sonyps4.ru

Как происходит передача информации по оптоволокну. Передача сигналов по оптическим линиям связи

За последние несколько месяцев в СМИ и в социальных сетях все чаще стала подниматься тема криптовалют и всего, что с ними связано. Если раньше технологией блокчейн и майнингом (добычей криптовалют при помощи обычных компьютеров или майнинговых ферм с набором видеокарт под управлением специального програмного обеспечения) интересовались и зарабатывали на них по большей части только программисты, люди со специальным техническим образованием, то сейчас эта ситуация изменилась в корне. Майнингом и скупкой видеокарт для него занялись самые обычные люди, что с одной стороны повлекло за собой рост основных криптовалют, а с другой, резко увеличило риск потери вложенных средств среди тех, кто в этом мало разбирается. Журналисты сайта телеканала «Звезда» выяснили у экспертов, что такое майнинг и какой риск в себе несет увлечение криптовалютами для обычных людей.

Михаил Чобанян, основатель bitcoin-агентства KUNA рассказал о перспективах майнинга и о том, когда закончится код биткоина.

«Сейчас майнит (от английского глагола mine - добывать), наверное, даже бабушка у себя дома, по определенному тарифу. Это уже проблема. Второе... как бы правильно ответить, чтобы политкорректно было. Спрос настолько велик на майнинг, что даже непрофильные люди, до конца не изучив тематику, инвестируют деньги в видеокарты и оборудование, а дальше по ходу будут разбираться. На фабриках, которые производят чипы для видеокарт, безумные предзаказы. Осталось месяца полтора-два, когда все эти чипы и видеокарты попадут на рынок, и, соответственно, очень резко все начнут майнить. Даже если сейчас вы захотите начать майнить, вам оборудование никто не продаст, потому что его физически нет. Нужно ждать минимум два месяца. Когда это все случится, будет очень интересное время. Сложность майнинга усилится очень быстро, и, соответственно, у кого дорогое электричество или неправильно настроено оборудование, или неправильную валюту он там выбрал, то он будет не очень конкурентоспособным. И очень интересно будет посмотреть, как цена отразится на этом безумном всплеске. Поэтому будет веселое время, конец лета будет интересно наблюдать.

Такой всплеск интереса, разумеется, на руку производителям видеокарт. Раньше некуда было продавать видеокарты, а теперь просто десятками тысяч отгружают, еще и предзаказы уже оплаченные. Но это точно не заговор производителей видеокарт. Начинается безумный спрос, безумные заработки, и мошенники, нечистые на руку люди, конечно, всплывают. Золотое правило - если вам кто-то что-то обещает гарантированно связанное так или иначе с криптовалютой, то посмотрите человеку в глаза и задумайтесь, нужно ли вам это. Потому что вам никто ничего не должен гарантировать, здесь гарантий никто не дает. С майнингом то же самое, никто не знает, что произойдет в конце лета. Однозначно сложность вырастет до небес, а как это отразится на цене, никто не знает. Просто если цена не изменится, то львиная доля тех, кто вошел, ничего не заработает, потому что сложность будет настолько большая, что все вернется на окупаемость, какой она была полгода назад. Когда, условно говоря, окупалось за год, а не за три-четыре месяца, как сейчас».

Также эксперт поделился своими мыслями насчет того, когда закончится код биткоина.

«Он закончиться не может, мы не доживем до того, как закончится эмиссия биткоина. Это будет 2139-2140 год. Думаю, мы с вами не доживем. Но майнинг продолжится. Сейчас майнит определенное количество видеокарт в мире. А через месяца два их будет раза в три больше. Соответственно, у всех будет такая логика - нужно их куда-то пристроить, чтобы они начали себя окупать. Они заполонят все, и произойдет выравнивание на всех рынках».

Павел Салас, генеральный директор eToro Russia&CIS, поделился с сайтом телеканала «Звезда» подробностями того, как происходит майнинг.

Сейчас это стало популярно в связи с самой популярностью криптовалют. Чем больше компьютеров появляется, тем больше мощность нужна для того, чтобы можно было запечатать этот блок... сейчас есть майнинговые фермы, то есть большое количество оборудования, и компьютеров, и видеокарт, которые используются для этого. Одни из самых больших таких ферм находятся в Китае, причем рядом с гидроэлектростанциями, то есть у них очень дешевое электричество. Это целый ангар, который оснащен всем этим оборудованием, там поддерживается специальная температура, и 24 часа в сутки компьютеры стараются подобрать код быстрее других компьютеров в сети, чтобы расшифровать блок и получить прибыль с этого. Соответственно, рядовому человеку сейчас уже пытаться майнить такие популярные криптовалюты как биткойн или эфириум достаточно сложно. Но с учетом того, что сейчас уже около трехсот разных криптовалют, если не больше, есть те, которые майнить пока еще можно, пока еще прибыльно. Люди пытаются влезть туда.

