигналу, называемому «белым шумом» (рис. 2.1, в).

Ширина спектра сигнала, равная разности максимальной и минимальной частот передаваемого спектра ΔF=FВ – FН является одной из важнейших его характеристик.

Мощность сигнала, усредненную на интервале времени T → ∞ называют средней долговременной мощностью Рх. ср. Если T конечно, например 1 минута или 1 час, то получим среднеминутную или среднечасовую мощность. Наконец, при T → 0 получим мгновенное значение мощности сигнала Рх в момент t0.

Поскольку x(t) – случайный процесс, то строго теоретически в отдельные моменты времени выбросы сигнала x(t) и соответственно мгновенное значение мощности Px(t) (усредненной за малый интервал ΔT) могут быть очень большими. Обычно за максимальную мощность сигнала принимается такая величина Px max = Xmax2, превзойти которую мгновенное значение Px может только с очень малой вероятностью ε. Обычно ε = 0,01 или 0,001.

Пик-фактор сигнала – это отношение его максимальной мощности Pmax, определенной выше, к средней долговременной Pср, выраженной в логарифмических единицах (децибелах):

.

Для большинства сигналов Кп не превышает 13 – 18 дБ.

В процессе передачи сигнал x(t) по тем или иным причинам (иногда и сознательным) искажается в результате к получателю поступает сигнал x’(t) ≠ x(t). Ошибка воспроизведения сигнала x(t) оценивается мощностью ошибки Pε, определяемой в виде

Получатель не замечает искажений сигнала, если Pε не превышает некоторо допустимогоо (порогового) значения Pε max. Под динамическим диапазоном понимается величина

, дБ,

где Pmax – максимально возможная мощность сигнала.

Также динамический диапазон определяется как отношение максимальной (пиковой) мощности Рс max сигнала к его минимальной мощности Рс min , выраженное в логарифмических единицах. Под пиковой мощностью понимается мощность сигнала, превышаемая в течение определенного времени. Динамический диапазон сигнала при использовании системы десятичных логарифмов

Динамический диапазон речевых сигналов составляет 35 – 40 дБ.

В реальных условиях сигналы связи передаются по линиям передачи, в которых действуют различного рода помехи. Поэтому наиболее важным является не абсолютное значение мощности сигнала, а ее соотношение с мощностью помехи. Из этих соображений обычно рассматривается и нормируется особая величина – защищенность сигнала от того или иного вида помехи.

Под защищенностью понимается разность уровней сигнала и помехи в данной точке канала связи:

Информационная производительность источника определяется отношением количества информации ИΣ, переданной с помощью ПЭС к получателю (приемнику) за время tΣ, к величине интервала tΣ:

При tΣ → ∞ величина I определяет среднюю информационную производительность источника; если tΣ мало, то тогда I характеризует мгновенную информационную производительность.

Найдем количество информации для источника дискретного сигнала, имеющего L разрешенных состояний (уровней) (рис. 2.2).

На интервале ti < t< ti+1 сигнал принимает i-й уровень (i Є ) с вероятностью pi..jpg" width="195" height="43">

Тогда производительность дискретного источника будет равна

где Тп – длительность элементарной посылки (рис. 2.2), FТ = 1/Tп – частота следования посылок (тактовая частота).

Пример. Пусть вероятность принятия i – го уровня одинакова для всех i Є ,

Подставляя значение pi находим

Если сигнал имеет два разрешенных уровня («0» и «1»), т. е. L = 2, причем p0 = p1 = 0,5, то получим для цифрового сигнала

Т. е. информационная производительность источника двоичного сигнала совпадает с его тактовой частотой. Например, информационная производительность источника основного цифрового канала (ОЦК), тактовая частота которого равна 64 кГц, будет равна 64 кБит/с.

Для аналогового сигнала

где величины FВ, Рср и Рε max определялись выше; D* и Кп* - соответственно динамический диапазон и пик-фактор сигнала, выраженные в разах (а не в дицибелах).

Если можно принять, что D*/K* >> 1, то тогда из предыдущей формулы имеем

Здесь D и Кп подставляются в децибелах, FВ – в герцах.

2.2. Основные параметры типовых первичных сигналов

2.2.1. Телефонный сигнал

Усредненная спектральная плотность (синоним – энергетический спектр) речевого сигнала, получаемого на выходе микрофона телефонного аппарата, показана на рис. 2.3.

