sonyps4.ru

Анализ и синтез логических устройств. Методы минимизации логических функций и схем

Метод применим для функций от любого числа переменных, но мы рассмотрим его для функций от 3-х переменных.

Представим в виде ДНФ с неопределенными коэффициентамиk:

(**)

В этой ДНФ представлены все возможные элементарные коньюнкции, которые могут входить в функцию, а коэффициенты kмогут принимать значения 0 или 1. Значения коэффициентов нужно выбрать так, чтобы данная ДНФ была минимальной.

Будем рассматривать данную нам функцию на всех наборах и приравнивать выражение (**) на каждом из наборов (отбрасывая нулевые конъюнкции) соответствующему значению функции. Получим систему изуравнений вида:

Если в каком-то из этих уравнений правая часть равна 0, то все слагаемые левой части тоже равны 0. Эти коэффициенты можно исключить из всех уравнений, правые части которых равны 1. В этих уравнениях значение 1 следует присвоить тому коэффициенту, который соответствует коньюнкции наименьшего ранга. Эти коэффициенты и определят МДНФ.

Пример

Составляем систему, используя выражение (**).

После исключения нулевых слагаемых получаем

Полагаем остальные коэффициенты считаем нулевыми. Получаем МДНФ:

2.2. Метод Квайна - Мак - Класки

Рассмотренный метод неопределенных коэффициентов эффективен, если число аргументов функции не больше, чем 5 – 6. Это связано с тем, что число уравнений равно 2 n . Более эффективным является выписывание не всех возможных конъюнкций для функции, а только тех, которые могут присутствовать в ДНФ данной функции. На этом основан метод Квайна. При этом предполагается, что функция задана в виде СДНФ. В данном методе элементарные конъюнкции рангаn, входящие в ДНф, называются минитермами рангаn. Метод Квайна состоит из последовательного выполнения следующих этапов.

1. Нахождение первичных импликант

Просматриваем последовательно каждый минитерм функции и производим склеивание его со всеми минитермами, с которыми это возможно. В результате склеивания минитермов n-го ранга, мы получим минитермы (n-1)-га ранга. Минитермыn-го ранга, которые участвовали в операции склеивания, помечаем. Затем рассматриваем минитермы (n-1)-го ранга и операцию склеивания применяем к ним. Помечаем склеивающиеся минитермы (n-1)-го ранга и записываем получившиеся в результате склеивания минитермы (n-2)-го ранга и т. д. Этап заканчивается, если вновь полученные минитермыl -го ранга уже не склеиваются между собой. Все неотмеченные минитермы называются первичными импликантами. Их дизъюнкция представляет собой Сокр. ДНФ функции.

Склеиваем минитермы 4-го ранга и помечаем склеивающиеся минитермы звездочками

Образуем минитермы 2-го ранга:

Первичными (простыми) импликантами являются:

2. Расстановка меток

Для данной функции Сокр. ДНФ имеет вид:

Для построения тупиковых ДНФ и Сокр. ДНФ нужно выбросить лишние интервалы. Строим таблицу, строки которой соответствуют первичным импликантам, а столбцы – минитермам СДНФ. Если в некоторый из минитерм входит какой-то из импликант, то на пересечении соответствующей строки и столбца ставится метка, например, 1.

Продолжение примера

3. Нахождение существенных импликант

Если в каком-либо столбце содержится только одна единица, то первичная импликанта, определяющая эту строку, называется существенной. Например, существенной импликантой является . Существенная импликанта не может быть удалена из Сокр. ДНФ, т. к. только она способна покрыть некоторые минитермы СДНФ. Поэтому из таблицы исключаем строки, соответствующие этим импликантам, и столбцы, имеющие единицы в этих строках.

В рассматриваемом примере исключаем строку и столбцы.

В результате получаем таблицу

4. Вычеркивание лишних столбцов и строк

Если в полученной таблице есть одинаковые столбцы, то вычеркиваем все, кроме одного. Если после этого в таблице появятся пустые строки, то их вычеркиваем.

5. Выбор минимального покрытия максимальными интервалами

В полученной таблице выбираем такую совокупность строк, которая содержит единицы во всех столбцах. При нескольких возможных вариантах такого выбора, предпочтение отдается варианту с минимальным числом букв в строках, образующих покрытие.