Разумеется, сейчас майнинг происходит за счет видеокарт, потому что считает быстрее, чем основной процессор компьютера. Поэтому акции компаний NVidia и AMD очень сильно подскочили. Та же NVidia планирует в конце этого года представить специальную аппаратуру для майнинга, это восемь видеокарт со специальным процессом, и это может уже самостоятельно майнить криптовалюты.

Люди, которые видят, что деньги практически ускользают у них из рук, пытаются как-то влезть и тоже получить кусочек пирога. Есть другие, более ушлые люди, которые видят, что есть большой спрос, с удовольствием сделают какое-нибудь предложение, которое может облегчить жизнь, и по дороге они получат деньги, не рискуя ничем. Потому что майнинг сопряжен с какими основными рисками? С тем, что стоимость аппаратуры просто не окупится. Минимальная стоимость криптовалют, даже если она пойдет вниз, будет стоить по большому счету стоимости аппаратуры плюс электричество».

Однако, Павел Салас предостерегает - занимаясь криптовалятами и майнингом на уровне любителя, можно легко стать жертвой мошенников:

«Когда есть спрос, будет и предложение для тех людей, которые ни за что хотят получить кусок денег еще быстрее. Эти консультанты... тут спорный вопрос. Я не могу сказать за всех, но, если конкретно выбирать, то можно понять, дурит он голову или нет. Надо понимать, чему он научит. Он научит купить компьютер, определенные видеокарты, скачать определенную программу, чтобы начать майнить? Если он будет учить этому, то в принципе здесь он не дурит голову, продает просто знания, для того чтобы человек мог сам заработать. Если же другие консультанты, которые, например, дают часть своего компьютера в лизинг или аренду, чтобы другие люди майниили на них, но они при этом сами выплачивают компенсацию в криптовалюте, а эти люди не видят ничего, что происходит на компьютере реально, то вот это уже ближе к тому, что дурят голову и пытаются создать пирамиду. Потому что один из главных моментов в блокчейне - это прозрачность. Если нет прозрачности в процессе, не видишь, что происходит, за что платишь деньги, за что получаешь их обратно, то здесь и возникают самые большие риски».

Такого же мнения придерживается и Сергей Лоншаков - визионер Airlab, блокчейн-разработчик. Он также рассказал сайту телеканала «Звезда» о том, что будет с майнингом в ближайшее время.

«Майнинг был все годы, - технологии блокчейн и криптовалюты, прибыльным. Это всегда было прибыльно, а сейчас когда о технологии блокчейна поговорили даже Владимир Путин с Виталиком Бутериным (основателем второй по капитализации валютной сети Etherium), это стало вызывать у людей серьезную заинтересованность. Этот небывалый всплеск продолжается уже ровно последние пол года. Уже были волны, всплеск доходности майнинга, первый всплеск доходности был, когда первые айсики (ASIC - специализированное оборудование для решения задач, необходимых для майнинга) начали производиться для майнинга биткоина и тогда доходность на этом оборудовании превышала все возможные смелые ожидания людей по вложениям. Эффективность майнинга доходила до 1000 %. Но эти волны быстро гасятся большим количеством людей, которые сразу вовлекаются.

Сейчас именно это и происходит, и биткоин вырос в несколько раз за последний год с нижних плашек с 700 долларов до 2700, и Etherium с 15 долларов до 300. Сейчас люди просто заходят на сайт и по расчету прибыльности видят, что видеокарта, купленная за 15 тысяч рублей, им принесет за год 60 тыс. рублей дохода. Но здесь нужно учитывать, что таких людей которые зашли сейчас и посмотрели, что прибыльность прямо в этот момент у видеокарты составляет 4 раза, они должны понимать, что сейчас зашло примерно миллион людей по всему миру и когда много новых мощностей подключится к сети все равно повысится ее сложность и доходность будет не такой, как они ожидают. Я вот о чем переживаю, что люди сейчас совсем ажиотажно бросились на майнинг, не имея абсолютно никакой компетентности, а потом будут разочарованы, потому что они относятся к майнингу как к дополнительному виду дохода. Это не так, майнинг - это только для тех, кто готов профессионально этим заниматься».

