sonyps4.ru

Математическая модель дискретного канала связи презентация. Модели каналов передачи информации

В дискретном канале всегда содержится непрерывный канал, а также модем. Последний можно рассматривать как устройство, преобразующее непрерывный канал в дискретный. Поэтому, в принципе можно вывести математическую модель дискретного канала из моделей непрерывного канала и модема. Такой подход часто является плодотворным, однако он приводит к сложным моделям.

Рассмотрим простые модели дискретного канала, при построении которых свойства непрерывного канала и модема не учитывались. Для модели дискретного канала входным и выходным сигналами являются последовательности кодовых символов. Поэтому для определения возможных входных сигналов достаточно указать число m различных символов, из которых формируется последовательность (основание кода), а также длительность передачи каждого символа. Будем считать значение одинаковым для всех символов, что выполняется в большинстве современных каналов. Величина определяется количеством символов, передаваемых в единицу времени. Она называется технической скоростью и измеряется в бодах. Каждый символ, поступивший на вход канала, вызывается появление одного символа на выходе, так что техническая скорость на входе и выходе канала одинакова.

При подаче на вход канала любой заданной последовательности кодовых символов, на выходе появится некоторая реализация случайной последовательности . Кодовые символы обозначим числами от 0 до m-1.

Введем еще одно определение. Будем называть вектором ошибки поразрядную разность (разумеется, по модулю m) между принятой и переданной кодовыми последовательностями (векторами)). Это значит, что прохождение дискретного сигнала через канал можно рассматривать как сложение входного вектора с вектором ошибки. Вектор ошибки играет в дискретном канале примерно ту же роль, что и помеха в непрерывном канале. Таким образом, для любой модели дискретного канала можно записать, пользуясь сложением в векторном пространстве (поразрядным, по модулю m):

(1.4)

где и - случайные последовательности из n символов на входе и выходе канала; -случайный вектор ошибки. Различные модели отличаются распределением вероятностей вектора . Смысл вектора ошибки особенно прост в случае двоичных каналов (m=2), тогда его компоненты принимают значение 0 и 1. Всякая единица в векторе ошибок означает, что в соответствующем месте передаваемой последовательности символ принят ошибочно, а всякий нуль означает безошибочный приём символа. Число ненулевых символов в векторе ошибок называется его весом.

Перечислим наиболее важные и достаточно простые модели дискретных каналов

1) Симметричный канал без памяти определяется как дискретный канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью p и правильно с вероятностью 1-p, причем в случай ошибки вместо переданного символа в может быть с равной вероятностью принят любой другой символ. Таким образом, вероятность того, что принят символ , если был передан


(1.5)

Термин «без памяти» означает, что вероятность ошибочного приема символа не зависит от предыстории, т.е. от того, какие символы передавались до него и как они были приняты.

Очевидно, что вероятность любого n – мерного вектора ошибки в таком канале

где -число ненулевых символов в векторе ошибки (вес вектора ошибки). Вероятность того, что произошло каких угодно ошибок, расположенных как угодно на протяжении последовательности длинноq n, определяется формулой Бернулли:

(1.7)

где -биномиальный коэффициент, равный числу различных сочетаний l ошибок в блоке длиной n.

Эту модель называют также биноминальным каналом. Она удовлетворительно описывает канал, возникающий при определенном выборе модема, если в непрерывном канале, отсутствуют замирания, а аддитивный шум белый (или, по крайней мере, квазибелый). Вероятности переходов показаны в виде графа на рис. а:

2) симметричный канал без памяти со стиранием отличается от предыдущего тем, что алфавит на выходе канала содержит, дополнительный (m+1)-u символ, обозначаемый знаком «?».

Этот символ появляется тогда, когда 1-я решающая схема (демодулятор) не может надежно опознать переданный символ. Вероятность такого отказа от решения или стирания символа в данной модели постоянна и не зависит от передаваемого символа. За счет введения стирания удается значительно снизить вероятность ошибки, иногда ее даже считают равной нулю. На рис. б) схематически показаны вероятности переходов в такой модели.

3) Несимметричный канал без памяти характеризуется, как и предыдущие модели, тем, что ошибки возникают в нем независимо друг от друга, однако вероятности ошибок зависят от того, какой символ передается. Так, в двоичном несимметричном канале вероятность р (1/0) приема символа «1» при передаче символа «0» не равна вероятности р (0/1) приема «0» при передаче»1» (рис. в)).

4) Марковский канал представляет собой простейшую модель дискретного канала с памятью. В ней вероятность ошибки образует простую цепь Маркова, т.е. зависит от того, правильно или ошибочно принят предыдущий символ, но не зависит от того, какой символ передается. Такой канал, например, возникает, если в непрерывном канале с гауссовским шумом используется ОФМ.

5) Канал с аддитивным дискретным шумом. Является обобщением моделей симметричных каналов. В такой модели вероятность вектора ошибки не зависит от передаваемой последовательности. Вероятность, каждого вектора ошибки считается заданной. Имеется тенденция к тому, что в векторе ошибки единицы расположены близко друг к другу, то есть группированию ошибок.

Раздел 2 Основные положения теории передачи информации

В общем случае каналы классифицируются по характеру входного и выходного сигналов. Канал называют непрерывным (по уровням сигналов), если множество сигналов на входе и выходе является несчетным. Если множество сигналов с дискретным временем на входе и выходе является конечным (по уровням), канал называется дискретным. Канал называют полунепрепрывным, если он является дискретным по входу и непрерывным по выходу.

Радиоканалы, содержащие в своем составе радиолинию - открытое пространство, в принципе являются непрерывными каналами. Реальные радиоканалы отличаются большим разнообразием с точки зрения их свойств и характеристик. В целях упрощения задачи определения статистических характеристик сигналов, наблюдаемых на выходах каналов, во многих случаях целесообразно использовать типичные модели реальных каналов, отображающих их наиболее существенные свойства. Для задания математической модели достаточно указать ограничения, накладываемые на множество возможных входных сигналов и, что особенно существенно, вероятностные характеристики выходных колебаний.

