sonyps4.ru

Определение работы и мощности тока. Формула мощности тока

Электрическая энергия. В природе и технике непрерывно происходят процессы превращения энергии из одного вида в другой (рис. 30). В источниках электрической энергии различные виды энергии превращаются в электрическую энергию. Например, в электрических генераторах 1, приводимых во вращение каким-либо механизмом, происходит превращение в электрическую энергию механической, в термогенераторах 2 - тепловой, в аккумуляторах 9 при их разряде и гальванических элементах 10 - химической, в фотоэлементах 11 - лучистой.
Приемники электрической энергии, наоборот, электрическую энергию превращают в другие виды энергии - тепловую, механическую, химическую, лучистую и пр. Например, в электродвигателях 3 электрическая энергия превращается в механическую, в электронагревательных приборах 5 - в тепловую, в электролитических ваннах 8 и аккумуляторах 7 при их заряде - в химическую, в электрических лампах 6 - в лучистую и тепловую, в антеннах 4 радиопередатчиков - в лучистую.

Мерой количества энергии является работа. Работа W, совершаемая электрическим током за время t при известном напряжении U силе тока I, равна произведению напряжения на силу тока и на время его действия:

W = UIt (29)

Работа, совершаемая электрическим током силой 1 А при напряжении 1 В в течение 1 с, принята за единицу электрической энергии. Эта единица называется джоулем (Дж). Джоуль, который называют также ватт-секундой (Вт*с), - очень маленькая единица измерения, поэтому на практике для измерения электрической энергии приняты более крупные единицы - ватт-час (1 Вт*ч = 3600 Дж), киловатт-час (1 кВт*ч = 1000 Вт*ч = 3,6*10 6 Дж), мегаватт-час (1 МВт*ч=1000 кВт*ч=3,6*10 9 Дж).

Электрическая мощность. Энергия, получаемая приемником или отдаваемая источником тока в течение 1 с, называется мощностью. Мощность Р при неизменных значениях U и I равна произведению напряжения U на силу тока I:

P = UI (30)

Используя закон Ома для определения силы тока и напряжения в зависимости от сопротивления R и проводимости G, можно получить и другие выражения для мощности. Если заменить в формуле (30) напряжение U=IR или силу тока I=U/R=UG, то получим

P = I 2 R (31)

P = U 2 /R = U 2 G (32)

Следовательно, электрическая мощность равна произведению квадрата силы тока на сопротивление, или электрическая мощность квадрату напряжения, поделенному на сопротивление, либо квадрату напряжения, умноженному на проводимость.

Мощность, которая создается силой тока 1 А при напряжении 1 В, принята за единицу измерения мощности и называется ватт (Вт). В технике мощность измеряют более крупными единицами: киловаттами (1 кВт =1000 Вт) и мегаваттами (1 МВт=1 000 000 Вт).

Потери энергии и коэффициент полезного действия. При превращении электрической энергии в другие виды энергии или наоборот не вся энергия превращается в требуемый вид энергии, часть ее непроизводительно затрачивается (теряется) на преодоление трения в подшипниках машин, нагревание проводов и пр. Эти потери энергии неизбежны в любой машине и любом аппарате.
Отношение мощности, отдаваемой источником или приемником электрической энергии, к получаемой им мощности, называется коэффициентом полезного действия источника или приемника. Коэффициент полезного действия (к. п. д.)

? = P 2 /P 1 = P 2 /(P 2 + ?P) (33)

Р 2 - отдаваемая (полезная) мощность;
Р 1 - получаемая мощность;
?Р - потери мощности.

К. п. д. всегда меньше единицы, так как в любой машине и любом аппарате имеются потери энергии. Иногда к. п. д. выражают в процентах. Так, тяговые двигатели электровозов и тепловозов имеют к. п. д. 86-92 %, мощные трансформаторы - 96-98 %, тяговые подстанции - 94-96 %, контактная сеть электрифицированных железных дорог - около 90 %, генераторы тепловозов - 92-94 %.
Рассмотрим в качестве примера распределение энергии в электрической цепи (рис. 31). Генератор 1, питающий эту цепь, получает от первичного двигателя 2 (например, дизеля) механическую мощность Р mx = 28,9 кВт, а отдает электрическую мощность Р эл = 26 кВт (2,9 кВт составляют потери мощности в генераторе). Поэтому он имеет к. п. д. ? ген = Р эл /Р mx = 26/28,9 = 0,9.