Способы передачи сигналов различного типа, данных и команд управления по оптоволоконным линиям связи начали активно внедряться в последнее десятилетие прошедшего века. Однако достаточно долго они не могли составить серьезной конкуренции (по крайней мере, в сегменте ТСБ) коаксиальному кабелю и витой паре. Несмотря на такие недостатки, как высокие сопротивление и емкость, что существенно ограничивает дальность передачи сигнала, коаксиальный кабель и витая пара превалировали в системах безопасности. Сегодня ситуация начинает меняться, причем рискну утверждать, что перемены эти кардинальные. Нет, в небольших системах, где видео и сигналы управления требуется передавать на небольшие расстояния, коаксиальный кабель и витая пара по-прежнему незаменимы. В крупных и особенно распределенных системах у оптоволокна альтернативы практически нет.
Дело в том, что оптоволоконное оборудование сегодня стало гораздо доступнее по цене и тенденция к его дальнейшему удешевлению достаточно устойчива.
Так что волоконная оптика в настоящее время дает возможность предложить заказчику систем безопасности не только надежное, но и экономически выгодное решение. Использование светового луча для передачи сигнала, широкая полоса пропускания позволяют передавать сигнал высокого качества на значительные расстояния без использования усилителей и повторителей.
Основными преимуществами использования волоконной оптики, как известно, являются:
– более широкая полоса пропускания (до нескольких гигагерц), чем у медного кабеля (до 20 МГц);
– невосприимчивость к электрическим помехам, отсутствие «земляных петель»;
– низкие потери при передаче сигнала, ослабление сигнала составляет около 0,2–2,5 дБ/км (для коаксиального кабеля RG59 – 30 дБ/км для сигнала 10 МГц);
– не вызывает помех в соседних «медных» или других оптоволоконных кабелях;
– большая дальность передачи;
– повышенная безопасность передачи данных;
– хорошее качество передаваемого сигнала;
оптоволоконный кабель миниатюрен и легок.

Принцип работы оптоволоконной линии
Волоконная оптика -–технология, в которой в качестве носителя информации используется свет, и не важно, о каком типе информации идет речь: аналоговом или цифровом. Обычно используется инфракрасный свет, а средой передачи служит стекловолокно.
Оптоволоконное оборудование может использоваться для передачи аналогового или цифрового сигнала различных типов.
В простейшем варианте исполнения оптоволоконная линия связи состоит из трех компонентов:
– волоконно-оптического передатчика для преобразования входного электрического сигнала от источника (например, видеокамеры) в модулированный световой сигнал;
– оптоволоконной линии, по которой световой сигнал передается на приемник;
– волоконно-оптического приемника, преобразующего сигнал в электрический, практически идентичный сигналу источника.
Источником распространяемого по оптическим кабелям света является светодиод (LED) (или полупроводниковый лазер – LD). На другом конце кабеля принимающий детектор преобразует световые сигналы в электрические. Волоконная оптика опирается на особый эффект – преломление при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Внутренняя жила (нить) оптоволоконного кабеля имеет более высокий показатель преломления, чем оболочка. Поэтому луч света, проходя по внутренней жиле, не может выйти за ее пределы из-за эффекта полного отражения (рис. 1).Таким образом, транспортируемый сигнал идет внутри замкнутой среды, проделывая путь от источника сигнала до его приемника.
Остальные элементы кабеля лишь предохраняют хрупкое волокно от повреждений внешней средой различной агрессивности.

Стань участником Партнерской программы «Актив-СБ» и вы получите:

Рассрочку платежа на складские позиции (при условии предоставления полного пакета документов);

Размещение компании в разделе "Монтаж", при закупке оборудования ежемесячно на сумму более 100 000 руб;

Кэшбэк по Бонусной программе в размере до 5% от суммы покупок

Рис. 1 Волоконная оптика основывается на эффекте полного отражения

Физические параметры оптических волокон
Все распространенные типы волокон характеризуются двумя важнейшими параметрами: затуханием и дисперсией.
Различают модовую и материальную дисперсии – искажения сигнала, вызванные особенностями распространения световых волн в среде.
Материальная дисперсия вызвана тем, что волны различной длины распространяются с различной скоростью, что связано с особенностями физического строения волокна. Данный эффект особенно заметен при использовании одномодового волокна. Уменьшение ширины полосы излучения источника и выбор оптимальной длины волны приводит к уменьшению материальной дисперсии.
Модовая дисперсия проявляется в многомодовом волокне из-за разницы длин путей, проходимых лучами различных мод. К ее уменьшению приводит уменьшение диаметра сердечника волокна, сокращение числа мод и применение волокна с градиентным профилем.
Затухание сигнала в оптоволоконном кабеле зависит от свойств материала и от внешних воздействий. Затухание характеризует потерю мощности передаваемого сигнала на заданном расстоянии, и измеряется в дБ/км, где децибел – логарифмическое выражение отношения мощности, выходящей из источника Р1, к мощности, входящей в приемник Р2, дБ = 10*log(P1/P2). Потери в 3 дБ означают, что половина мощности потеряна. Потеря 10 дБ означает, что только 1/10 мощности источника доходит до приемника, потери 90%. Волоконно-оптические линии, как правило, способны нормально функционировать при потерях в 30 дБ (прием всего 1/1000 мощности).
Есть два принципиально различных физических механизма, вызывающих данный эффект. Потери на поглощение. Связаны с преобразованием одного вида энергии в другой. Электромагнитная волна определенной длины вызывает в некоторых химических элементах изменение орбит электронов, что, в свою очередь, ведет к нагреву волокна. Естественно, что процесс поглощение волны тем меньше, чем меньше ее длина и чем чище материал волокна.
Потери на рассеяние. Причина снижения мощности сигнала в этом случаезначает выход части светового потока из волновода. Обусловлено это неоднородностями показателя преломления материалов. И с уменьшением длины волны потери рассеивания возрастают.

