sonyps4.ru

Сила тока пропорциональна приложенному напряжению. Все виды законов ома

Закон Ома для полной цепи

Ie Dt=I2RDt+I2rDt, e=IR+Ir

Для всех зарядов:

Правило ленца:

34.

Электроли́ты -

Электро́лиз -



Законы Фарадея:

36. Электрический ток в вакууме

Описание



Термоэлектронная эмиссия

магнитным.

Основные свойства поля:

Транзистор

Фоторези́стор

Терморезистор

Закон Фарадея:

,

Правило буравчика:

Парамагнетики:

Диамагнетики:

41. Электромагнитная индукция

Закон Фарадея:

Правило Ленца:

42. Самоиндукция -

Сила тока I прямо пропорциональна напряжению U и обратно пропорциональна электрическому сопротивлению R участка цели.

30. Физический смысл удельного сопротивления в СИ: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 м².

Выражается в Ом·mm²/м

Обозначается символом ρ

Зависимость сопротивления проводника от его физических размеров,рода вещества и от температуры: Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры; изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

где ρ0, ρt - удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R0, Rt - сопротивления проводника при 0 °С и t °С, α - температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К-1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура).

31. Правила расчёта эквивалентного сопротивления напряжения и силы тока при последовательном и параллельном соединении потребители тока: В последовательное соединение в цепях переменного тока кроме резисторов могут входить реактивные элементы - индуктивности и емкости.

Пользуясь понятием потенциала, падение напряжения на последовательном соединении (рис. 1) можно представить суммой падений напряжений на отдельных элементах

Последовательное соединение не содержит узлов, поэтому по всем его элементам протекает одинаковый ток. Пусть этот ток равен i=Imsinwt, тогда, с учетом выражений для падения напряжения на реактивных элементах, выражение (1) преобразуется к виду

Таким образом, в случае заданного значения частоты последовательное соединение можно представить последовательным соединением резистора, реактивного элемента и источника ЭДС, параметры которых определяются по выражениям (3), (4), (6) и (7). Резистор, реактивный элемент и источник ЭДС являются минимальным набором элементов, с помощью которых можно представить последовательное соединение. При наличии в цепи реактивных элементов обоих типов (индуктивности и емкости) в минимальном наборе элементов (минимальной эквивалентной схеме) будет присутствовать только один из них.

При отсутствии каких-либо элементов в исходной схеме, например резисторов или источников ЭДС, будут отсутствовать и соответствующие компоненты эквивалентного представления.

32. Роль источника в электрической цепи : 1. Источник тока в электрической цепи осуществляет генерацию тока, не зависящего от сопротивления нагрузки.

2. Электродвижущая сила (ЭДС) - характеристика способности сторонних сил создавать большую или меньшую разность потенциалов на полюсах источника тока. Физический смысл ЭДС - электродвижущая сила равна работе сторонних сил по перемещению единичного заряда.

Природа сторонних сил: Природа сторонних сил может быть самой разной, но она должна быть «сторонней» - не электростатической. Отсюда следует, что

Сторонние силы не действуют на электрический заряд. В зависимости от их физической природы сторонние силы могут действовать на другие свойства заряженных частиц - массу, форму, размер, плотность, их коллективные свойства - концентрацию и пр.

Подавляющее большинство сторонних сил имеет не «полевой» характер. Поэтому описывать действие этих сил как проявление некоторого «поля сторонних сил» нежелательно. Если это представление все же используется, то необходимо учитывать, что «пробными телами» в этих «полях» служат не электрические, а другие «заряды» (см. текст к формуле (1)).

Действие сторонних сил всегда сопровождается генерацией электрической энергии - образованием разности потенциалов на некоторых разнесенных (проводящих) телах - «клеммах» генератора, на которых электрические заряды концентрируются. Поэтому

Сторонние силы «работают» лишь внутри генератора. Вне генератора на заряженные частицы действуют электростатические (потенциальные) силы.

Закон Ома для полной цепи

AСТ=Ie D t - работа сторонних сил, так как q=IDt,

AСТ=I2RDt+I2rDt - полная работа сторонних сил.

Ie Dt=I2RDt+I2rDt, e=IR+Ir

Сила тока в замкнутой цепи прямо пропорционально ЭДС источника тока и обратно пропорциональна сумме внешнего и внутреннего сопротивления.