Модели непрерывного канала

Рассмотрим вначале наиболее типичные и широко используемые модели непрерывных каналов. Эти модели представляют интерес при передаче сигналов, как от непрерывных, так и дискретных источников. Далее будем полагать, что все модели представляют каналы с аддитивным гауссовским шумом n(t) , имеющим нулевое математическое ожидание и заданную корреляционную функцию. Наиболее типичной является модель с белым шумом, аппроксимирующим тепловой флуктуационный шум, неизбежно присутствующий во всех реальных каналах.

Канал с точно известным сигналом. Сигнал на выходе канала представляет собой

Предполагается, что форма сигнала s(t) , множитель интенсивности А и задержка известны (в частности , что соответствует изменению начала отсчета времени на выходе канала). Здесь распределение сигнала х является гауссовским. Эта модель применима для РЛС в идеализированных условиях, когда дальность, скорость и ЭПР объекта являются постоянными. Она также может быть использована для аппроксимации радиотелеграфных каналов спутниковой связи, а также для радиоканалов с медленно меняющимися параметрами, для которых значения А и могут быть предсказаны с достаточной точностью.

Канал со случайной фазой сигнала. В отличие от предыдущего задержка является случайной величиной. Для узкополосных сигналов s(t) с центральной частотой спектра выражение для выходного сигнала представляется в виде

где и - функции, сопряженные по Гильберту; - случайная начальная фаза. Как правило, предполагается, что фаза является равномерно распределенной в интервале . Эта модель может быть использована для тех же каналов, что и предыдущая, если начальная фаза сигналов на выходе канала по тем или иным причинам флуктуирует (нестабильность частоты генераторов, флуктуации протяженности пути распространения сигналов).

В каналах радиосвязи со случайной фазой нередко случайной является также и амплитуда А . При рэлеевских изменениях амплитуды и равновероятной фазе квадратурные компоненты и являются гауссовскими случайными величинами. При точно известном сигнале s(t) рассматриваемый канал может быть назван гауссовским каналом с квазидетерминированпным сигналом, т. е. сигналом известной формы, конечное число параметров которого являются случайными.

Радиотелеграфный канал с межсимвольной интерференцией. Межсимвольная интерференция радиотелеграфных сигналов является следствием рассеяния сигналов во времени. Она проявляется в том, что полезный сигнал на выходе канала, описываемый общим выражением вида

является результатом суперпозиции откликов канала на воздействие сигналов одной и той же формы, поступающих в канал с различной задержкой во времени. Межсимвольная интерференция прежде всего является следствием нелинейности фазочастотной характеристики канала передачи. В радиоканалах различных диапазонов волн причиной возникновения межсимвольной интерференции часто является многолучевое распространение радиоволн.

Канал с квазидетерминированным сигналом и посторонними мешающими воздействиями. В канале на фоне белого гауссовского шума присутствуют сигнал известной формы со случайными параметрами и совокупность мешающих сигналов ,так что выходной сигнал представляется в виде

Эта модель применима для радиоканалов передачи сигналов от источников дискретных сообщений в условиях сильной перегрузки канала посторонними сигналами с одинаковой структурой, а также в условиях создания активных преднамеренных помех.

Гауссовский канал со случайным сигналом . Сигнал на выходе канала представляется в виде

где и шум и сигнал представляют собой случайные процессы. Нередко предполагается, что сигнал S и, следовательно, х распределены по гауссовскому закону. В некоторых случаях гауссовская модель удовлетворительно описывает каналы передачи сообщений от непрерывных источников с применением амплитудной модуляции.

Канал со структурно-детерминированным сигналом и посторонними мешающими воздействиями . Под структурно-детерминированным сигналом понимается радиосигнал , характеристики переносчика и вид модуляции которого известны, в то время как модулирующий сигнал A(t) является непрерывным случайным процессом с известными статистическими характеристиками. В общем случае сигнал на выходе канала может быть представлен в виде

Рассматриваемая модель отличается от модели канала с квазидетерминированными сигналами только характером множества случайных параметров, закодированных в радиосигналах известной структуры и формы.

Модели дискретного канала

Модели дискретного канала при теоретическом исследовании радиосистем представляют существенный интерес, поскольку помехоустойчивость систем в условиях воздействия интенсивных помех в значительной мере определяется способами кодирования и декодирования модулирующих и демодулированных сигналов. При решении указанных задач целесообразно использовать простые модели дискретного канала, при построении которых свойства непрерывного канала непосредственно не учитываются. В дискретном канале входными и выходными сигналами являются последовательности импульсов, представляющих поток кодовых символов. Поэтому в модели дискретного канала наряду с ограничениями на параметры множества возможных сигналов на входе достаточно указать распределение условных вероятностей выходного сигнала при заданном входном. Для определения множества входных сигналов достаточно указать число m различных символов, число n импульсов в последовательности и, если это необходимо, длительность T in и T out каждого импульса на входе и выходе канала. Как правило, эти длительности одинаковы, так что одинаковыми являются и длительности любых n -последовательностей на входе и выходе. Вследствие воздействия помех в канале последовательности импульсов на входе и выходе канала могут оказаться различными. В общем случае для любого n необходимо указать вероятность того, что при передаче некоторой последовательности В на выходе появится конкретная реализация случайной последовательности В .

Рассматриваемые здесь n -последовательности можно представлять векторами в m n -мерном эвклидовом пространстве, в котором операции «сложения» и «вычитания» понимаются как поразрядное суммирование по модулю m и аналогично определяется умножение на целое число. В этом пространстве целесообразно ввести в рассмотрение «вектор ошибки» Е , под которым следует понимать поразрядную разность между входным (переданным) и выходным (принятым) векторами, или иначе, представлять принятый вектор в виде суммы переданного и вектора ошибки: , где случайный вектор ошибки Е в определенном смысле играет роль помехи n(t) в модели непрерывного канала. Различные модели дискретного канала отличаются распределением вероятностей вектора ошибки. В общем случае распределение вероятностей Е может зависеть от реализации вектора . Вектор ошибки приобретает особенно наглядное толкование в случае двоичного канала, когда m = 2. Появление символа 1 в любом месте вектора ошибки свидетельствует о наличии ошибки в соответствующем разряде переданной n -последовательности. Число ненулевых символов в векторе ошибки называют весом вектора ошибки.

Наиболее простой моделью дискретного канала является симметричный канал без памяти. Таковым является канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью р и правильно с вероятностью q = 1 - р , причем в случае ошибки вместо переданного символа может быть с равной вероятностью принят любой другой символ , т. е.