Рис. 2 Окна прозрачности оптических волокон

В теории лучших показателей общего затухания можно достичь на пересечении кривых поглощения и рассеивания. Реальность несколько сложнее и связана с химическим составом среды. В кварцевых волокнах (SiO2) кремний и кислород проявляют активность на определенной длине волны и существенно ухудшают прозрачность материала в двух окрестностях.
В итоге образуются три окна прозрачности (рис. 2), в рамках которых затухание имеет наименьшее значение. Самые распространенные значения длины волны:
0,85 мкм;
1,3 мкм;
1,55 мкм.
При аналоговой передаче чаще используются длины волн – 850 и 1310 мкм.
Именно под такие диапазоны разработаны специальные гетеролазеры, на которых основываются современные ВОЛС (волоконно-оптические системы связи).
В настоящее время оптоволокно с такой характеристикой уже считается устаревшим. Достаточно давно освоен выпуск оптоволокна типа AllWave ZWP (zero water peak, с нулевым пиком воды), в котором устранены гидроксильные ионы в составе кварцевого стекла. Такое стекло имеет уже не окно, а проем в диапазоне от 1300 до 1600 нм.
Все окна прозрачности лежат в инфракрасном диапазоне, т. е. свет, передающийся по ВОЛС, не виден глазу. Стоит заметить, что в стандартное оптоволокно можно ввести и видимое глазом излучение. Для этого применяют либо небольшие блоки, присутствующие в некоторых рефлектометрах, либо даже слегка переделанную китайскую лазерную указку. С помощью таких приспособлений можно находить переломы в шнурах. Там, где оптоволокно сломано, будет видно яркое свечение. Такой свет быстро затухает в волокне, так что использовать его можно только на коротких расстояниях (не более 1 км).

Аналоговая передача


В простейших передатчиках видеосигнала используется амплитудная модуляция (AM): интенсивность излучаемого света меняется пропорционально изменению амплитуды видеосигнала. Для получения более устойчивого результата, увеличения расстояния передачи сигналов, достижения лучшего соотношения сигнал/шум применяется частотная модуляция (FM).
Амплитудная модуляция (AM) – вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда. Интенсивность излучаемого света меняется пропорционально изменению амплитуды видеосигнала. Так как контролировать интенсивность излучения на высоком уровне достаточно трудно, даже небольшие ее изменения вносят значительные искажения в передаваемый сигнал.
Частотная модуляция (ЧМ) – вид аналоговой модуляции, при котором информационный сигнал управляет частотой световых импульсов. По сравнению с амплитудной модуляцией амплитуда остается постоянной.
Аналоговый способ применяется для передачи видео и аудиосигналов, сигналов управления, 10/100М Ethernet, контроля состояния контактов.
При этом надо заметить, что для передачи видео или аудиоинформации аналоговые устройства не самый удачный выбор. Передавать и принимать ее по ВОЛС с помощью аналогового оборудования бывает достаточно сложно. К тому же ценовые различия между аналоговым и аналогичным цифровым оборудованием незначительны.
Оборудование данного типа присутствует в ассортименте многих игроков рынка, с некоторыми моделями читатели смогут ознакомиться в обзорной части статьи.

S732DV (GE Security, Fiber Option)
Комплект аналоговых приемопередатчиков предназначен для передачи видео и данных по 1-му одномодовому или многомодовому оптоволокну на расстояние до 60 км. Отличительными особенностями устройства являются широкий диапазон рабочих температур (от -40 С до +75 С), технологии Plug-and-Play, CWDM, SMARTSä диагностика, позволяющая производить тестирование системы в режиме реального времени. На оборудование предоставляется гарантия 5 лет.

DE7400 (GE Security, серия EtherNAVä линейки IFS)


Серия 2-портовых приемопередатчиков рассчитана на передачу и прием данных со скоростями 10/100/1000 Мбит/с по многомодовому, одномодовому оптоволокну или по электрическому кабелю Cat 5. DE7400 отличается повышенной климатической защитой для работы при крайних значениях температуры (от -40 С до +85 С). Стандартной функцией является срабатывание контактов для инициирования удаленной тревоги при потере оптической связи. На коннекторе RJ-45 имеются светодиодные индикаторы статуса питания и скорости передачи данных. А также поддерживает протоколы RSTP, QoS/CoS, IGMP, VLAN, SNMP. Поддерживает стандарты IEEE 802.3, что делает возможным подключение любых устройств организации локальных сетей. На оборудование предоставляется пожизненная гарантия.
В линейке оборудования IFS имеется оборудование с различной комплектацией портов.