33. Формулы для работы тока на участке цепи и мощности электрического тока:

Для единичного заряда на участке A-B:

Для всех зарядов:

Поскольку ток есть ничто иное, как количество зарядов в единицу времени, то есть

по определению, в результате получаем:

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формулам:

Правило ленца: возникающие в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока которым он вызван.

Основные причины короткого замыкания и возгорания в бытовых условиях:

эксплуатация мощной техники, подключенной к розеткам, которые установлены в помещениях с повышенной влажностью;

плохой контакт штепселя с розеткой, приводящий в процессе использования к образованию высоких температур;

установка электротехнического оборудования, не соответствующего мощности используемых приборов;

прямой контакт проводов из разнородных материалов, который приводит к нагреванию смежных участков даже при нормальных электрических нагрузках;

скачок нагрузки в электросети;

плохая изоляция электропроводки;

наличие в домах грызунов, разрушающих электроизоляцию

34. Условия прохождения тока в жидкостях: Жидкости, как и твердые тела, могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам - растворы и расплавы электролитов: кислот, щелочей и солей. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов и др.

Электроли́ты - вещества, расплавы или растворы которых проводят электрический ток вследствие диссоциации на ионы, однако сами вещества не проводят электрический ток.

Электролитическая диссоциация - процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении.

Электро́лиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Законы Фарадея: Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорционально эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

35. Электрический ток в газах - это направленное движение ионов и электронов.

Электрический ток в газах называется газовым разрядом.

Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к катоду, и потока, направленного к аноду.

В газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов или расплавов электролитов.

Таким образом, проводимость газов имеет ионно-электронный характер.

Несамостоятельный разряд - это разряд, который зависит от наличия ионизатора.

Все газовые разряды делятся на два основных вида:

1. Несамостоятельный газовый разряд возникает в приборе при действии внешних (сторонних) ионизаторов. Этот разряд в свою очередь разделяется на несколько подвидов:

а) тихий разряд (возникает при воздействии на прибор ряда естественных ионизаторов: космических лучей, радиации земной коры, активной деятельности солнца и т. д.);

36. Электрический ток в вакууме

Движение заряженных свободных частиц, полученных в результате эмиссии, в вакууме под действием электрического поля

Описание

Для получения электрического тока в вакууме необходимо наличие свободных носителей. Получить их можно за счет испускания электронов металлами - электронной эмиссии (от латинского emissio - выпуск).

Как известно, при обычных температурах электроны удерживаются внутри металла, несмотря на то, что они совершают тепловое движение. Следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Это силы, возникающие вследствие притяжения между электронами и положительными ионами кристаллической решетки. В результате в поверхностном слое металлов появляется электрическое поле, а потенциал при переходе из внешнего пространства внутрь металла увеличивается на некоторую величину Dj. Соответственно потенциальная энергия электрона уменьшается на eDj.

Термоэлектронная эмиссия - это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергиям) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным.

В основе принципа действия полупроводникового диода - свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном - при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт.

37. Вокруг проводника с током в пространстве возникает поле наз-е магнитным.

Основные свойства поля:

Магнитное поле порождается электрическим полем

Магнитное поле определяется под действием на электрический ток

Вектор магнитной индукции и линии магнитной индукции:

В – (вектор магнитной индукции) это кол-ая характеристика магнитного поля.

За направление В принимается направ-е от южного полюса S к северному N магнитной стрелки к N сводно устанавливающийся в магнитном поле.

38. Электрический ток через контакт полупроводников p и n-типа.

При образовании контакта полупроводников p и n-типа происходит диффузия, часть электронов перейдут а полупроводник в n-типа. Возникшее эл поле препятствует перемещению.

Диод- это прибор для выпрямления эл тока.

Транзистор состоит из 2-х полупроводников p-типа между ними прослойка из примеси n-типа толщина прослоек примерно Мкм в транзисторе 3 выхода, из каждой части. Транзистор подключается в сеть так, что левый p n переход яв-ся прямым.

Фоторези́стор - полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом.

Важнейшие параметры фоторезисторов:

интегральная чувствительность - отношение изменения напряжения на единицу мощности падающего излучения (при номинальном значении напряжения питания);

порог чувствительности - величина минимального сигнала, регистрируемого фоторезистором, отнесённая к единице полосы рабочих частот.