Спектр сосредоточен в основном в пределах от 0,3 до 3,4 кГц. Это обусловлено, в первую очередь, параметрами первичных абонентских преобразователей – микрофона и телефона. Максимум спектра соответствует частоте F0, которая для мужских и женских голосов изменяется в пределах от 300 до 500 Гц.

Плотность распределения уровней абонентов на входе многоканальных систем передачи примерно описывается нормальным законом (рис. 2.4).

В зависимости от того, в какой точке системы будет измеряться это распределение, функция W(p) параллельно сместится по оси уровней р. Максимум ее соответствует уровню рср для некоторого среднего абонента в этой точке. Как правило, указывается функция W(p), приведенная ко входу системы (обычно точка нулевого относительного уровня ТНОУ):

Разброс уровней относительно рср не зависит от точки измерения и характеризуется дисперсией σр , которая равна 4,5 ... 5,5 дБ. Для нормального закона справедливо правило «трех сигм», в соответствии с которым максимальный уровень абонента pmax с вероятностью 99,9% равен pmax < (рср + З σр ).

Отношение средней мощности сигнала Рср к мощности той максимальной ошибки Рε, которую еще не чувствует ухо в условиях разговора, для всех абонентов, как показывает эксперимент, составляет

То же можно сказать и о пик-факторе любого абонентского сигнала, который равен Кп ≈ 15 – 17 дБ.

Тогда динамический диапазон сигнала равен

При оценке информационной производительности источников телефонного сигнала по ((номер формулы производительности для аналогового источника)) необходимо учесть, что каждый абонент говорит в среднем половину времени, отводимого для диалога с другим абонентом. Кроме того, значительная доля времени уходит на паузы, обдумывание ответов и т. п. За счет указанных факторов производительность источника сообщений уменьшается в среднем в 3 – 4 раза, что учитывается коэффициентом активности τа = З-1 Тогда используя формулу для информационной производительность источника аналогового сигнала, получи

2.2.2. Сигнал звукового вещания

Источниками звука при передаче программ звукового вещания (ЗВ) обычно являются музыкальные инструменты и голос человека. В качестве первичных преобразователей сигнала ЗВ используются высококачественные широкополосные микрофоны и громкоговорители, способные в принципе передать весь спектр звуков, которые может слышать человеческое ухо. Частотный спектр сигнала вещания расположен в полосе частот от 15 доГц. Однако в зависимости от требований к качеству воспроизведения полоса частот может быть ограничена:

для передачи по высшему классу - FH = 0,02 кГц, FB = 15 кГц;

по первому классу - FH = 0,05 кГц, FB = 10 кГц;

по второму классу - FH = 0,1 кГц, FB = 6 кГц.

Как правило, по международным магистралям международные и республиканские программы ЗВ передаются по 1-му классу, местные распределительные сети ЗВ обычно обеспечивают качество передачи по 2-му классу, аппаратура студий и домов звукозаписи рассчитывается на передачу сигнала ЗВ по высшему классу.

Допустимая ошибка воспроизведения сигнала ЗВ, оцениваемая величиной

101g(Pcp/ Pε), дБ, находится путем профессиональной экспертизы при использовании высококачественной аппаратуры (первичных преобразователей). Она составляет примерно 54 – 56 дБ. Пик-фактор сигнала ЗВ равен 16 – 18 дБ. Соответственно динамический диапазон на основании равен D = 70 – 74 дБ. Определяем производительность источника сигнала ЗВ:

https://pandia.ru/text/78/323/images/image025_36.jpg" width="350" height="48 src=">

При использовании факсимильной аппаратуры «Газета-2», применяемой для передачи газетных полос по междугородным линиям связи, наивысшая частота рисунка равна 180 кГц при времени передачи одной полосы 2,3 .... 2,5 мин. Изображение газетной полосы является растрированным (штриховым) с числом уровней L = 2. Тогда

DIV_ADBLOCK156">

Скорость передачи оценивают или частотой fТ = 1/τи, или числом элементарных символов за 1 с в бодах (1 Бод соответствует передаче одного символа в секунду). По этому параметру источники дискретной информации делят на низкоскоростные (в их числе и телеграфные), которые имеют скорость не более 200 Бод, среднескоростные – от 300 до 1200 Бод и высокоскоростные – более 1200 Бод.