Продолжение примера

Минимальное покрытие таблицы образуют строки, соответствующие импликантам . Тогда МДНФ имеет вид:

В методе Квайна есть одно существенное неудобство, связанное с необходимостью полного по парного сравнивания минитермов на этапе построения Сокр. ДНФ. В 1956 г. Мак - Класки предположил модернизацию первого этапа метода Квайна, дающую существенное уменьшение количества сравнений минитермов.

Идея метода Мак - Класки заключается в следующем. Все минитермы записываются в виде двоичных номеров, например, как 1010. Эти номера разбиваются на группы по числу единиц в номере, т. е. вi-ю группу попадают номера, имеющие в своей записиiединиц. По парное сравнение производится только между соседними по номеру группами, т. к. минитермы, пригодные для склеивания, отличаются друг от друга только в одном разряде. При образовании минитермов с ранга выше нулевого, в разряды, соответствующие исключенным переменным, ставится тире.

Пример

Найдем МДНФ для функции:

Минитермы 4-го ранга по группам

Минитермы 3-го ранга

Минитермы 2-го ранга

Непомеченные минитермы или простые импликанты

Строим таблицу меток

Обе первичные импликанты существенны и определяют минимальное покрытие, т. е. МДНФ имеет вид.

Алгебры логики

3.3.1. Минимизация ФАЛ с помощью матрицы Карно

Матрица Карно представляет собой своеобразную таблицу истинности ФАЛ, которая разбита на клетки. Количество клеток матрицы равно 2 n , где n – число аргументов ФАЛ. Столбцы и строки матрицы обозначаются наборами аргументов. Каждая клетка матрицы соответствует конституэнте единицы ФАЛ (двоичному числу). Двоичное число клетки состоит из набора аргументов строки и столбца. Матрица Карно для ФАЛ, зависящей от двух аргументов, представлена в виде таблицы 3.3., от трех аргументов таблицей 3.4. и от четырех аргументов таблицей 3.5.

Таблица 3.3.


Таблица 3.5.

х 3 х 4 х 1 х 2
0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0
1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0
1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0

Клетки матриц (таблицы 3.3., 3.4. и 3.5.) пронумерованы десятичными эквивалентами двоичных чисел клеток. Рядом расположенные клетки матриц, как по горизонтали, так и по вертикали, содержат соседние двоичные числа. Кроме этого соседние двоичные числа находятся во всех столбцах верхней и нижней строк, так же как во всех строках крайних столбцов.

Процесс минимизации ФАЛ с помощью матрицы Карно основан на законе склеивания соседних двоичных чисел. Можно склеивать двоичные числа рядом расположенных клеток, но рекомендуется склеивать наборы аргументов, которыми обозначены строки и столбцы матриц. Рассмотрим склеивание двоичных чисел клеток первого столбца матрицы (табл. 3.5.).

Клетки 0 и 4, соответственно двоичные числа 0000 и 0100, результат склеивания 0-00.

Клетки 8 и 12, двоичные числа 1000 и 1100, результат 1-00. Полученные импликанты склеиваются между собой, т.к. тире стоит в одном и том же разряде и двоичные числа импликант являются соседними, окончательный результат - - 00.

Клетки 8 и 12

Таким образом, если склеиваются все двоичные числа одного столбца, то пропадают те разряды, которыми обозначены строки. Аналогично, если будут склеиваться все двоичные числа одной строки, например 4, 5, 7, 6, то пропадают все разряды, которыми обозначены столбцы, т.е. результат будет следующий 01- -.

Если будут склеиваться двоичные числа только двух любых клеток, то прочерк ставиться вместо того разряда двоичных чисел строки или столбца, который изменится при переходе клеток из одной строчки в другую (или из одного столбца в другой). Например, склеиваются числа клеток 5 и 13, получим результат -101, или клеток 7 и 6 результат 011-.

При склеивании двоичных чисел восьми рядом расположенных клеток пропадает три переменные, например для клеток 3, 7, 15, 11, 2, 6, 14, 10 пропадают переменные х 1 , х 2 , х 3 . Переменные х 1 , х 2 пропадают потому, что склеиваются все клетки столбцов, а х 3 потому, что последние два столбца склеиваются между собой.

Прежде, чем рассмотреть примеры минимизации ФАЛ с помощь матрицы Карно, необходимо дать классификацию наборов аргументов, с помощью которых определяются функции алгебры логики.