> (2.13)

Термин «без памяти» означает, что вероятность появления ошибки в любом разряде n-последовательности не зависит от того, какие символы передавались до этого разряда и как они были приняты.

Вероятность появления какого-либо n -мерного вектора ошибки веса l в этом канале равна

Вероятность того, что произошло l любых ошибок, расположенных произвольным образом на протяжении n -последовательности, определяется законом Бернулли

(2.14)

где - биноминальный коэффициент (число различных сочетаний l ошибок в n -последовательности).

Модель симметричного канала без памяти (биномиального канала) является хорошей аппроксимацией канала с аддитивным белым шумом при неизменном множителе интенсивности сигнала. Рис. 1,а демонстрирует граф, отображающий вероятности переходов в двоичном симметричном канале без памяти.

В несимметричном канале без памяти ошибки возникают также независимо друг от друга, однако вероятности перехода символов 1 в 0 и обратно при прохождении сигнала в канале являются различными. Соответствующий граф переходных вероятностей в этом канале представлен на рис. 1 ,б.

Дискретный канал связи (ДКС) имеет на входе множество символов кода X с энтропией источника Н(Х) , а на выходе - множество символов Y с энтропией H(Y) (рис. 42).

Если формируемые символы из множества X и вы­являемые из множества Y расположить в узлах графа, соединив эти узлы дугами, отображающими вероятности перехода одного сим­вола в другой, то получим модель дискретного канала связи, пред­ставленную на рис. 43.

Множество символов X конечно и определя­ется основанием системы счисления кода К х на входе канала. Систе­ма счисления по выявляемым символам также конечна и составляет К у . Вероятности переходов, связывающих входные и выходные сим­волы, могут быть записаны в виде матрицы

В этой матрице i-й столбец определяет вероятность выявления выходе дискретного канала связи символа у i . Вероятности, рас положенные на главной диагонали, называются вероятностями прохождения символов, остальные вероятности есть вероятность трансформации. Анализ модели дискретного канала связи возможен, если известна статистика появления символов на входе канала. Тогда может быть определена энтропия Н(Х) . Если известна стати­стика символов на выходе канала, то нетрудно установить энт­ропию Н(Y) . Потери информации могут быть вызваны действием помех, которые отображаются в дискретном канале в виде некото­рого потока ошибок. Поток ошибок задается с помощью опреде­ленной модели ошибок, на основании которой может быть установ­лена матрица Р . Зная эту матрицу, находят условную энтропию , которая, как выше показано, отображает потери инфор­мации при прохождении ее по каналу связи. В данном случае - это потери информации из-за действия ошибок в диск­ретном канале связи. Исходя из модели дискретного канала связи, можно выполнить классификацию дискретных каналов.

По основанию системы счисления коды на входе ДКС различают двоичные, троичные, четверичные каналы связи и дру­гие.

По соотношению системы счисления на выходе и на входе ДКС выделяют каналы со стиранием, если К у >К х , и каналы без стирания, если К у =К х .

По наличию зависимости вероятности переходов сим­волов в ДКС от времени выделяют нестационарные каналы, для которых такая зависимость существует, и стационарные каналы, где вероятности переходов постоянны. Нестационарные каналы могут быть классифицированы по наличию зависимости вероятности пе­реходов от предшествующих значений. Выделяют дискретные кана­лы с памятью, в которых такая зависимость имеет место, и дискрет­ные каналы без памяти, где этой зависимости не существует.

При определенных соотношениях между вероятностями перехо­дов, входящих в матрицу Р, выделяют: симметричные каналы по входу, для которых вероятности, входящие в строку матрицы. являются перестановками одних и тех же чисел; симметричные каналы по выходу, для которых это относится к вероятностям, входящим в столбцы; симметричные каналы по входу и по выходу при соблюдении обоих условий. На основе представленной клас­сификации матрица двоичного симметричного канала имеет вид

где Р - вероятность искажения символа.

Соответственно матрица двоичного симметричного канала со стиранием

где Р - вероятность трансформации; 1-Р-q - вероятность про­хождения символа; q - вероятность стирания символа.

Для гранич­ного случая двоичного симметричного канала без шума матрица переходов имеет вид

Граф К -го канала без шума представлен на рис. 44.

С использованием дискретного канала связи могут быть решены основные проблемы передачи. Для канала без шума - это выбор оптимального кода, который по своим свойствам согласуется с ис­точником, т. е. имеет наименьшую среднюю длину. Для канала с шумом - это выбор кода, который обеспечивает заданную веро­ятность передачи при максимально возможной скорости. Для реше­ния этих проблем рассмотрим основные характеристики ДКС.

Основной характеристикой дискретного канала является про­пускная способность , Под которой понимают верхний предел количества информации, которую можно передать через канал связи, отоб­ражаемый заданной моделью. Оценим пропускную способность дискретного канала связи. Количество взаимной информации, свя­зывающей множества символов X , Y , составит . Пропускная способность .

Раскроем данное выражение для отдельных вариантов дискретного канала связи.

Пропускная способность дискретного канала связи без шума . При отсутствии шума потерь информации в канале нет, а поэтому , тогда C=I max =H max (Y) . Как известно, максимум энтропии для дискретных событий достигается при их равновероятности. Учитывая, что на выходе канала связи может появиться К у символов, получим, что . Отсюда C=log 2 K у .

Таким образом, пропускная способность дискретного канала без шума зависит только от основания кода. Чем оно больше, тем выше информативное» каждого символа, тем больше пропускная способность. Пропускная способность измеряется в двоичных еди­ницах на символ и не связана в данном представлении со временем. При переходе от двоичного кода к четвертичному пропускная спо­собность ДКС без шума увеличивается в два раза.

Пропускная способность дискретного симметричного канала связи с шумом . Рассмотрим канал без стирания, для которого К x =К y =К . При наличии шума в ДКС входной символ x j переходит в символ у i , с вероятностью . Вероятность трансформации символа составит . Если ка­нал симметричен, то вероятности, входящие в данную сумму, одинаковы, а поэтому . Вероятность прохож­дения символа (рис. 45). Пропускная спо­собность рассматриваемого канала . Ранее показано, что H max (Y)=log 2 K ,

Принимая, что на входе ДКС символы равновероятны, т. е. , находим

Минимум условной энтропии достигается соответствующим вы­бором порога срабатывания приемной схемы, при котором обес­печивается минимальное значение вероятности трансформации Р . Отсюда пропускная способность

Видно, что она увеличивается с ростом основания кода и с уменьшением вероятности трансформации символа.