Терморезистор - полупроводниковый резистор, электрическое сопротивление которого существенно зависит от температуры.

39. Взаимодействие параллельных токов

Закон Фарадея:

,

где µ - магнитная характеристика среды, называемая магнитной проницаемостью.

Направление токов влияет на силу взаимодействия.

По аналогии с электростатикой, где сила определяет напряженность, а напряженность - индукцию, в магнетизме напряженность и индукция - силовые характеристики. Принято в электростатике основной силовой характеристикой считать напряженность, а в магнетизме - индукцию.

Правило буравчика:

Если ток направлен по закрутке буравчика, то шляпка вращается по силовой линии. В каждой точке пространства направление силовых линий совпадает с направление касательной. Таким образом, силовые линии магнитного поля являются замкнутыми.

40. Существует несколько типов взаимодействия материалов с магнитным полем, в том числе:

Ферромагнетики и ферримагнетики: материалы которые, обычно, и считаются «магнитными»; они притягиваются к магниту достаточно сильно, так что притяжение ощущается. Только эти материалы могут сохранять намагниченность и стать постоянными магнитами. Ферримагнитные материалы, сходны, но слабее, чем ферромагнетики. Различие между ферро- и ферримагнитными материалами, связаны с их микроскопической структурой.

Парамагнетики: вещества, такие, как платина, алюминий, и кислород которые слабо притягиваются к магниту. Этот эффект в сотни тысяч раз слабее, чем притяжение ферромагнитных материалов, поэтому оно может быть обнаружено только с помощью чувствительных инструментов, либо с помощью очень сильных магнитов.

Диамагнетики: вещества, намагничивающиеся против направления внешнего магнитного поля. По сравнению с парамагнитными и ферромагнитными веществами, диамагнитные вещества, такие как углерод, медь, вода и пластики ещё слабее отталкиваются от магнита. Проницаемость диамагнитных материалов меньше проницаемости вакуума. Все вещества, не обладающие одним из других типов магнетизма, являются диамагнитными; к ним относится большинство веществ. Силы, действующие на диамагнитные объекты от обычного магнита, слишком слабы. Однако в сильных магнитных полях сверхпроводящих магнитов диамагнитные материалы, например, кусочки свинца, могут парить. Ну, а поскольку углерод и вода являются веществами диамагнитными, то в мощном магнитном поле могут парить даже и органические объекты. Например, живые лягушки и мыши.

41. Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Закон Фарадея: Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур.

Правило Ленца: возникающие в замкнутом котуре индуктивный ток своим магнитным полем противодействует тому изменению магнитного потока которым он вызван.

Если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет электродвижущая сила, называемая ЭДС индукции. ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями. Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током. Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией. Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

42. Самоиндукция - возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру.

Индукти́вность (или коэффициент самоиндукции) - коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.Возникающая при этом ЭДС называется ЭДС самоиндукции

Если изолированный проводник поместить в электрическое поле \(\overrightarrow{E} \), то на свободные заряды \(q\) в проводнике будет действовать сила \(\overrightarrow{F} = q\overrightarrow{E}\) В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю.

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда.

Направленное движение заряженных частиц называется электрическим током.

За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока \(I\) - скалярная физическая величина, равная отношению заряда \(\Delta q\), переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени \(\Delta t\), к этому интервалу времени:

$$I = \frac{\Delta q}{\Delta t} $$

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

В Международной системе единиц СИ сила тока измеряется в Амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током.

Постоянный электрический ток может быть создан только в замкнутой цепи , в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения . Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы \(A_{ст}\) сторонних сил при перемещении заряда \(q\) от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

$$ЭДС=\varepsilon=\frac{A_{ст}}{q}. $$

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в Вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными . Участки, включающие источники тока, называются неоднородными .

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов \(\Delta \phi_{12} = \phi_{1} - \phi_{2}\) между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе \(\mathcal{E}\), действующей на данном участке. Поэтому полная работа равна

$$U_{12} = \phi_{1} - \phi_{2} + \mathcal{E}$$

Величину U 12 принято называть напряжением на участке цепи 1-2. В случае однородного участка напряжение равно разности потенциалов:

$$U_{12} = \phi_{1} - \phi_{2}$$

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока \(I\), текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению \(U\) на концах проводника:

$$I = \frac{1}{R} U; \: U = IR$$

где \(R\) = const.