2.3.5. Телевизионный сигнал.

В телевидении, так же как и при факсимильной связи, первичный сигнал формируется методом развертки. Электрический сигнал, включающий в себя сигнал изображения и управляющие импульсы, называется полным телевизионным сигналом. Для сигнала вещательного телевидения характерно D = 40 дБ, FB = 6,0 МГц.

3. Принципы временного уплотнения сигналов

3.1. Общие принципы формирования основного цифрового канала

Как известно, при переходе из аналоговой формы в цифровую сигнал претерпевает следующие преобразования (рис. 3.1.):

Рис. 3.1. Преобразование аналогового сигнала в цифровой ИКМ-сигнал

Дискретизация индивидуальных сигналов по времени, в результате чего формируется импульсный сигнал, промоделированный по амплитуде, т. е. АИМ сигнал;

Объединения N индивидуальных АИМ сигналов в групповой АИМ сигнал с использованием принципов временного разделения каналов;

Квантования группового АИМ сигнала по уровню;

Последовательного кодирования отсчетов группового АИМ сигнала, в результате чего формируется групповой ИКМ сигнал, т. е. цифровой сигнал.

Таким образом, при частоте дискретизации FД=8кГц (TД=125 мкс) и разрядности кода m=8 получаем скорость передачи сформированного ИКМ-сигнала 64 кбит/с, которая и является скоростью основного цифрового канала (ОЦК). Преобразование аналогового сигнала в сигнал ИКМ стандартизировано МСЭ-Т Рекомендацией G-711.

3.2. Временное объединение аналоговых сигналов

При временном уплотнении сигналов их передача осуществляется дискретно во времени. При этом между соседними дискретами одного сигнала всегда имеются «временные окна», в которых нет передачи этого сигнала. Эти «окна» и заполняются дискретами других сигналов. В зависимости от того, в какой форме представлен дискрет каждого сигнала, возможны два вида временного уплотнения:

а) уплотнение сигналов в аналого-импульсной форме;

б) уплотнение сигналов в цифровой форме.

3.2.1. Общие принципы объединения аналоговых сигналов

При временном объединении аналоговых сигналов (рис. 3.2) каждый из сигналов многоканальной системы a 1 (t ) ÷ an (t ) (рис. 3.3, а, в) предварительно преобразуется из аналоговой формы в сигнал АИМ-1 или АИМ-2.

Рис. 3.2

Формирование АИМ-сигналов производится с помощью дискретизаторов (см. рис. 3.24), которые управляются соответствующими импульсами коммутации U д1 ÷ U дn . Поскольку эти сигналы являются ортогональными (непересекающимися) во времени (см. рис. 3.25, б, г), то дискреты сигналов a д1 (t ) ÷ a дn (t ) также не совпадают во времени и их можно непосредственно объединить в групповой сигнал U гр(t) с помощью линейного сумматора 2 (рис. 3.25, д). Формирование сдвинутых во времени последовательностей импульсов U д1 ÷ U дn осуществляется с помощью генераторного оборудования (ГО) 3. Оно же с помощью передающего устройства синхросигналов 4 формирует специальный сигнал синхронизации, который объединяется с выборками информационных сигналов a 1 (t ) ÷ an (t ) . Элементарный цикл передачи в многоканальной системе строится по принципу: передается выборка 1-го канала, 2-го и т. д. до n-го, затем передается синхросигнал; потом снова выборки 1-го, 2-го канала и т. д.

На приемной стороне (рис. 3.4) дискретизаторы 11 – 1n осуществляют выделение из группового сигнала выборок только «своих» каналов. После канального фильтра 3i , i = 1, ...,n происходит восстановление непрерывного сигнала a i (t) из дискретизированного a дi (t ) ,.