Приемник/передатчик OVT/OVR-1 («БИК-Информ»)
Аппаратура серии OVT/OVR-1(приемник/передатчик) предназначена для передачи аналоговых видеосигналов в реальном времени в системах видеонаблюдения на промышленных и протяженных объектах. Устройство позволяет передавать высококачественный цветной и ч/б видеосигналы по многомодовому оптическому волокну на расстояние до 5 км в полосе частот 25 Гц – 10 мГц при соотношении сигнал/шум не менее 5 дБ. Оборудование отличается высокой помехозащищенностью. Имеется встроенный генератор тестовых сигналов, системы АРУ (автоматическая регулировка уровня по уровню синхросигнала), низкое потребление тока – не более 85мА для передатчика и 75мА для приемника. Компактные размеры, позволяют размещать устройства как в монтажных шкафах на DIN-рейку, так и в небольших коммутационных коробках. Аппаратура не требует дополнительных настроек и может эксплуатироваться в диапазоне температур от -40 °C до +50 °C.

SFS10-100/W-80 (SF&T)


Комплект, состоящий из двух аналоговых приемопередатчиков, предназначен для организации 1-го канала данных Ethernet 10/100M по 1-му одномодовому оптоволокну. Данное устройство, последнее в серии SFS10-100/W-хх, позволяет увеличить расстояние передачи сигналов до 80 км. Режимы работы: дуплекс и полудуплекс.
Благодаря поддержке стандартов IEEE 802.3 10 Base-T/100Base-Tx/ 100Base-Fx возможно подключение большинства IP-устройств, используемых для организации локальных сетей, а также для построения систем видеонаблюдения.
Широкий диапазон рабочих температур (от -10 до +70 °С), поддержка Plug-and-play, отсутствие необходимости дополнительных настроек и использования аттенюаторов, а также компактные размеры (165 х 144 х 33 мм) делают инсталляцию устройств максимально быстрой и удобной. Модульная конструкция позволяет использовать SFS10-100/W-80 в качестве отдельных модулей и устанавливать в стойке.
На все оборудование SF&T предоставляется гарантия сроком на 3 года.

SVP-11T/12R
SVP-13T/14R («Спецвидеопроект»)

Устройства предназначены для передачи сигнала в системах телевизионного наблюдения на расстояния до 6–12 км. Комплекты из передатчика и приемника обеспечивают передачу одного композитного видеосигнала по многомодовому оптическому кабелю на длине волны 850 и 1310 нм.
Разрешение видеосигнала – 570 ТВЛ, отношение сигнал/шум на предельной дальности – не хуже 50 дБ, полоса частот: 50 Гц – 8 МГц. Система автоматической регулировки усиления постоянно поддерживает на выходе размах видеосигнала 1 В. Световая сигнализация показывает наличие или отсутствие видеосигнала. Устройства имеют малые габариты, низкое энергопотребление, снабжены элементами настенного крепления.
Устройства защищены от переполюсовки питания – при неправильном включении не выходят из строя. Работают в режиме plug and play – настройка и регулировка при их установке не требуется.
Приемники сигналов исполняются также в корпусе, предназначенном для установки в стандартные 19” стойки.

SVP-21T
SVP-22T («Спецвидеопроект»)


Передатчики видеосигнала по оптоволокну SVP-21T и SVP-22T предназначены для работы с камерами телевизионного наблюдения вне помещений. Герметичный кожух оснащен гермовводами и имеет степень защиты от атмосферных воздействий IP66. Рабочая температура от -35 до +50 °С. Сигнал передается на большие расстояния: до 6–12 км.
Передатчики SVP-21T и SVP-22T в комплекте с приемниками SVP-12R, SVP-14R, SVP-12-2Rack, SVP-14-2Rack обеспечивают передачу одного композитного видеосигнала по многомодовому оптическому кабелю на длине волны 850 и 1310 нм. Устройства выпускаются с питанием от сети переменного тока с напряжением 220 В или 24 В. Работают в режиме plug and play – настройка и регулировка при их установке не требуется. Система автоматической регулировки усиления в приемниках постоянно поддерживает на выходе размах видеосигнала 1 В.
В гермокорпусе имеется свободное пространство для кроссировки кабеля другого оборудования. Габаритные размеры: 200 х 150 х 55 мм.

Волоко́нно-опти́ческая связь - способ передачи информации, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем - волоконно-оптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования пропускная способность волоконно-оптических линий многократно превышает пропускную способность всех других систем связи и может измеряться Терабитами в секунду. Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконно-оптическая связь свободна от электромагнитных помех и труднодоступна для несанкционированного использования: незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно.