В случае двоичного симметричного канала с шумом пропускная способность может быть найдена при К=2 , т. е. С=1+(1-P)log 2 (1-P)+Plog 2 P . Зависимость пропускной способности двоичного симметричного канала от вероятности искажения символа представлена на рис. 46. При Р=0 получим С=1. С ростом вероят­ности искажения до 0,5 пропускная способность падает до нуля.

Рабочий диапазон дискретного канала соответствует вероятности Р<0,1. При этом пропускная способность близка к единице.

Пропускная способность двоичного симметричного канала со стиранием . Если на входе двоичного канала имеют место символы х 1 , х 2 , то при наличии стирания на выходе канала возникают символы у 1 , у 2 и символы стирания у 3 . Символ стирания формируется при наличии в приемном устройстве специальной зоны стирания, попадание в которую означает возникновение сим­вола неопределенности (стирания). Введение зоны стирания в при­емное устройство позволяет снизить вероятность трансформации символа Р за счет появления вероятности стирания символа q (рис. 47). Тогда вероятность прохождения символа составляет l-P-q . Пропускная способность . При наличии сим­вола стирания стремление к равновероятности символов на выходе канала не имеет смысла, поэтому энтропия на выходе H(Y) опреде­ляется как

,

где P(y i) - вероятность возникновения на выходе дискретного ка­нала символа у i .

Найдем вероятности возникновения символов на выходе при Условии, что символы на входе равновероятны, тогда

,

Соответственно условная энтропия

Отсюда пропускная способность

Опыт применения канала со стиранием показал, что введение зоны стирания эффективно лишь при наличии помех. Тогда удает­ся получить P«q и повысить пропускную способность канала связи.

В общем случае в условиях действия помех повышение пропуск­ной способности дискретного канала достигается за счет равноверо­ятности символов на выходе и снижения вероятности искажения символа. В случае симметричного канала связи равновероятность символов на выходе означает необходимость равновероятности символов на входе канала. Это условие соответствует полученному ранее требованию построения оптимального кода. Снижение веро­ятности искажения символа в дискретном канале зависит от конст­руирования приемной схемы на физическом уровне. Закон распреде­ления помехи на выходе непрерывного канала связи позволяет найти оптимальное значение порога срабатывания приемной схемы и исходя из него оценить и минимизировать вероятность искаже­ния символов. Таким образом, на основании модели дискретного канала связи можно установить верхний предел скорости передачи информации и согласовать производительность источника с про­пускной способностью канала связи. Условная энтропия дает возможность оценить минимально необходимую избыточ­ность, отнесенную к одному символу кода. Это позволяет найти нижний предел избыточности при построении обнаруживающих и корректирующих кодов для каналов связи с шумами. Конкретное значение избыточности устанавливается из требований к вероят­ностно-временным характеристикам процесса передачи. Эти харак­теристики могут быть рассчитаны на основе модели функциониро­вания системы передачи данных.

Математическое моделирование непрерывных каналов связи требует знания физических процессов, протекающих в них. В большинстве случаев для их определения и перевода в аналитическую форму требуется проведение сложных экспериментов, испытаний и последующей аналитической обработки данных.

В подобных ситуациях очень полезной является модель двоичного симметричного канала связи (ДСК). Подобная модель является простейшим примеров взаимодействия двух источников без памяти. Подобная модель является дискретной двоичной моделью передачи информации по каналу с АБГШ. ДСК описывается с помощью диаграммы переходов (рис. 2.10).

Рис. 2.10. Модель двоичного симметричного канала

На диаграмме представлены возможные переходы двоичных символов от передатчика (источника ) в двоичные символы приемника (источника ). Каждому переходу приписана переходная вероятность. Ошибочным переходам соответствует вероятность . Эквивалентом диаграммы переходов является матрица канала. Она содержит переходные вероятности и является стохастической матрицей, у которой сумма всех элементов каждой строки равна единице. В общем случае матрица канала в входным алфавитом их символов и выходным алфавитом из символов , содержит все переходные вероятности и имеет вид

(2.51)

В случае ДСК матрица принимает вид

. (2.52)

Единственным параметром, характеризующим ДСК, является вероятность ошибки и из-за равновероятного появления входных символов и симметрии переходов следует равномерное распределение выходных символов, т.е.

Среднее значение информации, которыми обмениваются два дискретных источника без памяти и равно

Поскольку пропускная способность дискретного канал связи определяется как , то

После подстановки числовых значений выражение принимает вид

Важным частным случаем ДСК является двоичный симметричный канал со стираниями (ДСКС). Как и ДСК подобный канал является упрощенной моделью передачи информации по каналу с АБГШ. Схема переходных вероятностей стирающего канала представлена на рис. 2.11.

Рис. 2.11. Граф переходных состояний в стирающем канале связи

Матрица переходных вероятностей оказывается зависимой от двух параметров и имеет вид

. (2.56)

Входные символы равновероятны, поэтому . Тогда вероятности выходных символов равны

и .

Следовательно,

После преобразований получаем

Положив в полученном уравнении , получим . Введение стирающего канала связи обеспечивает выигрыш пропускной способности стирающего канала связи, при условии, что вероятность ошибки . Отклонение значений и от их минимальных значений приводит к образованию криволинейной поверхности, представляющей общий вид которой представлен на рис. 2.12.

Рис. 2.12. Пропускная способность стирающего канала связи

Рассматривая модель стирающего канала связи, в которойстирания разделяются на ложные и правильные, можно представить граф переходных вероятностей в виде рис. 2.13. Матрица переходных вероятностей оказывается зависимой от четырех параметров принимает вид

Рис. 2.13. Граф переходных состояний с разделением стираний на ложные и правильные стирания

Предположение о точном совпадении стертых позиций с ошибками является условием, которое никогда не выполняется в реальных канала связи. Для гауссовского канала связи соотношения между ложными и правильным стираниями в зависимости от ширины интервала стирания приведены в табл. 2.1.