Канальные дискретизаторы на передающей и приемной сторонах должны работать синхронно и синфазно. Для этого применяется принудительная синхронизация приемной части. Она выполняется с помощью специального приемника синхросигнала 2, который из группового сигнала выделяет сигнал синхронизации и подает его на генераторное оборудование приема 4. Для безошибочного выделения синхросигнала последнему придаются специфические признаки, отличающие его от информационных выборок. Отличием может быть амплитуда, длительность, форма и т. п. ГО передачи и приема строятся почти одинаково, только задающий генератор на стороне передачи работает в автономном режиме, а на стороне приема – в режиме – принудительной синхронизации. Преимущества такого варианта временного уплотнения заключаются в следующем:

1) для всех каналов используется общее ГО;

2) все сигналы дискретизируются с одной частотой, что позволяет использовать однотипные дискретизаторы и канальные фильтры;

3) аналого-цифровое преобразование (операции квантования по уровню и кодирования) выполняются одним групповым квантователем и кодирующим устройством;

4) цифро-аналоговое преобразование с на приемной стороне осуществляется одним I групповым декодером, который формирует групповой дискретизированный сигнал вида рис. 3.25, д.

3.2.2. Система передачи ИКМ-30

Такой вариант временного уплотнения применяется в первичных цифровых системах передачи типа ИКМ-30. Цикл передачи в этих системах поясняется на рис. 3.5.

Период цикла Tц равен периоду дискретизации телефонного сигнала Tд = 125 мкс (поскольку Fд = 8 кГц).


В интервале Тц последовательно передаются в цифровом двоичном коде выборки 30 телефонных сигналов и два служебных цифровых сигнала: цикловой синхронизации (ЦС) и сигналов управления и взаимодействия для АТС (СУВ). Каждая выборка передается в своем канальном интервале (КИ), имеет длительность кодовой комбинации Тк и состоит из m разрядов. Длительность разряда – Тт. При m = 8 получим

Канальные интервалы, нумеруемые цифрами 0, 1, 2, ..., 31, используются следующим образом: КИ0 – для передачи сигнала ЦС, КИ16 – СУВ, интервалы КИ1÷КИ15 и КИ17÷ КИ31 – для передачи соответственно 1 – 15-го и 16 – 31-го телефонных сигналов. Передача СУВ осуществляется путем организации «вынесенного сигнального канала» в отличие от большинства АСП, где СУВ передается в том же канале, что и информационный сигнал. В первичной ЦСП выборка СУВ одного абонента передается в виде 3-разрядной кодовой комбинации, при этом в одном КИ16 размещаются выборки СУВ двух абонентов. Для передачи по одному разу выборок всех 30 абонентов потребуется время Тсц = Тц (30/2 + 1) = 16 Тц = 2 мс, которое называется сверхциклом, при этом один из КИ16 в сверхцикле используется для передачи цифрового сигнала сверхцикловой синхронизации (СЦС). С помощью сигнала СЦС на приемной стороне производится разделение кодированных выборок СУВ отдельных каналов. Структурная схема приемника СУВ практически аналогична рис. 3.4.

Основными недостатками рассмотренного варианта временного уплотнения являются следующие:

1) с ростом числа объединяемых сигналов уменьшается интервал времени между соседними выборками (см. рис. 3.3, д), за которое групповой кодер (или декодер) должен произвести преобразование в цифровой сигнал (и обратно), в силу чего усложняется реализация этих групповых устройств;

Методы и модели анализа непрерывных каналов разрабатывают на основании изучения физических и статистических характеристик реальных каналов. Так как непрерывные каналы являются основной составной частью всех других каналов, результаты анализа непрерывных каналов широко используют для решения задач анализа и синтеза систем, сетей связи и других объектов информационной техники. Основными задачами анализа непрерывных каналов являются анализ линейных и нелинейных искажений сигналов в каналах и анализ влияния ттомех (в каналах.

4.1.1. Анализ искажений сигналов. Для анализа искажений сигналов в каналах необходимо располагать сведениями о характеристиках входных сигналов, структуре и параметрах операторов преобразования сигналов в канале и изучать характеристики выходных сигналов. Характеристики входных сигналов определяют как характеристики модулированных сигналов (см. § 3.2-3.6). Структуру и параметры операторов преобразования сигналов в канале определяют на основе построения математических моделей каналов (см. п. 4.1.3). Прохождение сигналов через каналы и характеристики выходных сигналов обычно изучают методами теории радиотехнических цепей и статистической радиотехники .

