sonyps4.ru

Помехи и искажения в канале. Помехи в каналах связи

На вход РПУ вместе с сигналом попадают аддитивные помехи. Такого рода помехами являются:

Атмосферные и космические шумы;

Помехи от промышленных установок;

Станционные помехи от других передатчиков;

Собственные шумы тракта РПУ, приведенные ко входу.

Можно все аддитивные помехи разбить на три группы:

Флуктуационные (шумовые);

Сосредоточенные по спектру (станционные);

Сосредоточенные по времени (импульсные).

Шумы тракта РПУ можно представить стационарным гауссовским процессом с нулевым средним и односторонней спектральной плотностью (энергетическим спектром)

k - постоянная Больцмана k =1,38·10 -23 [ Дж /К ] ,T 0 - температура окружающей среды по шкале Кельвина (T 0 =273°+ t°C).

F ш - коэффициент шума приемника.

Коэффициент шума F ш показывает во сколько раз реальный приемник ухудшает отношение сигнал /шум по мощности по сравнению с идеальным (нешумящим) приемником, уровень шума у которого обусловлен активным сопротивлением источника сигнала.

Средняя мощность белого шума в эквивалентной шумовой полосе Df э тракта РПУ

, (2.51)

где K 0 - значение АЧХ на центральной частоте.

Отметим, что гауссовский шум является самым мощным разрушителем информации на основании максимума его энтропии.

Узкополосный гауссовский шум n(t) как и модулированный сигнал можно записать в комплексной форме ,где вещественный сигнал

определен как

где N(t) – огибающая; q ш (t) - фаза шумового процесса;

; ; (2.54)

N с (t) и N s (t) - низкочастотные квадратурные составляющие.

. Импульсные помехи , воздействуя на резонансные цепи РПУ, могут создавать длительными переходными процессами в них серьезное мешающее воздействие приему сигналов.

Для импульсных помех необходимо знать интенсивность их потока и распределение уровня их амплитуд. Если известно, что на интервале времени 1с имеет место в среднем ν импульсных помех, то появление k помех на интервале Т с вероятностью P(k ) описывается законом Пуассона

(2.55)

Пусть при передаче телеграфных сообщений длительность элемента равна ∆t .Вероятность поражения элемента сообщения импульсной помехой . Следовательно, если на интервале Т имеется элементов, то среднее количество независимых интервалов, которое будет поражено импульсными помехами в выражении (2.55). Это выражение определяет вероятность числа элементов, пораженных импульсной помехой в сеансе связи длительностью Т.

Станционные помехи - средние уровни помех распределены по логарифмически - нормальному закону.

Контрольные вопросы к разделу 2.

1. Диапазон мгновенных значений непрерывного сообщения.



2. Модель ДИБП.

3. Выражение для динамического диапазона речевого сигнала.

4. Выражение для ряда Котельникова и условия при дискретизации непрерывных сообщений.

5. Условие некоррелированности отсчетов при дискретизации непрерывных сообщений по Котельникову.

6. Условие восстановления сигнала u(t) с финитным спектром по его отсчетам.

7. Закон, среднее значение и дисперсия аддитивной погрешности равномерного скалярного квантования процесса.

8. ОСШК АЦП гауссовского речевого сигнала при скалярном равномерном квантовании.

9. Необходимые требования к базисным функциям обобщенного ряда аппроксимации колебания с ограниченной энергией.

10. Чем отличается амплитудный спектр при аппроксимации колебания тригонометрическим рядом Фурье и комплексным рядом Фурье?

11. Чему равно расстояние между векторами колебаний, представленных рядом Фурье?

12. Выражения комплексного амплитудного спектра периодичес-кого сигнала и спектральной плотности непериодических сигналов.

13. Свойства пары преобразования Фурье.

14. Определение АКФ, ВКФ непериодического и периодического детерминированных сигналов.

15. Определение СПМ непериодического детерминированного и случайного сигналов, стационарных процессов.

16. СПМ синхронного модулирующего сигнала БВН. Что дает равная вероятность символов НЧ сигнала БВН?

17. Вещественный модулированный ВЧ сигнал в полярной форме записи. Комплексная огибающая (в полярной, квадратурной форме) модулированного сигнала.

18. Квадратурная форма записи ВЧ модулированного сигнала.