Известно, что для каждой ФАЛ имеет место количество наборов аргументов 2 n , где n – число аргументов от которых зависит функция или логическое выражение.

Наборы аргументов делятся на три вида

1. Наборы аргументов, на которых функция равна единице, называются рабочими.

2. Наборы аргументов, на которых функция равна нулю, называются запрещенными.

3. Наборы аргументов, на которых функция может быть равна или единице, или нулю, называются безразличными.

Если заданная ФАЛ не имеет безразличных наборов, то она может быть представлена в буквенном выражении в виде СДНФ. При наличии в заданной ФАЛ безразличных наборов, ее представление может иметь следующую форму.

где – десятичные эквиваленты рабочих наборов,

– десятичные эквиваленты запрещенных наборов.

Наборы аргументов, которых нет среди рабочих и запрещенных, будут безразличными.

Пример 3.3. Минимизировать заданную ФАЛ в виде СДНФ с помощью матрицы Карно .

Следовательно, функция задана только рабочими наборами. Остальные будут запрещенными. Функция зависит только от трех аргументов. Строим матрицу Карно и в ее клетках, которые соответствуют рабочим наборам ставим единицы, а в остальных клетках ставим нули.

Таблица 3.5.

х 2 х 3 х 1
0

Для минимизации клетки матрицы, в которых стоят единицы, объединяются в контуры. В контур могут включаться две клетки, четыре или все восемь. В данном примере в контур включены четыре рядом расположенные клетки одной строки. Импликантой заданного контура будет 1 - -. Результат минимизации следующий , т.е. произошло сокращение заданной функции в СДНФ на 11 букв.

Пример 3.4. Минимизировать логическое выражение, заданное рабочими и запрещенными наборами с помощью матрицы Карно.

Строим матрицу Карно на четыре переменных и заполним клетки единицами и нулями соответственно для рабочих и запрещенных наборов.

Таблица 3.6.

х 3 х 4 х 1 х 2 00
(1)
(1) (1)

При объединении клеток с единицами в контуры желательно, чтобы в каждый контур включалось наибольшее число клеток из максимально возможного. Для этого клетки некоторых безразличных наборов используем как клетки рабочих наборов, подставив в них единицы в скобках. В результате получим три контура, содержащие по 4 клетки. В обобщенном коде контура, включающего в себя все клетки одной строки, пропадают переменные х 2 х 3 (10 - -). В обобщенном коде контура, включающего все клетки одного столбца пропадают переменные х 1 х 2 (- - 11) и для контура, содержащего по две клетки двух строк пропадают переменные х 2 (при переходе в контуре из одной строки в другую) и х 3 (при переходе из одного столбца в другой). В результате получим минимальную ДНФ в следующем виде

Возможные варианты объединения клеток матрицы Карно в контуры показаны на рисунке 3.4.


х 3 х 4 х 1 х 2

А = 0 - 0 - З = - 0 - 0
Н Б = 1 - 1 - К = - - - 1
В = - - 0 0 Л = - 1 - -
Г = 1 0 - - М = - - - 0
Д = - 0 0 1 Н = - 0 - -
Е = - 0 1 -
Ж = - 1 - 1

Рис. 3.1. Возможные варианты объединения клеток матрицы Карно в контуры


3.3.2. Минимизация функций алгебры логики с помощью матрицы на пять переменных

Матрица минимизации на пять переменных строится аналогично матрице Карно, т.е. в этой матрице рядом расположенные столбцы и строки должны быть обозначены соседними двоичными числами наборов переменных

В матрице на пять переменных (таблица 3.7.) строкам соответствуют наборы переменных х 1 х 2 х 3 , а столбцам наборы переменных х 4 х 5 . Каждой клетке матрицы соответствует пятиразрядное двоичное число. В клетках матрицы (табл. 3.7.) проставлены десятичные эквиваленты соответствующих двоичных чисел.

Таблица 3.7.

х 4 х 5 х 1 х 2 х 3

Минимизация ФАЛ с помощью матрицы на пять переменных заключается в объединении клеток с рабочими наборами (включая при необходимости и клетки с безразличными наборами) в контуры и получении для этих контуров соответствующих им обобщенных кодов.

Особенность здесь заключается в том, что в столбцах матрицы на пять переменных объединять по четыре клетки в контуры можно только или четыре клетки сверху, или четыре клетки внизу, или четыре клетки посередине. Например, для последнего столбца матрицы контуры могут состоять из клеток 2, 6, 14, 10, или 26, 30, 22, 18 или 14, 10, 26, 30.