При строгом рассмотрении реальные непрерывные каналы являются нелинейными инерционными стохастическими системами . В них реакция на выходе не может предшествовать воздействию на входе, поэтому такие системы часто называют динамическими, Анализ таких систем представляет сложную задачу. Ее решение еще более усложняется, когда в роли входных воздействий выступают случайные модулированные сигналы. Для приближенного решения задач анализа искажений непрерывный канал, как уже отмечалось в § 1.3, удобно рассматривать как последовательное соединение линейной инерционной системы и нелинейной, но безынерционной системы. На рис. 4.1 показана структурная схема непрерывного канала без помех, где линейная-инерционная система представлена полосовым фильтром а нелинейная безынерционная система - нелинейным

преобразователем . В статистической радиотехнике показано, как анализируют прохождение случайных сигналов через такие системы.

Линейные искажения сигналов появляются в линейном инерционном четырехполюснике с постоянными параметрами из-за наличия в нем реактивных элементов. При линейных искажениях нарушаются существующие частотные и фазовые соотношения между отдельными составляющими сигнала и форма сигналов. Для отсутствия искажений необходимо, чтобы модуль коэффициента передачи и время запаздывания для всех составляющих были одинаковы. Нелинейными называют искажения сигналов, которые возникают в нелинейных безынерционных четырехполюсниках с постоянными параметрами из-за нелинейности характеристик активных элементов: ламп, транзисторов и др.

Рис. 4.1. Эквивалентная схема непрерывного канала без помех

Рис. 4.2. Эквивалентная схема непрерывного капала с помехами

В результате нелинейных искажений спектры сигналов расширяются, в них появляются дополнительные компоненты, растут уровни взаимных помех в каналах.

4.1.2. Помехи в непрерывных каналах. Для рассмотрения помех в непрерывных каналах выходной сигнал представляют в виде

где входной сигнал; соответственно мультипликативная и аддитивная помехи; задержка сигнала в канале. Структурная схема непрерывного канала с помехами показана на рис. 4.2.

Мультипликативные помехи обусловлены случайными изменениями коэффициента передачи канала из-за изменения характеристик среды, в которой распространяются сигналы, и коэффициентов усиления схем при изменении питающих напряжений, из-за замираний сигналов в результате интерференции и различного затухания сигналов при многолучевом распространении радиоволн . Сущность физических явлений, вызывающих мультипликативные помехи, подробно рассмотрена в . Мультипликативные помехи бывают «медленные», когда

и «быстрые», когда

где интервал корреляции случайного процесса интервал корреляции или длительность сигнала, если он рассматривается как детерминированный.

Если сигнал включает ряд спектральных компонент и интервал корреляции или длительность компоненты сигнала, то в зависимости от значения отношения различают общие и селективные мультипликативные помехи (замирания сигналов). Если

то мультипликативную помеху называют общей. Если это отношение различно для различных компонент, то помеху называют селективной. Если случайный сигнал может быть представлен в виде тригонометрического ряда Фурье (2.45), то в роли выступает период гармоники

Аддитивные помехи обусловлены флуктуационными явлениями, связанными с тепловыми процессами в проводах, резисторах, лампах, транзисторах и других элементах схем, наводками под действием атмосферных явлений (грозовые, разряды, космическое излучение, магнитные бури и т. п.) и индустриальных процессов (работа промышленных установок, линий электропередач, радиостанций, других линий связи и т. п.).

Аддитивные помехи делят на сосредоточенные и флуктуационные. Сосредоточенные аддитивные помехи отличаются сосредоточенностью энергии помехи и полосе частот (узкополосные помехи) или на отрезке времени (импульсные помехи). Узкогтолосные помехи в основном обусловлены действием посторонних источников сигналов - ширина спектра этих помех сравнима или значительно меньше ширины спектра полезных сигналов. Узкополосные помехи как помехи от соседних станций характерны для радиосвязи. Статистические свойства узкополосных помех носят такой же характер, как и у полезных сигналов. Борьба с узкополосными аддитивными помехами ведется методами повышения избирательности радиоприемных устройств и улучшения линейности характеристик усилителей (нелинейные преобразования помех приводят к расширению их спектра, что вызывает появление частотных компонент помехи в полосе прозрачности систем, отведенной для приема полезных сигналов).

Импульсные помехи - это случайные последовательности импульсов, создаваемые промышленными установками и атмосферными источниками сигналов. Эти помехи характеризуются широким энергетическим спектром. Ширина их спектра, как известно, обратно пропорциональна длительности импульсов. Энергия спектральных составляющих импульсных помех падает в области сверхнизких и сверхвысоких частот. Это является одной из причин все более широкого использования радиоволн метрового, дециметрового и сантиметрового диапазонов.