Физическая основа

В основе волоконно-оптической связи лежит явление полного внутреннего отражения электромагнитных волн на границе раздела диэлектриков с разными показателями преломления. Оптическое волокно состоит из двух элементов - сердцевины, являющейся непосредственным световодом, и оболочки. Показатель преломления сердцевины несколько больше показателя преломления оболочки, благодаря чему луч света, испытывая многократные переотражения на границе сердцевина-оболочка, распространяется в сердцевине, не покидая её.

Применение

Волоконно-оптическая связь находит всё более широкое применение во всех областях - от компьютеров и бортовых космических, самолётных и корабельных систем, до систем передачи информации на большие расстояния, например, в настоящее время успешно используется волоконно-оптическая линия связи Западная Европа - Япония, большая часть которой проходит по территории России. Кроме того, увеличивается суммарная протяжённость подводных волоконно-оптических линий связи между континентами.

Волокно в каждый дом (англ. Fiber to the premises, FTTP или Fiber to the home, FTTH ) - термин, используемый телекоммуникационными интернет-провайдерами, для обозначения широкополосных телекоммуникационных систем, базирующихся на проведении волоконного канала и его завершения на территории конечного пользователя путём установки терминального оптического оборудования для предоставления комплекса телекоммуникационных услуг, включающего:

  • высокоскоростной доступ в Интернет;
  • услуги телефонной связи;
  • услуги телевизионного приёма.

Стоимость использования волоконно-оптической технологии уменьшается, что делает данную услугу конкурентоспособной по сравнению с традиционными услугами.

История

Историю систем передачи данных на большие расстояния следует начинать с древности, когда люди использовали дымовые сигналы. С того времени эти системы кардинально улучшились, появились сначала телеграф, затем - коаксиальный кабель. В своем развитии эти системы рано или поздно упирались в фундаментальные ограничения: для электрических систем это явление затухания сигнала на определённом расстоянии, для сверхвысокочастотных (СВЧ) систем - несущая частота. Поэтому продолжались поиски принципиально новых систем, и во второй половине XX века решение было найдено - оказалось, что передача сигнала с помощью света гораздо эффективнее как электрического, так и СВЧ-сигнала.

В 1966 году Као и Хокам из STC Laboratory (STL) представили оптические нити из обычного стекла, которые имели затухание в 1000 дБ/км (в то время как затухание в коаксиальном кабеле составляло всего 5-10 дБ/км) из-за примесей, которые в них содержались и которые, в принципе, можно было удалить.

Существовало две глобальных проблемы при разработке оптических систем передачи данных: источник света и носитель сигнала. Первая разрешилась с изобретением лазеров в 1960 году, вторая - с появлением высококачественных оптических кабелей в 1970 году. Это была разработка Corning Incorporated (англ. ) . Затухание в таких кабелях составляло около 20 дБ/км, что было вполне приемлемым для передачи сигнала в телекоммуникационных системах. В то же время были разработаны достаточно компактные полупроводниковые GaAs-лазеры.

После интенсивных исследований в период с 1975 по 1980 год появилась первая коммерческая волоконно-оптическая система, оперировавшая светом с длиной волны 0,8 мкм и использовавшая полупроводниковый лазер на основе арсенида галлия (GaAs). Битрейт систем первого поколения составлял 45 Мбит/с, расстояние между повторителями - 10 км.

22 апреля 1977 года в Лонг-Бич, штат Калифорния, компания General Telephone and Electronics впервые использовала оптический канал для передачи телефонного трафика на скорости 6 Мбит/с.

Второе поколение волоконно-оптических систем было разработано для коммерческого использования в начале 1980-х. Они оперировали светом с длиной волны 1,3 мкм от InGaAsP-лазеров. Однако такие системы всё ещё были ограниченны из-за рассеивания, возникающего в канале. Однако уже в 1987 году эти системы работали на скорости до 1,7 Гбит/с при расстоянии между повторителями 50 км.

Основные определения

Оптоволокно – это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения.

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля , только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции – стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. Мы имеем дело с режимом, так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется, однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Волоконная оптика – раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.

Оптоволоконная связь – связь, построенная на базе оптоволоконных кабелей. Широко применяется также сокращение ВОЛС (волоконно-оптическая линия связи). Используется в различных сферах человеческой деятельности, начиная от вычислительных систем и заканчивая структурами для связи на больших расстояниях. Является сегодня наиболее популярным и эффективным методом для обеспечения телекоммуникационных услуг.

Материалы

Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как флуоро-цирконат, флуоро-алюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5.

В настоящее время развивается применение пластиковых оптических волокон (Plastic optical fibers).

В качестве источников излучения света в волоконно-оптических кабелях применяются:

  1. светодиоды, или светоизлучающие диоды (Light Emmited Diode, LED);
  2. полупроводниковые лазеры, или лазерные диоды (Laser Diode).

Для одномодовых кабелей применяются только лазерные диоды, так как при таком малом диаметре оптического волокна световой поток, создаваемый светодиодом, невозможно без больших потерь направить в волокно – он имеет чересчур широкую диаграмму направленности излучения, в то время как лазерный диод – узкую. Поэтому более дешевые светодиодные излучатели используются только для многомодовых кабелей.