Мощность Р эл = 26 кВт, отдаваемая генератором, расходуется на питание электрических ламп (6 кВт), на нагрев электрических плиток (7,2 кВт) и на питание электродвигателя (10,8 кВт). Часть мощности?P пр = 2 кВт теряется на бесполезный нагрев проводов, соединяющих генератор с потребителями.

В каждом приемнике электрической энергии также имеют место потери мощности. В электрическом двигателе 3 потери мощности составляют 0,8 кВт (он получает из сети мощность 10,8 кВт, а отдает только 10 кВт), поэтому к. п. д. ?дв = 10/10,8 = 0,925. Из мощности 6 кВт, полученной лампами, лишь незначительная часть идет на Создание лучистой энергии, большая часть ее бесполезно рассеивается в виде тепла. В электрической плитке на нагрев пищи расходуется не вся полученная мощность 7,2 кВт, так как часть созданного ею тепла рассеивается в окружающем пространстве. При рассмотрении электрических цепей наряду с определением токов и напряжений, действующих на отдельных участках, необходимо определять и передаваемую по ним мощность. При этом должен соблюдаться так называемый энергетический баланс мощностей. Это означает, что мощность, получаемая каким-либо устройством (источником тока или потребителем) или участком электрической цепи, должна быть равна сумме отдаваемой ими мощности и потерь мощности, которые возникают в данном устройстве или участке цепи.

Содержание:

Любой из элементов электрической сети является материальным объектом определенной конструкции. Но его особенность состоит в двойственном состоянии. Он может быть как под электрической нагрузкой, так и обесточен. Если электрического подключения нет, целостности объекта ничто не угрожает. Но при присоединении к источнику электропитания, то есть при появлении напряжения (U) и электротока, неправильная конструкция элемента электросети может стать для него фатальной, если напряжение и электроток приведут к выделению тепла.

Отличия мощности при постоянном и переменном напряжении

Наиболее простым получается расчет мощности электрических цепей на постоянном электротоке. Для их участков справедлив закон Ома, в котором задействовано только приложенное U, и сопротивление. Чтобы рассчитать силу тока I, U делится на сопротивление R:

причем искомая сила тока именуется амперами.

А поскольку электрическая мощность Р для такого случая - это произведение U и силы электротока, она так же легко, как и электроток, вычисляется по формуле:

причем искомая мощность нагрузки именуется ваттами.

Все компоненты этих двух формул характерны для постоянного электротока и называются активными. Напоминаем нашим читателям, что закон Ома, позволяющий выполнить расчет силы тока, весьма многообразен по своему отображению. Его формулы учитывают особенности физических процессов, соответствующих природе электричества. А при постоянном и переменном U они протекают существенно отличаясь. Трансформатор на постоянном U - это абсолютно бесполезное устройство. Также как синхронные и асинхронные движки.

Принцип их функционирования заключен в изменяющемся магнитном поле, создаваемом элементами электрических цепей, обладающими индуктивностью. А такое поле появляется только как следствие переменного U и соответствующего ему переменного тока. Но электричеству свойственно также и накопление зарядов в элементах электрических цепей. Это явление называется электрической емкостью и лежит в основе конструкции конденсаторов. Параметры, связанные с индуктивностью и емкостью, называют реактивными.

Расчет мощности в цепях переменного электротока

Поэтому, чтобы определить ток по мощности и напряжению как в обычной электросети 220 В, так и в любой другой, где используется переменное U, потребуется учесть несколько активных и реактивных параметров. Для этого применяется векторное исчисление. В результате отображение рассчитываемой мощности и U имеет вид треугольника. Две стороны его - это активная и реактивная составляющие, а третья - их сумма. Например, полная мощность нагрузки S, именуемая вольт-амперами.

Реактивная составляющая называется варами. Зная величины сторон для треугольников мощности и U, можно выполнить расчет тока по мощности и напряжению. Как это сделать, поясняет изображение двух треугольников, показанное далее.