Величину R принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит Ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока \(I\) от напряжения \(U\) (такие графики называются вольт-амперными характеристиками , сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

$$IR = U_{12} = \phi_{1} - \phi_{2} + \mathcal{E} = \Delta \phi_{12} + \mathcal{E}$$
$$\color{blue}{I = \frac{U}{R}}$$

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи .

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи (cd ) является однородным.

Рисунок 1.8.2.

Цепь постоянного тока

По закону Ома

$$IR = \Delta\phi_{cd}$$

Участок (ab ) содержит источник тока с ЭДС, равной \(\mathcal{E}\).

По закону Ома для неоднородного участка,

$$Ir = \Delta \phi_{ab} + \mathcal{E}$$

Сложив оба равенства, получим:

$$I(R+r) = \Delta\phi_{cd} + \Delta \phi_{ab} + \mathcal{E}$$

Но \(\Delta\phi_{cd} = \Delta \phi_{ba} = -\Delta \phi_{ab}\).

$$\color{blue}{I=\frac{\mathcal{E}}{R + r}}$$

Эта формула выражает закон Ома для полной цепи : сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи (внутреннего сопротивления источника).

Сопротивление r неоднородного участка на рис. 1.8.2 можно рассматривать как внутреннее сопротивление источника тока . В этом случае участок (ab ) на рис. 1.8.2 является внутренним участком источника. Если точки a и b замкнуть проводником, сопротивление которого мало по сравнению с внутренним сопротивлением источника (\(R\ \ll r\)), тогда в цепи потечет ток короткого замыкания

$$I_{кз}=\frac{\mathcal{E}}{r}$$

Сила тока короткого замыкания - максимальная сила тока, которую можно получить от данного источника с электродвижущей силой \(\mathcal{E}\) и внутренним сопротивлением \(r\). У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

В ряде случаев для предотвращения опасных значений силы тока короткого замыкания к источнику последовательно подсоединяется некоторое внешнее сопротивление. Тогда сопротивление r равно сумме внутреннего сопротивления источника и внешнего сопротивления, и при коротком замыкании сила тока не окажется чрезмерно большой.

Если внешняя цепь разомкнута, то \(\Delta \phi_{ba} = -\Delta \phi_{ab} = \mathcal{E}\), т. е. разность потенциалов на полюсах разомкнутой батареи равна ее ЭДС.

Если внешнее нагрузочное сопротивление R включено и через батарею протекает ток I , разность потенциалов на ее полюсах становится равной

$$\Delta \phi_{ba} = \mathcal{E} - Ir$$

На рис. 1.8.3 дано схематическое изображение источника постоянного тока с ЭДС равной \(\mathcal{E}\) и внутренним сопротивлением r в трех режимах: «холостой ход», работа на нагрузку и режим короткого замыкания (к. з.). Указаны напряженность \(\overrightarrow{E}\) электрического поля внутри батареи и силы, действующие на положительные заряды:\(\overrightarrow{F}_{э}\) - электрическая сила и \(\overrightarrow{F}_{ст}\) - сторонняя сила. В режиме короткого замыкания электрическое поле внутри батареи исчезает.

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы - вольтметры и амперметры .

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением \(R_{В}\). Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Для цепи, изображенной на рис. 1.8.4, это условие записывается в виде:

$$R_{В} \gg R_{1}$$

Это условие означает, что ток \(I_{В} = \Delta \phi_{cd} / R_{В}\), протекающий через вольтметр, много меньше тока \(I = \Delta \phi_{cd} / R_{1}\), который протекает по тестируемому участку цепи.

Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением \(R_{А}\). В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи. Для цепи на рис. 1.8.4 сопротивление амперметра должно удовлетворять условию

$$R_{А} \ll (r + R_{1} + R{2})$$

чтобы при включении амперметра ток в цепи не изменялся.

Измерительные приборы - вольтметры и амперметры - бывают двух видов: стрелочные (аналоговые) и цифровые. Цифровые электроизмерительные приборы представляют собой сложные электронные устройства. Обычно цифровые приборы обеспечивают более высокую точность измерений.