Понятие сосредоточенности энергии помехи относительно. Поэтому для определенности сосредоточенными аддитивными помехами следует считать те, для которых

где соответственно ширина спектра и длительность помехи; - ширина спектра и длительность сигнала. Первое соотношение в (4.4) определяет узкополосную помеху, второе - импульсную.

Флуктуационная аддитивная помеха характеризуется «размытостью» энергии спектра в широком диапазоне частот. Она обусловлена главным образом внутренними шумами элементов аппаратуры (тепловые шумы, дробовой эффект в электровакуумных приборах и т. п.). Средняя мощность теплового шума в полосе частот полезного сигнала определяется по формуле

спектральная плотность

где постоянная Болыцмана; абсолютная температура; при . Спектральная плотность помехи на положительных частотах Флуктуационную помеху из-за «внутренней» природы невозможно устранить, можно лишь учесть ее характеристики при синтезе такой оптимальной системы, в которой наличие флуктуационной помехи меньше всего сказывается на качестве передачи информации.

Математическими моделями сосредоточенных аддитивных помех являются узкополосные случайные сигналы и случайные последовательности импульсов. Математической моделью флуктуационной аддитивной помехи служит гауссовский белый шум (см. п. 2.4.4).

4.1.3. Модели непрерывных каналов. В настоящее время разработано большое количество моделей непрерывных каналов, различных по сложности математического описания, требуемым исходным данным и погрешностям описания реальных каналов. Наиболее распространены следующие модели: идеальный канал, гауссов канал, гауссов канал с неопределенной фазой, гауссов однолучевой канал с замираниями, гауссов многолучевой канал с замираниями и сосредоточенными аддитивными помехами. Для анализа реальных каналов в конкретных условиях обычно выбирают такую модель, которая приводит к не слишком трудоемким решениям задач и в то же время обладает погрешностями, допустимыми в инженерных расчетах.

Идеальный канал можно применять как модель реального непрерывного канала, если соблюдаются следующие условия: помехи любого вида отсутствуют, оператор преобразования сигналов в канале является детерминированным (см. рис. 4.1), мощность и полоса сигналов ограничены. Для анализа выходных

сигналов с помощью этой модели необходимо знать. характеристики входных сигналов и операторов Модель идеального канала слабо отражает реальные условия, ее применяют чаще всего для анализа линейных и нелинейных искажений модулированных сигналов в многоканальных системах проводной связи.

Гауссовский канал. Основные допущения при построении этой модели следующие: коэффициент передачи и время задержки сигналов в канале не зависят от времени и являются детерминированными величинами, известными в месте приема сигналов; в канале действует аддитивная флуктуационная помеха - гауссовский белый шум (гауссовский процесс).

Если на вход гауссового канала поступает узкополосный сигнал, то выходной сигнал можно представить в виде

где квадратурные составляющие входного сигнала; коэффициент передачи канала как функция времени; средняя частота входного сигнала; время задержки сигнала в канале; - гауссовский белый шум. Если на вход гауссова канала поступает широкополосный сигнал, для компоненты которого коэффициент передачи канала равен а фазовый сдвиг то выходной сигнал

где средняя частота компоненты; время задержки компоненты; число компонент. Из сравнения (4.7) и (4.8) следует, что входной сигнал может рассматриваться как узкополосный, если амплитудные и фазовые искажения отсутствуют, и Для анализа сигналов на выходе гауссовых каналов необходимо знать характеристики входных сигналов, значения а также спектр помехи

Гауссов канал применяют как модель реальных каналов проводной связи и однолучевых каналов без замираний или с медленными замираниями, когда можно надежно измерить Эта модель позволяет анализировать амплитудные и фазовые искажения сигналов и влияние флуктуационной помехи.

Гауссовский канал с неопределенной фазой сигнала. В этой модели время задержки сигнала в канале рассматривают как случайную величину, поэтому фаза в (4.7) также случайна. Для анализа выходных сигналов канала необходимо знать закон распределения времени задержки или фазы сигнала.

Введем в (4.7) следующие обозначения для квадратурных компонент:

Для реальных каналов измеряют следующие характеристики этих процессов: математические ожидания дисперсии корреляционные функции . В зависимости от измеренных значений характеристик, различают обобщенную гауссовскую модель, обобщенную релеевскую модель и релеевскую модель однолучевого канала с замираниями.