Табл. 2.1 Соотношение вероятностей между ложными и правильными стираниями в канале без памяти

Значение интервала стирания

Ложные стирания

Относительный прирост

Правильные стирания

Прирост показателей для и в табл. 2.1 определялся относительно интервала стирания при этом показатель для ложных стираний в указанных пределах вырос практически на порядок. Это говорит о невозможности прямого применения стирающего канала связи в системах обмена информацией с целью снижения вероятности ошибочного приема данных.


Министерство образования и науки Республики Казахстан

Некоммерческое акционерное общество

«Алматинский университет энергетики и связи»

Кафедра Инфокоммуникационных технологий

КУРСОВАЯ РАБОТА

по дисциплине «Технологии цифровой связи»

Выполнила:

Алиева Д.А.

Введение

2. Система с РОС и непрерывной передачей информации (РОС - нп) и блокировки

3. Определение n, k, r, при наибольшей пропускной способности R

4. Построение схем кодера и декодера для выбранного g (x) полинома

8. Расчеты надежностных показателей основного и обходного каналов

9. Выбор магистрали по карте

Заключение

Список литературы

Введение

код циклический канал устройство

В последнее время все большее распространение получают цифровые системы передачи данных. В связи с этим особое внимание уделяется изучению принципов передачи дискретных сообщений. Рассмотрению принципов и методов передачи цифровых сигналов посвящена дисциплина «Технологии цифровой связи», которая базируется на ранее изученных дисциплинах: «Теория электрической связи», «Теория электрической цепей», «Основы построения и САПР телекоммуникационных систем и сетей», «Цифровые устройства и основы вычислительной техники» и др. В результате изучения данной дисциплины необходимо знать принципы построения систем передачи и обработки цифровых сигналов, аппаратные и программные методы повышения помехоустойчивости и скорости передачи цифровых систем связи, методы повышения эффективного использования каналов связи. Также необходимо уметь производить расчеты основных функциональных узлов, осуществлять анализ влияния внешних факторов на работоспособность средств связи; иметь навыки применения средств компьютерной техники для расчетов и проектирования программно-аппаратных средств связи.

Выполнение курсовой работы способствует получению навыков в решении задач и более основательному рассмотрению разделов курса «Технологии цифровой связи».

Целью данной работы является проектирование тракта передачи данных между источником и получателем информации с использованием циклического кода и решающей обратной связью, непрерывной передачей и блокировкой приемника. В курсовой работе необходимо рассмотреть принцип работы кодирующего и декодирующего устройства циклического кода. Для моделирования телекоммуникационных систем широко используются программные средства. С применением пакета «System View» в соответствии с заданным вариантом должны быть собраны схемы кодера и декодера циклического кода.

1. Модели частичного описания дискретного канала

В реальных каналах связи ошибки возникают по многим причинам. В проводных каналах наибольшее количество ошибок вызывается кратковременными прерываниями и импульсными помехами. В радиоканалах заметное влияние оказывают флуктуационные шумы. В коротковолновых радиоканалах основное количество ошибок возникает при изменениях уровня сигнала вследствие влияния замирания. Во всех реальных каналах ошибки распределяются во времени очень неравномерно, из-за этого неравномерны и потоки ошибок.

Существует большое количество математических моделей дискретного канала. Также помимо общих схем и частных моделей дискретного канала, существует большое число моделей, дающих частичное описание канала. Остановимся на одной из таких моделей - модели А. П. Пуртова.

Формула модели дискретного канала с независимыми ошибками:

Ошибки несут пакетный характер, поэтому вводится коэффициент

По этой модели можно определить зависимость вероятности появления искаженной комбинации от ее длины n и вероятность появления комбинаций длиной n с t ошибками(t

Вероятность P(>1,n) является неубывающей функцией n.

При n=1 P(>1,n)=Pош

Вероятность появления искажений кодовой комбинации длиной n:

где - показатель группирования ошибок.

При 0 имеем случай независимого появления ошибок, а при 1 появление групповых ошибок (при =1 вероятность искажений кодовой комбинации не зависит от n, так как в каждой ошибочной комбинации все елементы приняты с ошибкой). Наибольшее значение d (0,5 до 0,7) наблюдается, на КЛС, поскольку кратковременное прерывание приводит к появлению групп с большей плотностью ошибок. В радиорелейных линиях, где наряду с интервалами большой плотности ошибок наблюдается интервалы с редкими ошибками, значение d лежит в пределах от 0,3 до 0,5. В КВ радиотелеграфных каналах показатель группирования ошибок самый небольшой (0,3-0,4).

Распределение ошибок в комбинациях различной длины:

оценивает не только вероятность появления искаженных комбинаций (хотя бы одна ошибка), но и вероятность комбинаций длиной n с t наперед заданными ошибками P(>t,n).

Следовательно, группирование ошибок приводит к увеличению числа кодовых комбинаций, пораженную ошибками большей кратности. Анализируя все выше сказанное, можно заключить, что при группировании ошибок уменьшается число кодовых комбинаций заданной длины n. Это понятно также из чисто физических соображений. При одном и том же числе ошибок пакетирование приводит к сосредоточению их на отдельных комбинациях (кратность ошибок возрастает), а число искаженных кодовых комбинаций уменьшается.

2. Система с РОС и непрерывной передачей информации (РОС-нп) и блокировкой.

В системах с РОС-нп передатчик передает непрерывную последовательность комбинаций, не ожидая получения сигналов подтверждения. Приемник стирает лишь те комбинации, в которых решающее устройство обнаруживает ошибки, и по ним дает сигнал переспроса. Остальные комбинации выдаются ПИ по мере их поступления. При реализации такой системы возникают трудности, вызванные конечным временем передачи и распространения сигналов. Если в некоторый момент времени закончен прием кодовой комбинации, в которой обнаружена ошибка, то к этому моменту времени по прямому каналу уже ведется передача следующей кодовой комбинации. Если время распространения сигнала в канале t c превышает длительность кодовой комбинации nt o , то к моменту t" может закончиться передача одной или нескольких комбинаций, следующих за второй. Еще некоторое число кодовых комбинаций будет передано до того времени (t"), пока будет принят и проанализирован сигнал переспроса по второй комбинации.