19. Что означает процесс модуляции сигнала?

20. АМ и ЧМ модуляция, спектры при гармоническом сообщении.

21. СПА и СПМ модулированного колебания.

22. Виды помех. Формы записи узкополосного гауссовского шума.

23. Закон Пуассона для импульсных помех.

Помехи в каналах связи

В микроэлектронных устройствах линии связи чаще всего являются электрически разомкнутыми линиями без потерь. Входное сопротивление таких линий носит емкостной характер, и его можно представить в виде конденсатора , включенного параллельно приемнику сигнала и имеющего входной импеданс (рис. 4.29). В линии связи возникают помехи, источником которых являются тепловые шумы элементов линии, ЭДС гальванических пар и термопар, возникающих в местах контакта разнородных металлов. Напряжение помех такого вида включено последовательно с . Помехи такого вида зависят только от собственных параметров канала связи, поэтому будем называть их внутренними.

При наличии нескольких каналов связи обычно обратный провод делают общим для всех или для нескольких линий связи из соображений экономии проводов или из-за невозможности изолирования общих выводов нескольких источников и приемников сигналов. Этот факт отмечен введением в эквивалентную схему .

· токовые (последовательные) внешние помехи, напряжение которых включено последовательно с ; - напряжение помехи, наводимой из второго канала связи в первый; - напряжение помехи, наводимой из первого канала связи во второй;

· потенциальные (параллельные) внешние помехи и соответственно, напряжение которых включено параллельно соответствующего канала: и . Такое разделение вида помех позволяет получить обобщенные формулы для расчета значения помех на входе приемника сигнала.

Для параллельной внешней помехи

где - изображение напряжения помехи, наводимой из второго канала в первый;

Изображение сигнала второго канала связи;

р - комплексная переменная;

Из рис. 4.29 следует, что

Помехами называются посторонние электромагнитные возмущения n(t), накладывающиеся на передаваемые сигналы S(t) и препятствующие приему сигналов.

По форме помехи делятся на несколько видов:

  • синусоидальные - от промышленной сети с частотой 50 Гц, от медицинских установок и различных аппаратов;
  • импульсные - в виде отдельных импульсов или групп импульсов (например, помехи от систем зажигания двигателей внутреннего сгорания);
  • хаотические - типа теплового шума (например, броуновское движение заряженных частиц).

По характеру мешающего воздействия помехи также делятся на несколько видов:

  • аддитивные - когда в канале связи помеха u(t) складывается с полезным сигналом S{t), т.е. Z(t) = S(t ) + u(t);
  • мультипликативные - когда воздействие помехи n(t) эквивалентно изменению коэффициента передачи канала связи, т.е. Z{t) = S(t) n(t).

Аддитивные помехи, в свою очередь, подразделяются на помехи соседних радиоканалов, промышленные, естественные, флюктуаци- онные и помехи в виде случайного процесса.

Помехи соседних радиоканалов (перекрестные помехи) возникают, например, из-за перекрытия спектров соседних каналов связи (рис. 5.12). Мера борьбы - раздвигание несущих частот соседних каналов не менее чем на две полуширины спектров сигналов.

Рис. 5.12. Перекрытие спектров соседних каналов связи с несущими частотами f x и/ 2

Промыииенные помехи (искусственные помехи) возникают вследствие затухающих колебаний при искрообразовании в различных электрических устройствах (например, электромагнитное излучение промышленного оборудования, ламп накаливания). Эти помехи проявляются, например, в беспорядочном треске и щелчках в телефонах. Мера борьбы - предотвращение или уменьшение искрообразования, использование фильтров для замыкания ВЧ-колебаний в устройствах, экранирование радиоаппаратуры.

Естественные помехи могут быть атмосферными (внутриканаль- ными) и космическими. Атмосферные помехи возникают из-за электромагнитного излучения при грозовых разрядах и проявляются на длинных и средних волнах в виде сильного нерегулярного треска в телефонах и радиоприемниках. Космические помехи вызваны излучением звезд в результате протекающих в них процессов преобразования энергии. Меры борьбы - переход в ультракоротковолновый диапазон, свободный от этого вида помех.

Флюктуационные помехи, источником которых являются внутренние шумы, представляют собой случайные колебания токов и напряжений в элементах радиоаппаратуры - последовательность коротких импульсов, имеющих случайный момент появления.