Закон Ома для участка цепи – полученный экспериментальным (эмпирическим) путём закон, который устанавливает связь силы тока на участке цепи с напряжением на концах этого участка и его сопротивлением. Строгая формулировка закона Ома для участка цепи записывается так: сила тока в цепи прямо пропорциональна напряжению на её участке и обратно пропорциональна сопротивлению этого участка.

Формула закона Ома для участка цепи записывается в следующем виде:

I – сила тока в проводнике [А];

U – электрическое напряжение (разность потенциалов) [В];

R – электрическое сопротивление (или просто сопротивление) проводника [Ом].

Исторически сложилось, что сопротивление R в законе Ома для участка цепи считается основной характеристикой проводника, так как зависит исключительно от параметров этого проводника. Необходимо отметить, что закон Ома в упомянутой форме справедлив для металлов и растворов (расплавов) электролитов и только для тех цепей, где нет реального источника тока или источник тока является идеальным. Идеальный источник тока – это такой источник, который не обладает собственным (внутренним) сопротивлением. Подробнее с законом Ома в применении к цепи с источником тока можно познакомится в нашей статье. Условимся считать положительным направлением слева направо (см. рисунок ниже). Тогда напряжение на участке равно разности потенциалов.

φ 1 - потенциал в точке 1 (в начале участка);

φ 2 - потенциал в точке 2 (а конце участка).

Если выполняется условие φ 1 > φ 2 , то напряжение U > 0. Следовательно, линии напряженности в проводнике направлены от точки 1 к точке 2, а значит и ток течет в этом направлении. Именно такое направление тока будем считать положительным I > O.

Рассмотрим простейший пример определения сопротивления на участке цепи с помощью закона Ома. В результате эксперимента с электрической цепью амперметр (прибор, который показывает силу тока) показывает, а вольтметр. Необходимо определить сопротивление участка цепи.

По определению закона Ома для участка цепи

Изучая закон Ома для участка цепи в 8 классе школы, учителя часто задают ученикам следующие вопросы, чтобы закрепить пройденный материал:

Между какими величинами Закон Ома для участка цепи устанавливает зависимость?

Правильный ответ: между силой тока [I], напряжением [U] и сопротивлением [R].

Отчего кроме напряжения зависит сила тока?

Правильный ответ: От сопротивления

Как зависит сила тока от напряжения проводника?

Правильный ответ: Прямо пропорционально

Как зависит сила тока от сопротивления?

Правильный ответ: обратно пропорционально.

Данные вопросы задают для того, чтобы в 8 классе ученики смогли запомнить закон Ома для участки цепи, определение которого гласит, что сила тока прямо пропорциональна напряжению на концах проводника, если при этом сопротивление проводника не меняется.

Измерение сопротивления проводника: R =U/I→ 1 Ом = 1 В/1 А.

Электрическое сопротивление (R) - свойство электри­ческой цепи (проводника) противодействовать протекающему по ней электрическому току, измеряемое при постоянном напряжении на его концах отношением этого напряжения к силе тока.

Природа электрического сопротивления на основе электронных представ­лений о строении вещества: "потеря" упорядоченного движения свобод­ными заряженными частицами в проводнике при их взаимодействии с ионами кристаллической решетки.

Зависимость электрического сопротивления проводника от его длины (реостаты), поперечного сечения и материала. Удельное сопротивление материала проводника: .

Вопрос : Почему сопротивление проводника зависит от его длины, площа­ди поперечного сечения и материала?

Для провода = , где - удельная электрическая проводимость.

- (закон Ома в дифференциальной форме) - устанавливает связь между величинами для каждой точки проводника.

Демонстрация зависимости сопротивления проводника от его температуры (малый накал). Температурный коэффициент сопротивления.

Границы применимости закона Ома.

IV. Задачи:

  1. Определите электрический заряд, прошедший через попереч­ное сечение проводника сопротивлением 3 Ом при равномерном нарастании напряжения на концах проводника от 2 В до 4 В в течение 20 с.

2. Определить площадь поперечного сечения и длину проводник из алюминия, если его сопротивление 0,1 Ом, а масса 54 г.

Вопросы:

1. Объясните, позему сопротивление проволоки зависит от его материала, длины и площади поперечного сечения.