Таким образом, при непрерывной передаче за время между моментом обнаружения ошибки (t") и приходом повторенной кодовой комбинации (t"") будет принято еще h комбинаций, где где символ [х] означает наименьшее целое число, большее или равное х.

Так как передатчик повторяет лишь комбинации, по которым принят сигнал переспроса, то в результате повторения с запаздыванием на h комбинаций порядок следования комбинаций в информации, выдаваемой системой ПИ, будет отличаться от порядка поступления кодовых комбинаций в систему. Но получателю кодовые комбинации должны поступать в том же порядке, в котором они передавались. Поэтому для восстановления порядка следования комбинаций в приемнике должны быть специальное устройство и буферный накопитель значительной емкости (не менее ih, где i -- число повторений), поскольку возможны многократные повторения.

Во избежание усложнения и удорожания приемников системы с РОС-нп строят в основном таким образом, что после обнаружения ошибки приемник стирает комбинацию с ошибкой и блокируется на h комбинаций (т.е. не принимает h последующих комбинаций), а передатчик по сигналу переспроса повторяет h последних комбинаций (комбинацию с ошибкой и h--1, следующий за ней). Такие системы с РОС-нп получили название систем с блокировкой РОС-нпбл. Эти системы позволяют организовать непрерывную передачу кодовых комбинаций с сохранением порядка их следования.

Рисунок 1 - Структурная схема системы с РОС

3. Определение n, k, r, при наибольшей пропускной способности R.

Длина кодовой комбинации n должна быть выбрана таким образом, чтобы обеспечить наибольшую пропускную способность канала связи. При использовании корректирующего кода кодовая комбинация содержит n разрядов, из которых k разрядов являются информационными, а r разрядов - проверочными:

Рисунок 2 - Структурная схема алгоритма системы с РОС-нпбл

Если в системе связи используются двоичные сигналы (сигналы типа «1» и «0») и каждый единичный элемент несет не более одного бита информации, то между скоростью передачи информации и скоростью модуляции существует соотношение:

C = (k/n)*B, (1)

где С - скорость передачи информации, бит/с;

В - скорость модуляции, Бод.

Очевидно, что тем меньше r, тем больше отношение k/n приближается к 1, тем меньше отличается С и В, т.е. тем выше пропускная способность системы связи.

Известно также, что для циклических кодов с минимальным кодовым расстоянием d 0 =3 справедливо соотношение:

Приведенное утверждение справедливо для больших d 0 , хотя точных соотношений для связей между r и n нет. Существуют только верхние и нижние оценки, указанные.

Из изложенного можно сделать вывод, что с точки зрения внесения постоянной избыточности в кодовую комбинацию выгодно выбирать длинные кодовые комбинации, так как с увеличением n относительная пропускная способность увеличивается, стремясь к пределу, равному 1:

В реальных каналах связи действуют помехи, приводящие к появлению ошибок в кодовых комбинациях. При обнаружении ошибки декодирующим устройством в системах с РОС производится переспрос группы кодовых комбинаций. Во время переспроса полезная информации уменьшается.

Можно показать, что в этом случае:

где Р 00 - вероятность обнаружения ошибки декодером (вероятность переспроса);

Р ПП - вероятность правильного приема (безошибочного приема) кодовой комбинации;

М - емкость накопителя передатчика в числе кодовых комбинаций.

При малых вероятностях ошибки в канале связи (Р ош. < 10 -3) вероятность Р 00 также мала, поэтому знаменатель мало отличается от 1 и можно считать:

При независимых ошибках в канале связи, при:

Емкость накопителя:

Знак < > - означает, что при расчете М следует брать большее ближайшее целое значение.

где L - расстояние между оконечными станциями, км;

v - скорость распространения сигнала по каналу связи, км/с;

B - скорость модуляции, Бод.

После простейших подстановок окончательно имеем

Нетрудно заметить, что при Р ош = 0 формула (8) превращается в формулу (3).

При наличии ошибок в канале связи величина R является функцией P ош, n, k, B, L, v. Следовательно, существует оптимальное n (при заданных P ош, B, L, v), при котором относительная пропускная способность будет максимальной.

Формула (8) еще более усложняется в случае зависимых ошибок в канале связи (при пакетировании ошибок).

Выведем эту формулу для модели ошибок Пуртова.

Как показано в , число ошибок t об в комбинации, длинной в n разрядов, определяется формулой 7.38 . Для обнаружения такого числа ошибок находим циклический код с кодовым расстоянием d 0 не менее. Поэтому, согласно формуле 7.38 , необходимо определить вероятность:

Как показано , с некоторым приближением можно связать вероятность с вероятностью не обнаружения декодером ошибки Р НО и числом проверочных разрядов в кодовой комбинации:

Подставляя значение в (9) с заменой t об на d 0 -1, имеем:

При расчетах на микрокалькуляторах удобнее пользоваться десятичными логарифмами.

После преобразований:

Возвращаясь к формулам (6) и (8) и производя замену k на n-r с учетом значения r, из формулы (11) получим:

Второй член формулы (8) с учетом группирования ошибок по соотношению 7.37 примет вид:

Определим оптимальную длину кодовой комбинации n, обеспечивающую наибольшую относительную пропускную способность R и число проверочных разрядов r обеспечивающих заданную вероятность необнаруженной ошибки Рош.

Таблица 1 - заданная вероятность необнаруженной ошибки Рош

Из таблицы 1 видно, что наибольшую пропускную способность

R = 0.9127649 обеспечивает циклический код с параметрами n =511, r = 7, k = 504.

Образующий полином степени r находим по таблице неприводимых полиномов (приложение А к настоящему МУ).

Выберем, для r = 7 полином g(x)=x 7 +x 4 +x 3 +x 2 +1

4. Построение схем кодера и декодера для выбранного g(x) полинома

а) Построим кодирующее устройство циклического кода.

Работа кодера на его выходе характеризуется следующими режимами :

1.Формирование k элементов информационной группы и одновременно деление полинома, отображающего информационную часть х r m(х), на порождающий (образующий) полином g(х) с целью получения остатка от деления r(х).

2. Формирование проверочных r элементов путем считывания их с ячеек схемы деления х r m(х) на выход кодера.

Структурная схема кодера приведена на рисунке 2.