Пример 3.6. Минимизировать с помощью матрицы на пять переменных следующее логическое выражение

Строим матрицу на пять переменных и заполняем клетки рабочих наборов единицами, запрещенных – нулями.

Объединяем в контуры клетки с рабочими наборами, включая в них необходимые клетки безразличных наборов. Для каждого контура определяем обобщенных код.

Таблица 3.8.

х 4 х 5
х 1 х 2 х 3
(1) (1) (1)
(1)
(1) (1)
(1) (1)
(1) (1)
(1)
(1) (1)

Получаем минимальную ДНФ

Контрольные вопросы

1. Дать определение сокращенной ДНФ.

2. Что представляет собой тупиковая ДНФ?

3. Как выбирается минимальная ДНФ из тупиковых ДНФ?

4. Для чего используется импликантная таблица и как она строится?

5. Пояснить аналитический способ минимизации ФАЛ Квайна-Мак-Класски.

6. Как строится матрица Карно на три и четыре переменных?

7. Минимизировать аналитическим способом следующие логические выражения, заданные только рабочими наборами

8. Минимизировать с помощью матрицы Карно логические выражения, заданные рабочими и запрещенными наборами


Похожая информация.


Наиболее употребляемая операция при минимизации функций - это операция склеивания.

AB+ ВB=B (A+ В)=B.

Рассмотрим три наиболее распространенных метода минимизации.

1. Пусть будут заданы номера наборов четырех переменных, на которых логическая функция принимает единичное значение: f (2,5,6,7,10,12,13,14)=1.

Выразим эту логическую функцию в СДНФ (символ конъюнкции писать не будем):

f (0010,0101, 0110, 0111, 1010, 1100, 1101, 1110) =

На первом этапе минимизации исходную СДНФ можно упростить за счет использования закона склеивания, тогда получим:

Обращаем внимание на то, что одну и ту же конституенту (импликанту) можно склеивать с другими конституентами (импликантами) многократно, так как в логике Буля действует закон идемпотентности:

поэтому любую конституенту можно размножить.

На втором этапе воспользуемся таблицей Куайна (табл. 8), в соответствии с которой данный метод минимизации получил свое наименование - метод Куайна. В таблице по вертикали перечислены все полученные на первом этапе упрощения импликанты, а по горизонтали - исходные конституенты. Единица в табл. 8 стоит там, где импликанта «накрывает» конституенту. Дело в том, что конституента всегда может быть заменена импликантой или даже отдельным термом по закону поглощения:

Таблица 8

После заполнения таблицы Куайна у нас получилось так, что почти в каждой графе оказалось по две единицы; между тем достаточно иметь одну единицу в графе. Поэтому, по возможности, нужно исключить избыточные единицы. Выбор единиц производится из соображений минимальности числа термов (выбранные единицы затемнены). В итоге оказалось, что можно обойтись только тремя импликантами вместо шести:

С помощью таблиц истинности легко проверить, что полученная в МНФ функция воспроизводит все значения исходной функции. Отметим, что в общем случае решений по критерию минимума термов может быть несколько.

2. Не менее эффективным способом минимизации логических функций является метод сочетания индексов. Для его изложения составим табл. 9, в графах которой записаны возможные сочетания индексов. В последней графе выписаны значения функции. Анализ таблицы начинается слева по столбцам. Принцип исключения i, j_кода следующий. На пересечении i_столбца, например, с сочетанием индексов 23, и j_строки, например, 3_ей, находится код 10, что соответствует импликанте. Следовательно, в этом столбце везде, где встречается код 10, т. е. в строках 2, 3, 10 и 11, эти коды исключаются, поскольку значение функции в 3_ей строке равно нулю. Теперь возьмем столбец с сочетанием индексов 124. Здесь во 2_ой и 6_ой строках оставлены коды 010, а в 10_ой и 14_ой строках - код 011. Сделано это потому, что эти коды встречаются только на строках со значением функции, равным единице. Напротив, код 110 этого же столбца встречается как при единичных значениях функции, так и при нулевых.

Таблица 9

Итак, все коды на строках, заканчивающихся нулевыми значениями функции, исключаются автоматически. Если эти коды попадают на строки, заканчивающиеся единичным значением функции, то они также не учитываются. Остаются только те коды, которые расположены на строках с единичным значением функции (эти коды затемнены).