Для измерения мощности применяются специальные приборы. Причем их многофункциональных моделей совсем мало. Это связано с тем, что для постоянного электротока, а также в зависимости от частоты используется соответствующий конструктивный принцип измерителя мощности. По этой причине прибор, предназначенный для измерения мощности в цепях переменного электротока промышленной частоты, на постоянном электротоке или на повышенной частоте будет показывать результат с неприемлемой погрешностью.

У большинства наших читателей выполнение того или иного вычисления с использованием величины мощности скорее всего происходит не с измеренным значением, а по паспортным данным соответствующего электроприбора. При этом можно легко рассчитать ток для определения, например, параметров электропроводки или соединительного шнура. Если U известно, а оно в основном соответствует параметрам электросети, расчет тока по мощности сводится к получению частного от деления мощности и U. Полученный таким способом расчетный ток определит сечение проводов и тепловые процессы в электрической цепи с электроприбором.

Но вполне закономерен вопрос, как рассчитать ток нагрузки при отсутствии каких-либо сведений о ней? Ответ следующий. Правильный и полный расчет тока нагрузки, запитанной переменным U, возможен на основании измеренных данных. Они должны быть получены с применением прибора, который замеряет фазовый сдвиг между U и электротоком в цепи. Это фазометр. Полный расчет мощности тока даст активную и реактивную составляющие. Они обусловлены углом φ, который показан выше на изображениях треугольников.

Используем формулы

Этот угол и характеризует фазовый сдвиг в цепях переменного U, содержащих индуктивные и емкостные элементы. Чтобы рассчитывать активные и реактивные составляющие, используются тригонометрические функции, применяющиеся в формулах. Перед тем как посчитать результат по этим формулам, надо, используя калькуляторы или таблицы Брадиса, определить sin φ и cos φ. После этого по формулам

Современный человек постоянно сталкивается в быту и на производстве с электричеством, пользуется приборами, потребляющими электрический ток и устройствами, вырабатывающими его. При работе с ними всегда надо учитывать их возможности, заложенные в технических характеристиках.

Одним из основных показателей любого электроприбора является такая физическая величина, как электрическая мощность . Ею принято называть интенсивность или скорость генерации, передачи либо преобразования электроэнергии в другие виды энергии, например, тепловую, световую, механическую.

Транспортировка или передача больших электрических мощностей в промышленных целях выполняется по .

Преобразование осуществляется на трансформаторных подстанциях.


Потребление электричества происходит в бытовых и промышленных устройствах различного назначения. Одним из распространенных их видов являются .


Электрическая мощность генераторов, линий электропередач и потребителей в цепях постоянного и переменного тока имеет один и тот же физический смысл, который в то же время выражается различными соотношениями, зависящими от формы составных сигналов. С целью определения общих закономерностей введены понятия мгновенных значений . Они еще раз подчеркивают зависимость скорости преобразований электроэнергии от времени.

Определение мгновенной электрической мощности

В теоретической электротехнике для вывода основных соотношений между током, напряжением и мощностью используются их представления в виде мгновенных величин, которые фиксируются в какой-то определенный временной момент.


Если за очень короткий промежуток времени ∆t единичный элементарный заряд q под действием напряжения U перемещается из точки «1» в точку «2», то он совершает работу, равную разности потенциалов между этими точками. Разделив ее на промежуток времени ∆t, получим выражение мгновенной мощности для единичного заряда Pe(1-2).

Поскольку под действием приложенного напряжения перемещается не только единичный заряд, а все соседние, оказавшиеся под влиянием этой силы, количество которых удобно представить числом Q, то для них можно записать мгновенную величину мощности PQ(1-2).

Выполнив простые преобразования получим выражение мощности Р и зависимость ее мгновенного значения p(t) от составляющих произведения мгновенного тока i(t) и напряжения u(t).

Определение электрической мощности постоянного тока

В величина падения напряжения на участке цепи и протекающего по нему тока не изменяется и остается стабильной, равной мгновенным значениям. Поэтому определить мощность в этой схеме можно перемножением этих величин или делением совершенной работы А на период времени ее выполнения, как показано на поясняющей картинке.


Определение электрической мощности переменного тока

Законы синусоидального изменения токов и напряжений, передаваемых по электрическим сетям, накладывают свое влияние на выражение мощности в таких цепях. Здесь действует полная мощность, которая описывается треугольником мощностей и состоит из активной и реактивной составляющих.