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу , принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда – необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Классификация

Выделяют несколько классов оптоволокон по особенностям структуры и принципу действия:

  1. Одномодовые оптоволокна
  2. Многомодовые оптоволокна
  3. Оптоволокна с градиентным показателем преломления

Оптоволокна со ступенчатым профилем распределения показателей преломления.

Профиль показателя преломления различных типов оптических волокон: многомодовое волокно со ступенчаты изменением показателя преломления (а); многомодовое волокно с плавным изменением показателя преломления (6); одномодовое волокно (в).

Все оптические волокна делятся на две основные группы: многомодовые MMF (multi mode fiber) и одномодовые SMF (single mode fiber).

Понятие «мода», описывает режим распространения световых лучей во внутреннем сердечнике кабеля. В одномодовом кабеле используется центральный проводник очень малого диаметра, соизмеримого c длиной волны света – от 5 до 10 мкм. При этом практически все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. Изготовление сверхтонких качественных волокон для одномодового кабеля представляет сложный технологический процесс, что делает одномодовый кабель достаточно дорогим. Кроме того, в волокно такого маленького диаметра достаточно сложно направить пучок света, не потерян при этом значительную часть его энергии. В многомодовых кабелях используются более широкие внутренние сердечники, которые легче изготовить технологически. В стандартах определены два наиболее употребительных многомодовых кабеля: 62,5/125 мкм и 50/125 мкм, где 62,5 мкм или 50 мкм – диаметр центрального проводника, а 125 мкм – диаметр внешнего проводника.

Многомодовые волокна

Многомодовые волокна подразделяются на ступенчатые (step index multi mode fiber) и градиентные(graded index multi mode fiber).

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается. Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки – 125 мкм (это иногда обозначается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0,85 мкм. Допустимая длина кабеля достигает 2-5 км. В настоящее время многомодовый кабель – основной тип оптоволоконного кабеля, так как он дешевле и доступнее.

Многомодовые волокна со ступенчатым профилем

Первые волокна для передачи данных были многомодовыми со ступенчатым профилем показателя преломления. Для распространения света благодаря полному внутреннему отражению, необходимо иметь показатель преломления стекла сердцевины n1 , немного большим, чем показатель преломления стекла оболочки n2 . На границе раздела двух стеклянных сред должно выполняться условие: n1 > n2 . Если показатель преломления сердцевины оптического волокна n1 одинаков по всему поперечному сечению, то тогда говорят, что волокно имеет ступенчатый профиль. Такой волоконный световод является многомодовым. Импульс света, распространяющийся в нем, состоит из многих составляющих, направляемых в отдельных модах световода. Каждая из этих мод возбуждается на входе волокна под своим определённым углом ввода в световод и направляется по нему вдоль сердцевины, проходя с различными траекториями движения луча. Каждая мода проходит разное расстояние оптического пути и поэтому проходит всю длину световода за разное время. При этом, если мы подадим на вход световода короткий (прямоугольный) импульс света, то на выходе многомодового световода получим «размытый» по времени импульс. Эти искажения, обусловленные дисперсией времени задержки отдельных мод, называются модовой дисперсией.

Многомодовые волокна с градиентным профилем

В многомодовом оптическом волокне со ступенчатом профилем, моды распространяются по оптическим путям разной длины и поэтому приходят к концу световода в разное время. Эта дисперсия может быть значительно уменьшена, если показатель преломления стекла сердцевины уменьшается параболически от максимальной величины n1 у оси световода, до величины показателя преломления n2 на поверхности границы раздела с оболочкой. Оптический волновод с таким профилем, (когда показатель преломления плавно изменяется) называется градиентным волоконным световодом. Лучи света проходят по такому волокну по волно- или винтообразным спиралям. Чем дальше отклоняется луч света от оси световода, тем сильнее он заворачивается обратно к оси. При этом, так как показатель преломления от оси к краю сердцевины уменьшается, то увеличивается скорость распространения света в среде. Благодаря этому более «длинные» оптические пути компенсируются меньшим временем прохождения. В результате различие временных задержек различных лучей почти полностью исчезает.

Одномодовые волокна

Одномодовые волокна подразделяются на ступенчатые одномодовые волокна (step index single mode fiber) или стандартные волокна SF (standard fiber), на волокна со смещенной дисперсией DSF (dispersion-shifted single mode fiber), и на волокна с ненулевой смещенной дисперсией NZDSF (non-zero dispersion-shifted single mode fiber).

В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего все они достигают приемника одновременно, и форма сигнала практически не искажается. Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны. Такие приемопередатчики пока еще сравнительно дороги и не слишком долговечны. Однако в перспективе одномодовый кабель должен стать основным благодаря своим прекрасным характеристикам.