2. Как отрезать кусок провода сопротивлением 5 Ом?

3. Длину медной проволоки вытягиванием увеличили вдвое. Как измени­лось ее сопротивление?

4. Почему сопротивление кожи человека зависит от ее состояния, площади контакта, приложенного напряжения, длительности протекания тока?

5. Изменится ли сопротивление вольфрамового волоска электрической лампы, рассчитанной на 120 В, если присоединить ее к источнику тока с напряжением 4 В?

6. Высота плотины – электрическое напряжение, расход воды из отверстия у основании плотины – сила тока. Удачна ли эта аналогия?


V . § 54 Упр. 10 № 3

1. Предложите конструкцию и рассчитайте параметры реостата (материал провода, длина, площадь поперечного сечения), сопротивление которого можно плавно изменять от 0 до 100 Ом при максимальной силе электри­ческого тока до 2 А.

2. Как изменяется сопротивление проволоки при ее растяжении? Попробуйте установить эту зависимость в пределах упругих деформаций. Предложите конструкцию и рассчитайте параметры прибора (тензодатчика), пред­назначенного для измерения механического напряжения.

Дополнительная информация: Тензорезистивный эффект – изменение сопротивления материала при деформации (недавно созданные материалы из алюминия и кремния изменяют свое сопротивление при ударе почти в 900 раз).

3. Предложите конструкцию и опишите электрическую схему прибора для установления зависимости удельного сопротивления проводника от температуры (можно с реостатом).

4. Измерьте удельное сопротивление воды при комнатной температуре и при температуре кипения.

"Непосредственный опыт всегда очевиден, и из него в кратчайшее время можно извлечь пользу".

ЛАБОРАТОРНАЯ РАБОТА № 3 "ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ МАТЕРИАЛА ПРОВОДНИКА"

ЦЕЛЬ РАБОТЫ: Научить учеников с заданной точностью измерять удельное сопротивление материала проводника.

ТИП УРОКА: лабораторная работа.

ОБОРУДОВАНИЕ: Источник тока, амперметр и вольтметр лабораторные, ключ, реостат, линейка ученическая, проводник на колодке, соединительные провода, штангенциркуль (микрометр).

ПЛАН УРОКА: 1. Вступительная часть 1-2 мин

2. Вводный инструктаж 5 мин

3. Выполнение работы 30 мин

4. Задание на дом 2-3 мин

II . Схема лабораторной установки на доске. Как измерить сопротивление проводника; площадь поперечного сечения проволоки; длину проводника?

Относительная и абсолютная погрешность при измерении удельного сопротивления:

III . Выполнение работы.

В природе существует два основных вида материалов, проводящие ток и не проводящие (диэлектрики). Отличаются эти материалы наличием условий для перемещения в них электрического тока (электронов).

Из токопроводящих материалов (медь, алюминий, графит, и многие другие), делают электрические проводники, в них электроны не связаны и могут свободно перемещаться.

В диэлектриках электроны привязаны к атомам намертво, поэтому ток в них течь не может. Из них делают изоляцию для проводов, детали электроприборов.

Для того чтобы электроны начали перемещаться в проводнике (по участку цепи пошел ток), им нужно создать условия. Для этого в начале участка цепи должен быть избыток электронов, а в конце – недостаток. Для создания таких условий используют источники напряжения – аккумуляторы, батарейки, электростанции.

В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.

Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.

Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.

Где I – сила тока, измеряется в амперах и обозначается буквой А ; U В ; R – сопротивление, измеряется в омах и обозначается .

Если известны напряжение питания U и сопротивление электроприбора R , то с помощью выше приведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I .

С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.

Применение закона Ома на практике

На практике часто приходится определять не силу тока I , а величину сопротивления R . Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R , зная протекающий ток I и величину напряжения U .

Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.

Формула Закона Джоуля-Ленца

Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца .

Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

где P – мощность, измеряется в ваттах и обозначается Вт ; U – напряжение, измеряется в вольтах и обозначается буквой В ; I – сила ток, измеряется в амперах и обозначается буквой А .

Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала .

Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

Преобразованные формулы Закона Ома и Джоуля-Ленца

Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой несвязанные между собой четыре сектора и очень удобна для практического применения

По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.



Загрузка...