Электрический ток синусоидальный формы при прохождении по линиям электропередач со смешанными видами нагрузок на всех участках не изменяет форму своей гармоники. А падение напряжения на реактивных нагрузках сдвигается по фазе в определенную сторону. Понять влияние приложенных нагрузок на изменение мощности в цепи и ее направление помогают выражения мгновенных величин.

При этом сразу обратите внимание на то, что направление прохождения тока от генератора к потребителю и передаваемой мощности по созданной цепи - это совершенно разные вещи, которые в отдельных случаях могут не только не совпадать, но и направлены в противоположные стороны.

Рассмотрим эти взаимосвязи при их идеальном, чистом проявлении для разных видов нагрузок:

    активной;

    емкостной;

    индуктивной.

Выделение мощности на активной нагрузке

Будем считать, что генератор вырабатывает идеальную синусоиду напряжения u, которая прикладывается к чисто активному сопротивлению цепи. Амперметр А и вольтметр V замеряют ток I и напряжение U в каждый момент времени t.



На графике видно, что синусоиды тока и падения напряжения на активном сопротивлении совпадают по частоте и фазе, совершая одинаковые колебания. Мощность же, выражаемая их произведением, колеблется с удвоенной частотой и всегда остается положительной.

p=u∙i=Um∙sinωt∙Um/R∙sinωt=Um 2 /R∙sin 2 ωt=Um 2 /2R∙(1-cos2ωt).

Если перейти к выражению , то получим: p=P∙(1-cos2ωt).

Далее проинтегрируем мощность за период одного колебания Т и сможем заметить, что приращение энергии ∆W за этот промежуток увеличивается. С дальнейшим течением времени активное сопротивление продолжает потреблять новые порции электроэнергии, как показано на графике.

На реактивных нагрузках характеристики потребляемой мощности отличаются, имеют другой вид.

Выделение мощности на емкостной нагрузке

В схеме питания генератора заменим резистивный элемент конденсатором с емкостью С.


Соотношения между током и падением напряжения на емкости выражаются зависимостью: I=C∙dU/dt=ω∙C ∙Um∙cosωt.

Перемножим значения мгновенных выражений тока с напряжением и получим значение мощности, которая потребляется емкостной нагрузкой.

p=u∙i=Um∙sinωt∙ωC ∙Um∙cosωt=ω∙C ∙Um 2 ∙sinωt∙cosωt=Um 2 /(2X c)∙sin2ωt=U 2 /(2X c)∙sin2ωt.

Здесь видно, что мощность совершает колебания относительно нуля с удвоенной частотой приложенного напряжения. Суммарное ее значение за период гармоники, как и приращение энергии, равно нулю.

Это означает, что энергия перемещается по замкнутому контуру цепи в обе стороны, но никакой работы не совершает. Подобный факт объясняется тем, что при нарастании напряжения источника по абсолютной величине мощность положительна, а поток энергии по цепи направляется в емкость, где происходит накопление энергии.

После того как напряжение переходит на падающий участок гармоники, из емкости начинается возврат энергии в контур к источнику. В обоих этих процессах полезная работа не совершается.

Выделение мощности на индуктивной нагрузке

Теперь в схеме питания заменим конденсатор индуктивностью L.


Здесь ток через индуктивность выражается соотношением:

I=1/L∫udt=-Um/ωL∙cos ωt.

Тогда получим

p=u∙i=Um∙sinωt∙ωC ∙(-Um/ωL∙cosωt)=-Um 2 /ωL∙sinωt∙cosωt=-Um 2 /(2X L)∙sin2ωt=-U 2 /(2X L)∙sin2ωt.

Полученные выражения позволяют увидеть характер изменения направления мощности и приращения энергии на индуктивности, которые совершают такие же бесполезные для выполнения работы колебания, как и на емкости.

Выделяемую на реактивных нагрузках мощность называют реактивной составляющей. Она в идеальных условиях, когда у соединительных проводов нет активного сопротивления, кажется безобидной и не создает никакого вреда. Но в условиях реального электроснабжения периодические прохождения и колебания реактивной мощности вызывают нагрев всех активных элементов, включая соединительные провода, на который затрачивается определенная энергия и снижается величина приложенной полной мощности источника.