имеет вид (2.87).

В релеевской модели канала поэтому распределение величины (4.10) является распределением Релея (2.78), а распределение фазы равномерное (2.79). Следовательно, обобщенная гауссовская модель однолучевого канала с замираниями является наиболее общей, частными видами этой модели служат обобщенная релеевская модель и релеевская модель.

Рассмотренные модели однолучевого канала с замираниями достаточно хорошо описывают свойства радиоканалов различных диапазонов и проводных каналов со случайными, в том числе и переменными параметрами.

Гауссов многолучевой канал с замираниями. Эта модель описывает радиоканалы, распространение сигналов от передатчика к приемнику в которых происходит по различным «каналам» - путям. Длительности прохождения сигналов и коэффициенты передачи различных «каналов» являются неодинаковыми и случайными. Принимаемый сигнал образуется в результате интерференции сигналов, пришедших по различным путям. Он описывается соотношением (4.8), в котором квадратурные составляющие передаваемого сигнала, прошедшие по

Гауссовский многолучевой канал с замираниями и аддитивными сосредоточенными помехами. В этой модели наряду с флуктуационной помехой учитывают и различного вида сосредоточенные помехи. Она является наиболее общей и достаточно полно отражает свойства многих реальных каналов. Однако ее использование порождает сложность и трудоемкость решения задач анализа, а также необходимость сбора и обработки большого объема исходных статистических данных.

В дальнейшем для решения задач анализа непрерывных и дискретных каналов используются, как правило, модель гауссовского канала и модель гауссовского однолучевого канала с замираниями.

5.1 Система связи

Под системой связи понимают совокупность устройств и сред, обеспечивающих передачу сообщений от отправителя к получателю. В общем случае обобщённую систему связи представляют блок-схемой.

Рисунок 1– Обобщённая система связи

Передатчик – устройство, которое определяет и вырабатывает сигнал связи. Приёмник – устройство, которое преобразовывает принятый сигнал связи и восстанавливает первоначальное сообщение. Воздействия помех на полезный сигнал проявляется в том, что принятое сообщение на выходе приёмника не тождественно переданному.

Под каналом связи понимают совокупность технических устройств, обеспечивающих независимую передачу данного сообщения по общей линии связи в виде соответствующих сигналов связи. Сигнал связи – это электрическое возмущение, однозначно отображающее сообщение.

По своей форме сигналы связи весьма разнообразны и представляют собой изменяющиеся во времени напряжение или ток.

При решении практических задач в теории связи сигнал характеризуют объёмом , равным произведению трёх его характеристик: длительности сигнала , ширины спектра и превышения средней мощности сигнала над помехой . В таком случае . Если эти характеристики разложить параллельно осям декартовой системы, то получится объём параллелепипеда. Поэтому произведение называется объёмом сигнала.

Длительность сигнала определяет интервал времени его существования.

Ширина спектра сигнала – это интервал частот, в котором размещается ограниченный спектр частот сигнала, т.е. .

Канал связи по своей физической природе в состоянии пропустить эффективно лишь сигналы, спектр которых лежит в ограниченной полосе частот при допустимом диапазоне изменения мощности .

Кроме того, канал связи предоставляется отправителю сообщения на вполне определённое время . Следовательно, по аналогии с сигналом в теории связи введено понятие ёмкости канала , которая определяется: ; .

Необходимым условием передачи сигнала с объёмом по каналу связи, ёмкость которого равна , есть или . Физические характеристики сигнала могут быть изменены, но при этом уменьшение одной из них сопровождается увеличением другой.

5.2.2 Пропускная способность и скорость передачи

Пропускная способность – предельно возможная скорость передачи информации. Предельная пропускная способность зависит от ширины полосы пропускания канала, а также от отношения и определяется по формуле . Это формула Шеннона, которая справедлива для любой системы связи при наличии флуктуационной помехи.

5.2.3 Частотная характеристика канала

Частотной характеристикой канала связи называется зависимость остаточного затухания от частоты. Остаточным затуханием называется разность уровней на входе и выходе канала связи. Если в начале линии имеется мощность , а на её конце – , то затухание в неперах:

.

Аналогично для напряжений и токов:

; .



Загрузка...