Помехи в виде случайного процесса можно определить как нежелательный процесс, который сопровождает передачу сигналов в линиях связи. Примером могут служить перекрестные помехи, когда во время телефонной связи происходит ложная коммутация двух телефонных линий, в результате чего в трубке можно слышать разговор по другой линии. Другим примером являются внутриканальные помехи, которые иногда возникают в телевизионных системах под воздействием атмосферных явлений. При этом телевизионный сигнал начинает распространяться на расстояния, превышающие обычные, и возникают взаимные помехи с локальными радиостанциями, ведущими вещание на тех же частотах.

Часть помех в линии связи вносят электронные компоненты - различные шумы: тепловой, дробовой, фликер-шум.

Тепловой шум возникает в процессе теплового возбуждения атомов проводника или резистора. В результате появляются свободные электроны, которые хаотически движутся в различных направлениях с различными скоростями. Их движение приводит к появлению случайной разности потенциалов на концах проводника или резистора.

Дробовой шум присутствует везде, где через какое-либо активное устройство течет постоянный или переменный ток и происходят случайные колебания величины этого тока, которые накладываются на сигнал и искажают его. Название «дробовой шум» происходит от специфического потрескивания, которое можно услышать в наушниках, если усилить сигнал с помощью усилителя низкой частоты.

Фликер-шум возникает в полупроводниковых вакуумных устройствах вследствие дефектов кристаллической структуры материала, которые приводят к флюктуациям проводимости. Происхождение этих шумов до конца не выяснено. Фликер-шумы нельзя смоделировать, поскольку они изменяются от устройства к устройству. В большинстве случаев на частотах свыше 10 кГц фликер-шумом можно пренебречь. Условно считают, что фликер-шум занимает полосу 0,1... 10 3 Гц.

В качестве параметра для оценки качества системы используется отношение сигнал/шум - отношение максимального значения напряжения сигнала к эффективному значению напряжения шума:

Отношение сигнал/шум часто определяют в децибелах:

Иногда в качестве отношения сигнал/шум берут отношение мощности сигнала P s и средней мощности помехи Р„, также выраженное в децибелах:

Типичные значения приемлемого отношения сигнал/шум составляют около 50...60 дБ - для высококачественного радиовещания музыкальных программ, 16 дБ - для низкокачественной передачи речи, до 30 дБ - для коммерческих телефонных систем, 60 дБ - для телевизионного вещания с хорошим качеством.

Отношение сигнал/шум уменьшается при прохождении сигнала через каскады усиления или преобразования в приемных устройствах систем связи, так как каждый каскад добавляет собственный шум. Если рассматривать многокаскадный усилитель, то общий коэффициент усиления определяется произведением коэффициентов усиления каждого каскада:

В идеальном случае, когда каскады не вносят собственных шумов, на выходе отношение сигнал/шум не изменится, так как

Реально каждый /-каскад вносит шумы и помехи:

Тогда отношение сигнал/шум на выходе /-каскада будет составлять

При расчете общего отношения сигнал/шум всех каскадов системы необходимо раздельно вычислить полезный сигнал 5 отах ВЬ1Х и уровень шума л вых (/) с учетом коэффициентов передачи каскадов G, и уровня шумов «,(/), внесенных в каждый каскад.

Помехи и искажения в канале

В реальном канале сигнал при передаче искажается и сообщение воспроиз­водится с некоторой ошибкой. Причиной таких ошибок являются как искаже­ния, вносимые самим каналом, так и помехи, воздействующие на сигнал. Час­тотные и временные характеристики канала определяют так называемые ли­нейные искажения. Кроме того, канал может вносить и нелинейные искаже­ния, обусловленные нелинейностью тех или иных звеньев канала. Если линей­ные и нелинейные искажения обусловлены известными характеристиками ка­нала, то они по крайней мере в принципе, могут быть устранены надлежащей коррекцией. Следует отличать искажения от помех, имеющих случайный ха­рактер. Помехи заранее не известны и поэтому не могут быть полностью уст­ранены.