Далее руководствуются следующим правилом. Для того чтобы функция приняла значение, равное единице, достаточно того, чтобы только какая-нибудь одна импликанта на строке приняла единичное значение. Прежде всего, оставляем минимальную импликанту, которая перекрывает единицы в строках 2, 6, 10 и 14. Затем, естественно, обращаемся к 12_ой строке. Здесь оставляем единственный на строке код 011, что отвечает импликанте. Эта же импликанта ответственна за 13_ую строку, оканчивающуюся тоже единицей. Осталось рассмотреть 5_ую и 7_ую строки. Общей для них является импликанта: . Таким образом, тремя импликантами мы перекрыли все единичные значения функции, что совпадает с результатом, полученным на основе таблиц Куайна.

3. Существует графический способ склеивания, который получил название метод карты Карно (представлен в табл. 10). Выделяем смежные единицы, это и будут слагаемые нашей функции.

Таблица 10

Получили два слагаемых

Хотя табл. 9 более громоздка, чем табл. 8, метод сочетания индексов не считается более сложным, чем метод Куайна, если помнить, что до составления таблиц Куайна необходимо произвести многочисленные склейки конституент и импликант. Реализация на компьютере алгоритма метода сочетания индексов оказывается сравнительно простой. И напротив, внешняя простота и наглядность третьего метода минимизации логических функций с помощью карт Карно оборачивается сложной программой при реализации алгоритма на компьютере.

Таблица 11

Таблица 12

Карта Карно для четырех переменных представлена в виде табл. 11. Каждая клетка карты соответствует конституенте. Заполненная карта представлена табл. 12 (функция взята та же, что и в первых двух методах). Согласно закону склеивания, две смежные конституенты с единичными значениями всегда можно объединить для получения соответствующей импликанты. Причем смежными считаются и те, которые лежат на границах карты. Какие именно единицы требуется объединить для получения подходящей импликанты, легко определить визуально. Следует также помнить, что в соответствии с законом идемпотентности одна и та же единица табл. 12 может склеиваться с двумя или тремя смежными единицами.

Все логические функции задаются либо в виде формулы, либо в виде таблицы значений. Иногда бывает нужно определить простейшую форму записи этой функции с минимальным количеством элементарных логических функций И, ИЛИ, НЕ для удобства работы. Для этого используются все рассмотренные операции начиная с №4 и методы Квайна и Вейча.

Метод Квайна позволяет найти простейшую нормальную дизъюнктивную форму логического выражения, т.е. записать логическое выражение в виде дизъюнкции или конъюнкции, при этом знак инверсии может стоять только над одним аргументом или не стоять вообще. Алгоритм дается в специальной литературе.

Метод Вейча (карты Карно)

В этом методе для изображения функции n переменных рисуется специальная таблица, которая содержит 2 n клеток. В каждой клетке ставится соответствие одному из наборов n переменных. В клетке записывается значение, принимаемое функцией при этом наборе аргументов. Все клетки, соответствующие наборам содержащие некоторую переменную без знака инверсии образуют область из 2 n -1 клеток. Эта область называется областью данной переменной (например, область переменной х). Остальные клетки образуют область этой инверсной переменной. Возможные наборы аргументов распределены по клеткам таким образом, чтобы границы областей всех переменных и их инверсии были четки, а принадлежность любой клетки к той или иной область зрительно легко выявлялась.

1) Функция одной переменной:

2) Функция двух переменных:

3) Диаграмма для дизъюнкции:

4) Диаграмма для конъюнкции:

5) Для трех аргументов:

6) Для четырех аргументов:

Можно минимизировать заданное логическое выражение, объединив в группы стоящие рядом единицы и при этом исключать ту переменную, которая переходит из прямого в инверсное состояние. Объединять можно не только по вертикали и горизонтали, но и по краям, так как в общем случае карта Карно образует тор. Пример:

б)

Студент должен:

Знать:

· Методы минимизации логических функций.

Уметь:

· Выполнять минимизацию функций методом непосредственных преобразований; Выполнять минимизацию функций методом непосредственных преобразований;

· Выполнять минимизацию функций с помощью карт Карно.

Метод непосредственных преобразований

Логическая функция, задающая принцип построения схемы цифрового устройства, может быть, как было показано выше, представлена в виде таблицы истинности или в виде СДНФ или СКНФ и может быть использована для получения логической схемы устройства. Однако полученная логическая схема, как правило, не будет оптимальна. Поэтому важным этапом синтеза логических схем является минимизация логических функций.