Основное отличие реактивной составляющей мощности состоит в том, что она вообще не совершает полезной работы, а ведет к потерям электрической энергии и превышению нагрузок оборудования, особенно опасных в критических ситуациях.

По этим причинам для устранения влияния реактивной мощности используются специальные .

Выделение мощности на смешанной нагрузке

В качестве примера используем нагрузку на генератор с активно емкостной характеристикой.


На приведенном графике не показаны для упрощения картины синусоиды токов и напряжений, но следует учесть, что при активно-емкостном характере нагрузки вектор тока опережает напряжение.

p=u∙i=Um∙sinωt∙ωC ∙Im∙sin(ωt+φ).

После преобразований получим: p=P∙(1- cos 2ωt)+Q ∙sin2ωt.

Эти два слагаемые в последнем выражении являются активной и реактивной составляющими мгновенной полной мощности. Только первая из них совершает полезную работу.

Приборы измерения мощности

Для анализа потребления электроэнергии и расчета за нее используются приборы учета, которые давно получили название . Их работа основана на измерении действующих величин тока и напряжения и автоматическом перемножении их с выводом информации.

Счетчики отображают потребляемую мощность с учетом времени работы электроприборов по нарастающему принципу от момента включения электросчетчика под нагрузку.


Для замера в цепях переменного тока активной составляющей мощности используются , а реактивной - варметры. Они имеют разные обозначения единиц измерения:

    ватт (Вт, W);

    вар (Вар, вар, var).

Чтобы определить полную мощность потребления, необходимо по формуле треугольника мощностей вычислить ее величину на основе показаний ваттметра и варметра. Она выражается в своих единицах - вольт-амперах.

Принятые обозначения единиц каждой помогают электрикам судить не только о ее величине, но и о характере составляющей мощности.

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

а для трехфазной сети: I = P/(1,73*U*cos φ),

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) - 60 А;
  • электроплита (10 кВт) - 50 А;
  • варочная панель (8 кВт) - 40 А;
  • электроводонагреватель проточный (6 кВт) - 30 А;
  • посудомоечная машина (2,5 кВт) - 12,5 А;
  • стиральная машина (2,5 кВт) - 12,5 А;
  • джакузи (2,5 кВт) - 12,5 А;
  • кондиционер (2,4 кВт) - 12 А;
  • СВЧ-печь (2,2 кВт) - 11 А;
  • электроводонагреватель накопительный (2 кВт) - 10 А;
  • электрочайник (1,8 кВт) - 9 А;
  • утюг (1,6 кВт) - 8 А;
  • солярий (1,5 кВт) - 7,5 А;
  • пылесос (1,4 кВт) - 7 А;
  • мясорубка (1,1 кВт) - 5,5 А;
  • тостер (1 кВт) - 5 А;
  • кофеварка (1 кВт) - 5 А;
  • фен (1 кВт) - 5 А;
  • настольный компьютер (0,5 кВт) - 2,5 А;
  • холодильник (0,4 кВт) - 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Электричество само по себе невидимо, хотя от этого его опасность ничуть не меньше. Даже наоборот: как раз потому и опаснее. Ведь если бы мы его видели, как видим, например, воду, льющуюся из крана, то наверняка бы избежали множества неприятностей.

Вода. Вот она, водопроводная труба, и вот закрытый кран. Ничего не течет, не капает. Но мы точно знаем: внутри вода. И если система исправно работает, то вода эта там находится под давлением. 2, 3 атмосферы, или сколько там? Неважно. Но давление там есть, иначе система бы не работала. Где-то гудят насосы, гонят воду в систему, создают это самое давление.

А вот наш провод электрический. Где-то далеко, на другом конце тоже гудят генераторы, вырабатывают электричество. И в проводе от этого тоже давление... Нет-нет, не давление, конечно, тут в этом проводе напряжение . Оно тоже измеряется, но в своих единицах: в вольтах.

Давит в трубах на стенки вода, никуда не двигаясь, ждет, когда найдется выход, чтобы ринуться туда мощным потоком. И в проводе молча ждет напряжение, когда замкнется выключатель, чтобы потоки электронов двинулись выполнять свое предназначение.

И вот открылся кран, потекла струя воды. По всей трубе течет, двигаясь от насоса к расходному крану. А как только замкнулись контакты выключателя, в проводах потекли электроны. Что это за движение? Это ток . Электроны текут . И это движение, этот ток тоже имеет свою единицу измерения: ампер.