Помехой называется любое случайное воздействие на сигнал, которое ухуд­шает верность воспроизведения передаваемых сообщений. Помехи весьма разно­образны как по своему происхождению, так и по физическим свойствам. В ра­диоканалах часто встречаются атмосферные помехи, обусловленные электриче­скими процессами в атмосфере, и прежде всего грозовыми разрядами. Энергия этих помех сосредоточена главным образом в области длинных и средних волн. Сильные помехи создаются также промышленными установками. Это так на­зываемые индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях всевозможных электроустройств. Сюда относятся помехи от электротранспорта, электрических двигателей, медицинских установок, сис­тем зажигания двигателей и т.п. Распространенным видом помех являются по­мехи от посторонних радиостанции и каналов. Они обусловлены нарушением регламента распределения рабочих частот, недостаточной стабильностью частот и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к перекрестным искажениям.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульсных помех часто связано с авто­матической коммутацией и перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усили­тельных приборах, резисторах и других элементах аппаратуры. Эти помехи особенно сказываются при радиосвязи в диапазоне ультракоротких волн, где Другие помехи невелики. В этом диапазоне имеют значение и космические по­мехи, связанные с электромагнитными процессами, происходящими на Солнце, звёздах и других внеземных объектах. В общем виде влияние помехи n(t) на полезный сигнал u(t)можно выразить оператором

z(t) = L. (2.1)

В частном случае, когда оператор вырождается в сумму

z(t) = s(t)+n(t) , (2.2)

помеха называется аддитивной. Если же оператор может быть представлен в виде произведения

z(t) = k(t)u(t), (2.3)

то помеху называют мультипликативной. Здесь k(t) - случайный процесс. В ре­альных каналах обычно имеют место и аддитивные, и мультипликативные по­мехи, и поэтому

z(t) = k(t)u(t) + n(t). (2.4)

Среди аддитивных помех различного происхождения выделяют сосредото­ченные по спектру (узкополосные) помехи, сосредоточенные во времени (импульсные) помехи и так называемую флуктуационную помеху, не ограни­ченную во времени и спектру. Флуктуационная помеха (флуктуационный шум) представляет собой случайный процесс с нормальным распределением (гауссовский процесс). Такая помеха наиболее изучена и представляет наи­больший интерес как в теоретическом, так и в практическом отношении. Этот вид помех практически имеет место во всех реальных каналах. В диапазоне оп­тических частот существенное значение имеет квантовый шум, вызванный дис­кретной природой сигнала. Мультипликативные помехи обусловлены случай­ными изменениями параметров канала связи. В частности, эти помехи прояв­ляются в изменении уровня сигнала.

Следует заметить, что между сигналом и помехой отсутствует принципи­альное различие. Более того, они существуют в единстве, хотя и противопо­ложны по своему действию. Так излучение радиопередатчика является полез­ным сигналом для приёмника, которому предназначено это излучение, и по­мехой для всех других приёмников. Электромагнитное излучение звезд являет­ся одной из причин космического шума в диапазоне сверхвысоких частот и поэтому является помехой для систем радиосвязи. С другой стороны, это излу­чение является полезным сигналом, по которому определяют некоторые физи­ко-химические свойства звёзд.

Лекция №3. Понятие об излучении и распространении радиоволн

Радиосвязь осуществляется при помощи электромагнитных волн, распространяющихся в частично ограниченном (например, земной поверхностью) пространстве.

Следует сразу подчеркнуть различие между статистическим электрическим (или магнитным) полем и полем электромагнитной волны . Дело в том, что напряженность статического электрического поля, создаваемого системой заряженных тел (или статического магнитного поля, создаваемого системой проводов, обтекаемых токами) при больших расстояниях убывает с третьей степенью расстояния, или еще быстрее. В то же время напряженность как электрической, так и магнитной составляющей поля свободно распространяющейся электромагнитной волны убывает лишь с первой степенью расстояния. Этим и обусловлена возможность связи на больших расстояниях при помощи электромагнитных волн.

Процесс создания распространяющейся от источника электромагнитной волны, называется излучением .

Лекция № 4.

Помеха – это любое мешающее внешнее или внутреннее воздействие на сигнал, вызывающее случайные отклонения принятого сигнала от передаваемого .

Помехи очень разнообразны как по своему происхождению, так и по физическим свойствам. Иногда помехи резко отличаются от сигнала, а иногда даже трудно определить, где сигнал, а где помеха. Вдруг в телефоне слышно два разговора. Надо время, чтобы различить, где полезный сигнал, а где случайно подключившаяся «помеха». В то же время эта «помеха» - полезный сигнал для другого абонента.