Цикл работы кодера для передачи n = 511 единичных элементов составляет n тактов. Тактовые сигналы формируются передающим распределителем, который на схеме не указан.

Первый режим работы кодера длится k = 504 тактов. От первого тактового импульса триггер Т занимает положение, при котором на его прямом выходе появляется сигнал "1", а на инверсном - сигнал "0". Сигналом "1" открываются ключи (логические схемы И) 1 и 3. Сигналом "0" ключ 2 закрыт. В таком состоянии триггер и ключи находятся k+1 тактов, т.е. 505 тактов. За это время на выход кодера через открытый ключ 1 поступят 504 единичных элементов информационной группы k =504.

Одновременно через открытый ключ 3 информационные элементы поступают на устройство деления многочлена х r m(х) на g(х).

Деление осуществляется многотактным фильтром с числом ячеек, равным числу проверочных разрядов (степени порождающего полинома). В моем случае число ячеек г=7. Число сумматоров в устройстве равно числу ненулевых членов g(х) минус единица (примечание на стр. 307 ). В нашем случае число сумматоров равно четырем. Сумматоры устанавливаются после ячеек, соответствующих ненулевым членам g(х). Поскольку все неприводимые полиномы имеют член х 0 =1, то соответствующий этому члену сумматор установлен перед ключом 3 (логической схемой И).

После k=504 тактов в ячейках устройства деления окажется записанным остаток от деления г(х).

При воздействии k+1= 505 тактового импульса триггер Т изменяет свое состояние: на инверсном выходе появляется сигнал "1", а на прямом - "0". Ключи 1 и 3 закрываются, а ключ 2 открывается. За оставшиеся r=7 тактов элементы остатка от деления (проверочная группа) через ключ 2 поступают на выход кодера, также начиная со старшего разряда.

Рисунок 3 - Структурная схема кодера

б) Построим декодирующее устройство циклического кода.

Функционирование схемы декодера (рисунок 3) сводится к следующему. Принятая кодовая комбинация, которая отображается полиномом Р(х) поступает в декодирующий регистр и одновременно в ячейки буферного регистра, который содержит k ячеек. Ячейки буферного регистра связаны через логические схемы "нет", пропускающие сигналы только при наличии "1" на первом входе и "О" - на втором (этот вход отмечен кружочком). На вход буферного регистра кодовая комбинация поступит через схему И 1 . Этот ключ открывается с выхода триггера Т первым тактовым импульсом и закрывается k+1 тактовым импульсом (полностью аналогично работе триггера Т в схеме кодера). Таким образом, после k=504 тактов информационная группа элементов будет записана в буферный регистр. Схемы НЕТ в режиме заполнения регистра открыты, ибо на вторые входы напряжение со стороны ключа И 2 не поступает.

Одновременно в декодирующем регистре происходит в продолжение всех n=511 тактов деление кодовой комбинации (полином Р(х) на порождающий полином g(х)). Схема декодирующего регистра полностью аналогична схеме деления кодера, которая подробно рассматривалась выше. Если в результате деления получится нулевой остаток - синдром S(х)=0, то последующие тактовые импульсы спишут информационные элементы на выход декодера.

При наличии ошибок в принятой комбинации синдром S(х) не равен 0. Это означает, что после n - го (511) такта хотя бы в одной ячейке декодирующего регистра будет записана “1”.Тогда на выходе схемы ИЛИ появится сигнал. Ключ 2 (схема И 2) сработает, схемы НЕТ буферного регистра закроются, а очередной тактовый импульс переведет все ячейки регистра в состояние "0". Неправильно принятая информация будет стерта. Одновременно сигнал стирания используется как команда на блокировку приемника и переспрос.

5. Определение объема передаваемой информации W

Пусть требуется передавать информации за временной интервал Т, который называется темпом передачи информации. Критерий отказа t отк - это суммарная длительность всех неисправностей, которая допустима за время Т. Если время неисправностей за промежуток времени Т превысит t отк, то система передачи данных будет находиться в состоянии отказа.

Следовательно, за время Т пер -t отк можно передать С бит полезной информации. Определим W для рассчитанного ранее R = 0,9281713, В=1200 бод, Т пер =460 с., t отк =60 с.

W=R*B*(Tпер-tотк)=445522 бит

6. Построение схем кодирующего и декодирующего устройства циклического кода в среде System View

Рисунок 4 - Кодер циклического кода

Рисунок 5 - Выходной и входной сигнал кодера

Рисунок 7 - Входной сигнал декодера, ошибочный бит и выходной синдром

7. Нахождение емкости и построение временной диаграммы

Найдем емкость накопителя:

М=<3+(2 t p /t k)> (13)

где t p - время распространения сигнала по каналу связи, с;

t k - длительность кодовой комбинации из n разрядов, с.

Эти параметры находятся из следующих формул:

t p =L/v=4700/80000=0,005875 c (14)

h=1+ (16)

где t ож = 3t к +2t p +t ак + t аз =0,6388+0,1175+0,2129+0,2129=1,1821 с,

где t ак, t аз - время анализа в приемнике, t 0 - длительность единичного импульса:

h=1+<1,1821/511 8,333 10 -4 >=3

8. Расчет надежностных показателей основного и обходного каналов

Вероятность появления ошибки известна (Р ош =0,5 10 -3), полная вероятность будет складываться из суммы следующих составляющих р пр - правильный прием, р но - необнаружения ошибки, р об - вероятность обнаружения ошибки декодером (вероятность переспроса).

Зависимость вероятности появления искаженной комбинации от ее длины характеризуется как отношение числа искажения кодовых комбинаций N ош (n) к общему числу переданных комбинаций N(n):

Вероятность Р(?1,n) является не убывающей функцией n. При n=1 Р(?1,n)=р ош, а при n>? вероятность Р(?1,n) >1:

Р(?1,n)=(n/d 0 -1) 1- б р ош, (17)

Р(?1,n)=(511/5) 1-0,5 0,5 10 -3 =5,05 10 -3 ,

При независимых ошибках в канале связи, при n р ош <<1:

р об? n р ош (18)

р об =511 0,5 10 -3 =255,5 10 -3

Сумма вероятностей должна быть равна 1, т.е. имеем:

р пр + р но + р об =1 (19)

р пр +5,05 10 -3 +255,5 10 -3 =1

Временная диаграмма (рисунок 9) иллюстрирует работу системы с РОС НПбл при обнаружении ошибки во второй комбинации в случае с h=3. Как видно из диаграммы, передача комбинации ИИ осуществляется непрерывно до момента получения передатчиком сигнала переспроса. После этого передача информации от ИИ прекращается на время t ож и 3 комбинаций начиная со второй. В это время в приемнике стираются h комбинаций: вторая комбинация, в которой обнаружена ошибка (отмечена звездочкой) и 3 последующих комбинаций (заштрихованы). Получив переданные из накопителя комбинации (от второй до 5-ой включительно) приемник выдает их ПИ, а передатчик продолжает передачу шестой и последующих комбинаций.