И еще есть сопротивление . Для воды это, образно говоря, размер отверстия в выпускном кране. Чем больше отверстие, тем меньше сопротивление движению воды. В проводах почти также: чем больше сопротивление провода, тем меньше ток.

Вот, как-то так, если образно представлять себе основные характеристики электричества. А с точки зрения науки все строго: существует так называемый закон Ома. Гласит он следующим образом: I = U/R .
I - сила тока. Измеряется в амперах.
U - напряжение. Измеряется в вольтах.
R - сопротивление. Измеряется в омах.

Есть еще одно понятие - мощность, W. С ним тоже просто: W = U*I . Измеряется в ваттах.

Собственно, это вся необходимая и достаточная для нас теория. Из этих четырех единиц измерения в соответствии с вышеприведенными двумя формулами можно вывести некоторое множество других:

Задача Формула Пример
1 Узнать силу тока, если известны напряжение и сопротивление. I = U/R I = 220 в / 500 ом = 0.44 а.
2 Узнать мощность, если известны ток и напряжение. W = U*I W = 220 в * 0.44 а = 96.8 вт.
3 Узнать сопротивление, если известны напряжение и ток. R = U/I R = 220 в / 0.44 а = 500 ом.
4 Узнать напряжение, если известны ток и сопротивление. U = I*R U = 0.44 а * 500 ом = 220 в.
5 Узнать мощность, если известны ток и сопротивление. W = I 2 *R W = 0.44 а * 0.44 а * 500 ом = 96.8 вт.
6 Узнать мощность, если известны напряжение и сопротивление. W = U 2 /R W = 220 в * 220 в / 500 ом = 96.8 вт.
7 Узнать силу тока, если известны мощность и напряжение. I = W/U I = 96.8 вт / 220 в = 0,44 а.
8 Узнать напряжение, если известны мощность и ток. U = W/I U = 96.8 вт / 0.44 а = 220 в.
9 Узнать сопротивление, если известны мощность и напряжение. R = U 2 /W R = 220 в * 220 в / 96.8 вт = 500 ом.
10 Узнать сопротивление, если известны мощность и ток. R = W/I 2 R = 96.8 вт / (0,44 а * 0,44 а) = 500 ом.

Ты скажешь: - Зачем мне это все надо? Формулы, цифры... Я ж не собираюсь заниматься расчетами.

А я так отвечу: - Перечитай предыдущую статью . Как можно быть уверенным, не зная простейших истин и расчетов? Хотя, собственно, в бытовом практическом плане наиболее интересна только формула 7, где определяется сила тока при известных напряжении и мощности. Как правило, эти 2 величины известны, а результат (сила тока) безусловно необходим для определения допустимого сечения провода и для выбора защиты .

Есть еще одно обстоятельство, о котором следует упомянуть в контексте этой статьи. В электроэнергетике используется так называемый "переменный" ток. То есть, те самые электроны движутся в проводах не всегда в одном направлении, они постоянно меняют его: вперед-назад-вперед-назад... И эта смена направления движения - 100 раз в секунду.

Погоди, но ведь везде говорится, что частота 50 герц! Да, именно так и есть. Частота измеряется в количестве периодов за секунду, но в каждом периоде ток меняет свое направление дважды. Иначе сказать, в одном периоде две вершины, которые характеризуют максимальное значение тока (положительное и отрицательное), и именно в этих вершинах происходит смена направления.

Не будем вдаваться в подробности более глубоко, но все же: почему именно переменный, а не постоянный ток?

Вся проблема в передаче электроэнергии на большие расстояния. Тут как раз вступает в силу неумолимый закон Ома. При больших нагрузках, если напряжение 220 вольт, сила тока может быть очень большой. Для передачи электроэнергии с таким током потребуются провода очень большого сечения.

Выход здесь только один: поднять напряжение. Седьмая формула говорит: I = W/U . Совершенно очевидно, что если мы будем подавать напряжение не 220 вольт, а 220 тысяч вольт, то сила тока уменьшится в тысячу раз. А это значит, что сечение проводов можно взять намного меньше.

Поиск по сайту.
Вы можете изменить поисковую фразу.



Загрузка...