Помехи можно классифицировать по следующим признакам:

По происхождению (месту возникновения);

По физическим свойствам;

По характеру воздействия на сигнал.

По происхождению в первую очередь надо отметить внутренние шумы аппаратуры, входящей в канал связи, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах. Эти помехи также называются тепловыми шумами . Квадрат эффективного напряжения теплового шума на сопротивлении R определяется известной формулой Найквиста

где – абсолютная температура сопротивления ; – полоса частот;

Вт·с/град – постоянная Больцмана.

Эти шумы принципиально устранимы только при абсолютном нуле ().

Помехи от посторонних источников делятся на:

- атмосферные помехи (грозовые разряды, полярные сияния и др.), обусловленные электрическими процессами в атмосфере;

- индустриальные помехи , возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, медицинские установки, системы зажигания двигателей и др.);

- помехи от посторонних станций и каналов , возникающие от различных нарушений режима их работы и свойств каналов;

- космические помехи , связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

По физическим свойствам различают флуктуационные и сосредоточенные помехи.

Флуктуационными называют помехи, обусловленные флуктуациями тех или иных физических величин. Название происходит от физического понятия флуктуации (лат. fluctuation – колебание) – случайные отклонения физических величин от среднего. Флуктуационная помеха представляет собой непрерывные колебания, меняющиеся случайным образом. Они проникают в систему связи не только извне, но и зарождаются также внутри самой системы в различных ее звеньях.

Причинами внутренних флуктуационных помех являются в основном тепловой шум в проводниках и дробовый эффект в электронных приборах. К внешним флуктуационным помехам относятся помехи космического происхождения, помехи, вызванные взаимными влияниями цепей в линиях связи (линейные и нелинейные переходы, попутный поток и некоторые другие).


Характерной особенностью флуктуационных помех является то, что явления, порождающие эти помехи, лежат в физической природе вещей (дискретное строение вещества, дискретная природа электромагнитного поля) и принципиально не могут быть устранены.

К сосредоточенным во времени (импульсным) помехам относятся помехи в виде одиночных коротких импульсов различной интенсивности и длительности, следующих один за другим через случайные, достаточно большие промежутки времени. Причинами импульсных помех являются: грозовые разряды; радиостанции, работающие в импульсном режиме; линии электропередачи и другие энергоустановки; система зажигания и энергообеспечения транспорта; перегрузки усилителей; плохие контакты в оборудовании и питании; недостатки разработки и изготовления оборудования; эксплуатационные работы (реконструкция, профилактика, подключение к действующему каналу измерительных приборов, ошибочная коммутация и т.п.).

К сосредоточенным по спектру помехам относятся помехи посторонних радиостанций, генераторов высокой частоты различного назначения (медицинские, промышленные, бытовые и др.), переходные помехи от соседних каналов многоканальных систем. Обычно это гармонические или модулированные колебания с шириной спектра меньшей или соизмеримой с шириной спектра полезного сигнала.

По характеру воздействия на сигнал различают аддитивные и мультипликативные помехи.

Аддитивной является помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействуют на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. Эти помехи непосредственно связаны с процессами прохождения сигнала в среде распространения и могут ощущаться только при наличии сигнала в системе связи.

В реальных каналах электросвязи обычно имеет место не одна, а совокупность помех. Но основными можно считать флуктуационные помехи, воздействующие на сигнал как аддитивные.

Искажения – это такие изменения формы сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линиях связи, цепях передатчика и приемника.

Существует два вида искажений:

- линейные искажения , возникающие в линейных цепях;

- нелинейные искажения , возникающие в нелинейных цепях.

Искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. А дальше изменение формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при дальнейшей обработке в приемнике. Другое дело помехи – они заранее неизвестны и поэтому не могут быть устранены полностью.

Методы борьбы с помехами .

При всем многообразии методов борьбы с помехами их можно свести к трем основным направлениям:

1. Подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо, так как существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.).

2. Уменьшение помех на путях их проникновения в приемник. Помехи обычно воздействуют на сигнал в среде распространения, поэтому как проводные, так и радиолинии строятся так, чтобы обеспечить заданный уровень помех.

3. Ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление борьбы с помехами является предметом изучения в теории электросвязи.



Загрузка...