Минимизация (упрощение формы записи) функции является важной операцией при синтезе логической схемы, так как благодаря предварительно проведенной минимизацией схема реализуется с наименьшим числом элементов.

Для минимизации разработан ряд методов. Одним из простых методов минимизации является метод непосредственных преобразований, который осуществляется с использованием основных теорем алгебры логики.

Например, логическую функцию

в виде СДНФ, можно минимизировать следующим образом:

1. Добавим к данной функции слагаемое , которое уже есть в данной функции, используя правило х+х=х

2. Применим метод склеивания одинаково подчеркнутых элементарных конъюнкций

3. Применим метод склеивания для двух последних элементарных конъюнкций

Полученная в результате минимизации логическая функция называется тупиковой. Логическая функция может иметь несколько тупиковых форм.

Выявление и устранить избыточности в записи функции путем её преобразований с использованием аксиом, законов, тождеств и теорем алгебры логики требуют громоздких выкладок и связаны с большой затратой времени.

Карты Карно

Метод непосредственных преобразований наиболее пригоден для простых формул, когда последовательность преобразований очевидна для исполнителя. Наиболее часто этот метод применяется для окончательной минимизации выражений, полученных после минимизации их другими методами.



Стремление к алгоритмизации поиска соседних элементарных произведений привело к разработке табличных методов минимизации логических функций. Одним из них является метод, основанный на использовании карт Карно.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

Карта Карно - это графическое представление таблицы истинности логических функций. Она представляет собой таблицу, содержащую по 2 n прямоугольных ячеек, где n - число логических переменных.

Например, карта Карно для функции четырех переменных имеет 2 4 = 16 ячеек.


Структура карты Карно для функций двух переменных показана на рисунке 2.2. 2

Рисунок 2.2


На рисунке 2.3 представлена структура карты Карно для функции трёх переменных.

а) таблица истинности; б) структура карты Карно

Рисунок 2.3

Карта размечается системой координат, соответствующих значениям входных переменных. Например, верхняя строка карты для функции трех переменных (рисунок 2.3) соответствует нулевому значению переменной x1, а нижняя - ее единичному значению.

Каждый столбец этой карты характеризуется значениями двух переменных: х2 и х3. Комбинация цифр, которыми отмечается каждый столбец, показывает, для каких значений переменных х2 и х3 вычисляется функция, размещаемая в клетках этого столбца.

Если на указанном наборе переменных функция равна единице, то ее СДНФ обязательно содержит элементарное произведение, принимающее на этом наборе единичное значение. Таким образом, ячейки карты Карно, представляющие функцию, содержат столько единиц, сколько элементарных произведений содержится в ее СДНФ, причем каждой единице соответствует одно из элементарных произведений.

Обратим внимание на то, что координаты строк и столбцов в карте Карно следуют не в естественном порядке возрастания двоичных кодов, а в порядке 00, 01, 11, 10. Изменение порядка следования наборов сделано для того, чтобы соседние наборы были соседними, т.е. отличались значением только одной переменной.

Ячейки, в которых функция принимает значения, равные единице, заполняются единицами. В остальные ячейки записываются нули.

Процесс минимизации рассмотрим на примере, представленном на рисунке 2.4.

а) таблица истинности; б) карта Карно

Рисунок 2.4

Сначала формируем прямоугольники, содержащие по 2k ячеек, где k - целое число.

В прямоугольники объединяются соседние ячейки, которые соответствуют соседним элементарным произведениям.

Например, на рисунке 2.4,б объединены ячейки с координатами 001 и 101. При объединении этих ячеек образовался прямоугольник, в котором переменная x1 изменяет свое значение. Следовательно, она исчезнет при склеивании соответствующих элементарных произведений и останутся только х2 и х3, причем переменную х2 берем в инверсном виде, т.к. она равна 0.

Ячейки, расположенные в первой строке (рисунок 2.4 б), содержат единицы и являются соседними. Поэтому все они объединяются в прямоугольник, содержащий 2 2 = 4 ячейки.

Переменные х2 и х3 в пределах прямоугольника меняют свое значение; следовательно, они исчезнут из результирующего элементарного произведения. Переменная х1 остается неизменной и равной нулю. Таким образом, элементарное произведение, полученное в результате объединения ячеек первой строки рисунка 2.4 б, содержит лишь один х1, который берем в инверсном виде, т.к. он равен 0.