Рисунок 8 - Временные диаграммы работы системы с РОС-нпбл

9. Выбор магистрали по карте

Рисунок 9 - Магистраль Актюбинск - Алматы - Астана

Заключение

При выполнении курсовой работы была рассмотрена сущность модели частичного описания дискретного канала (модель Пуртова Л.П.), а также система с решающей обратной связью, непрерывной передачей и блокировкой приемника.

По заданным значениям были рассчитаны основные параметры циклического кода. В соответствии с ними был выбран тип порождающего полинома. Для этого полинома построены схемы кодера и декодера с пояснением принципов их работы. Эти же схемы были реализованы с применением пакета «System View». Все результаты проведенных экспериментов представлены в виде рисунков, подтверждающих правильность работы собранных схем кодера и декодера.

Для прямого и обратного дискретного канала передачи данных были рассчитаны основные характеристики: вероятность необнаруживаемой и обнаруживаемой циклическим кодом ошибки и др. Для системы РОС нпбл по рассчитанным параметрам были построены временные диаграммы, поясняющие принцип работы этой системы.

По географической карте Казахстана были выбраны два пункта (Актюбинск - Алматы - Астана). Выбранная между ними магистраль протяженностью 4700 км была разбита на участки длинной 200-700 км. Для наглядного представления в работе представлена карта.

Анализируя заданный показатель группирования ошибок, можно сказать, что в работе был произведен основной расчет для проектирования кабельных линий связи, так как, т.е. лежит в пределах 0,4-0,7.

Список литературы

1 Скляр Б. Цифровая связь. Теоретические основы и практическое применение: 2-е изд. /Пер. с англ. М.: Издательский дом «Вильямс», 2003. 1104 с.

2 Прокис Дж. Цифровая связь. Радио и связь, 2000.-797с.

3 А.Б. Сергиенко. Цифровая обработка сигналов: Учебник для вузов. - М.: 2002.

4 Фирменный стандарт. Работы учебные. Общие требования к построению, изложению, оформлению и содержанию. ФС РК 10352-1910-У-е-001-2002. - Алматы: АИЭС, 2002.

5 1 Шварцман В.О., Емельянов Г.А. Теория передачи дискретной информации. - М.: Связь, 1979. -424 с.

6 Передача дискретных сообщений / Под ред. В.П. Шувалова. - М.: Радио и связь, 1990. - 464 с.

7 Емельянов Г.А., Шварцман В.О. Передача дискретной информации. - М.: Радио и связь, 1982. - 240 с.

8 Пуртов Л.П. и др. Элементы теории передачи дискретной информации. - М.: Связь, 1972. - 232 с.

9 Колесник В.Д., Мирончиков Е.Т. Декодирование циклических кодов. - М.: Связь, 1968.

Подобные документы

    Модель частичного описания дискретного канала (модель Л. Пуртова). Определение параметров циклического кода и порождающего полинома. Построение кодирующего и декодирующего устройства. Расчет характеристик для основного и обходного канала передачи данных.

    курсовая работа , добавлен 11.03.2015

    Модели частичного описания дискретного канала. Система с РОС и непрерывной передачей информации (РОС-нп). Выбор оптимальной длины кодовой комбинации при использовании циклического кода в системе с РОС. Длина кодовой комбинации.

    курсовая работа , добавлен 26.01.2007

    Технические системы сбора телеметрической информации и охраны стационарных и подвижных объектов, методы обеспечения целостности информации. Разработка алгоритма и схемы работы кодирующего устройства. Расчет технико-экономической эффективности проекта.

    дипломная работа , добавлен 28.06.2011

    Исследование и специфика использования инверсного кода и Хемминга. Структурная схема устройства передачи данных, его компоненты и принцип работы. Моделирование датчика температуры, а также кодирующего и декодирующего устройства для инверсного кода.

    курсовая работа , добавлен 30.01.2016

    Проектирование среднескоростного тракта передачи данных между двумя источниками и получателями. Сборка схемы с применением пакета "System View" для моделирования телекоммуникационных систем, кодирующего и декодирующего устройства циклического кода.

    курсовая работа , добавлен 04.03.2011

    Расчет числа каналов на магистрали. Выбор системы передачи, определение емкости и конструктивный расчет оптического кабеля. Выбор и характеристика трассы междугородной магистрали. Расчет сигнала, числовой апертуры, нормированной частоты и числа мод.

    курсовая работа , добавлен 25.09.2014

    Модель частичного описания дискретного канала, модель Пуртова Л.П. Структурная схема системы с РОСнп и блокировкой и структурная схема алгоритма работы системы. Построение схемы кодера для выбранного образующего полинома и пояснение его работы.

    курсовая работа , добавлен 19.10.2010

    Классификация систем синхронизации, расчет параметров с добавлением и вычитанием импульсов. Построение кодера и декодера циклического кода, диаграммы систем с обратной связью и ожиданием для неидеального обратного канала, вычисление вероятности ошибок.

    курсовая работа , добавлен 13.04.2012

    Сущность кода Хэмминга. Схемы кодирующего устройства на четыре информационных разряда и декодера. Определение числа проверочных разрядов. Построение корректирующего кода Хэмминга с исправлением одиночной ошибки при десяти информационных разрядах.

    курсовая работа , добавлен 10.01.2013

    Изучение закономерностей и методов передачи сообщений по каналам связи и решение задачи анализа и синтеза систем связи. Проектирование тракта передачи данных между источником и получателем информации. Модель частичного описания дискретного канала.



Загрузка...