Это, в частности, следует из того, что четырем ячейкам первой строки соответствует сумма четырех элементарных произведений:

Двум ячейкам сторого столбца соответствует сумма двух произведений

Функция, соответствующая рисунку 2.4 имеет вид:

Совокупность прямоугольников, покрывающих все единицы, называют покрытием. Заметим, что одна и та же ячейка (например, ячейка с координатами 001) может покрываться два или несколько раз.

Итак, можно сделать следующие выводы:

1. Формула, получающаяся в результате минимизации логической функции с помощью карт Карно, содержит сумму стольких элементарных произведений, сколько прямоугольников имеется в покрытии.

2. Чем больше ячеек в прямоугольнике, тем меньше переменных содержится в соответствующем ему элементарном произведении.

Например, для карты Карно, изображенной на рисунке 2.5 а, прямоугольнику, содержащему четыре ячейки, соответствует элементарное произведение двух переменных, а квадрату, состоящему всего лишь из одной ячейки,- элементарное произведение включающее все четыре переменные.


а) б) в)

Рисунок 2.5

Функция, соответствующая покрытию, показанному на рисунке 2.5 а, имеет вид:

Несмотря на то, что карты Карно изображаются на плоскости, соседство квадратов устанавливается на поверхности тора. Верхняя и нижняя границы карты Карно как бы «склеиваются», образуя поверхность цилиндра. При склеивании боковых границ получается тороидальная поверхность. Следуя изложенным рассуждениям, устанавливаем, что ячейки с координатами 1011 и 0011, изображенные на рисунке 2.5 б, являются соседними и объединяются в прямоугольник. Действительно, указанным ячейкам соответствует сумма элементарных произведений

Аналогично объединяются и остальные четыре единичные ячейки. В результате их объединения получаем элементарное произведение .

Окончательно функция, соответствующая покрытию, изображенному на рисунке 2.5 б, имеет вид

Карта Карно, показанная на рисунке 2.5 в, содержит единичные ячейки, расположенные по углам. Все четыре ячейки являются соседними, и после объединения дадут элементарное произведение

Рассмотренные выше примеры позволяют сформулировать последовательность проведения минимизации логических функций с помощью карт Карно:

1. Изображается таблица для n переменных и производится разметка ее сторон.

2. Ячейки таблицы, соответствующие наборам переменных, обращающих функцию в единицу, заполняются единицами, остальные ячейки - нулями.

3. Выбирается наилучшее покрытие таблицы правильными прямоугольниками, которые обводим контурами. В каждом прямоугольнике должно быть 2 n ячеек.

4. Одни и те же ячейки с единицами могут входить в разные контуры.

5. Количество прямоугольников должно быть минимальным, а площадь прямоугольников максимальная.

6. Для каждого прямоугольника записываем произведение только тех переменных, которые не изменяют своего значения. Если эта переменная равна нулю, то ее записывают в инверсном виде.

7. Полученные произведения соединяем знаком логического сложения.

Контрольные вопросы:

1. Что называют минтермами и минтермами?

2.Записать функции, заданные таблицами 2.9 и 2.10 в СДНФ и СКНФ.

Таблица 2.9

3. Упростите логические функции, используя аксиомы тождества и законы алгебры логики:

a)

c)

Логические элементы

Студент должен

Знать:

· Таблицы логических состояний для основных функциональных логических схем;

· Основные базисы построения логических схем.

Уметь:

· Определять логические состояния на выходах цифровых схем по известным состояниям на входах;

· Выполнять логическое проектирование в базисах микросхем;

· Выбирать микросхему по справочнику, исходя из заданных параметров и условий использования.

Принцип логического устройства базируется в ИМС на работе биполярных транзисторов в режиме ключа (либо замкнут, либо разомкнут).


Логическое действие осуществляется как с одной (одновходовый логический элемент) так и с множеством (многовходовый логический элемент) входных переменных.

При работе логических устройств используются три основных действия согласно алгебры Буля – «И», «ИЛИ», «НЕ».

Логическая функция может быть выражена словесно, в алгебраической форме, таблицей истинности, называемой переключательной таблицей, с помощью временных диаграмм. Рассмотрим все варианты представления логических функций.



Загрузка...