Волокна со ступенчатым профилем

Модовая дисперсия в оптическом волокне может быть исключена, если структурные параметры ступенчатого световода подобрать таким образом, что в нём будет направляться только одна мода, а именно – фундаментальная (основная) мода. Однако и основная мода также уширяется во времени по мере её прохождения по такому световоду. Это явление называется хроматической дисперсией. Она является свойством материала, поэтому как правило, имеет место в любом оптическом световоде, но в диапазоне длин волн от 1200 до 1600 нм она относительно мала или отсутствует. Для изготовления ступенчатого волоконного световода с малым затуханием, который направляет только фундаментальную моду в диапазоне длин волн более 1200 нм диаметр поля моды должен быть уменьшен до 8-10 мкм. Такой ступенчатый волоконный световод называется стандартным одномодовым оптическим волокном.

Волокна с многоступенчатым профилем

Профиль показателя преломления обычного одномодового световода имеет ступенчатый профиль. Для такой структуры профиля сумма дисперсии материала в волноводной дисперсии при длине волны около 1300 нм равна нулю. Для современных устройств передачи данных по оптическому волокну, использующих длины волн 1550 нм или одновременную передачу сигналов на нескольких длинах волн, желательно иметь нулевую дисперсию и при других длинах волн. А для этого необходимо изменить волновую дисперсию и, следовательно, структуру профиля преломления волоконного световода. Это приводит к многоступенчатому или сегментному профилям показателя преломления. Используя эти профили, можно производить волоконные световоды, у которых длина волны с нулевой дисперсией сдвинута до 1550 нм (волокно со смещённой дисперсией) или величины дисперсии очень малы во всём диапазоне волн от 1300 нм до 1550 нм (волокно со сглаженной или компенсированной дисперсией).

Диаметр сердцевины одномодовых волокон 7-9 микрон. Благодаря малому диаметру достигается передача по волокну лишь одной моды электромагнитного излучения, за счёт чего исключается влияние дисперсионных искажений. В настоящее время практически все производимые волокна являются одномодовыми.

Элементы волоконно-оптической линии

  1. Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю, и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  1. Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных.

  1. Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  1. Микросхема синхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  1. Оптический кабель , состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид . Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET

Стандарт SDH

Скорость передачи

51,84 Мб/сек

155,52 Мб/сек

622,08 Мб/сек

2,4883 Гб/сек

9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Преимущества оптоволоконного типа связи

  1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  2. Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  3. Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, (линии электропередачи, электродвигательные установки, т.д.) и погодных условий;
  4. Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  5. Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  6. Долговечность ВОЛС – срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  1. Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  2. Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы . В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Санкт-Петербургский национальный исследовательский университет

информационных технологий , механики и оптики

Факультет ИКВО Кафедра МИПиУ

Направление (специальность) 090900 «Информационная безопасность» Группа 2750

Квалификация (степень) бакалавр

По курсу «Концепции современного естествознания»

Волоконно-оптическая связь.

Выполнил:

Студент 2-го курса

Богопольская Е.А.

к.т.н., доцент каф.ПБКС

Комарова И.Э.

Г.С-Петербург

1. Основные понятия………………………………1

2.Материалы………………………………..............2

3.История…………………………………………...2

4.Классификация…………………………………...3

5.Элементы волоконно-оптических линий………7

6.Преимущества оптоволоконного типа связи…...9

7.Недостатки оптоволоконного типа связи...…….9

8.Применение линий оптоволоконной связи…….9



Оптическая связь

связь посредством электромагнитных колебаний оптического диапазона (как правило, 10 13 -10 15 гц ). Использование света для простейших (малоинформативных) систем связи имеет давнюю историю (см., например, Оптический телеграф). С появлением Лазер ов возникла возможность перенести в оптический диапазон разнообразные средства и принципы получения, обработки и передачи информации, разработанные для радиодиапазона. Огромный рост объёмов передаваемой информации и вместе с тем практически полное исчерпание ёмкости радиодиапазона придали проблеме освоения оптического диапазона в целях связи исключительную важность. Основные преимущества О. с. по сравнению со связью на радиочастотах, определяемые высоким значением оптической частоты (малой длиной волны): большая ширина полосы частот для передачи информации, в 10 4 раз превышающая полосу частот всего радиодиапазона, и высокая направленность излучения при входных и выходных Апертура х, значительно меньших апертур антенн в радиодиапазоне. Последнее достоинство О. с. позволяет применять в передатчиках оптических систем связи генераторы с относительно малой мощностью и обеспечивает повышенную помехозащищенность и скрытность связи.

Структурно линия О. с. аналогична линии радиосвязи (См. Радиосвязь). Для модуляции излучения оптического генератора либо управляют процессом генерации, воздействуя на источник питания или на оптический резонатор генератора, либо применяют дополнительные внешние устройства, изменяющие выходное излучение по требуемому закону (см. Модуляция света). При помощи выходного оптического узла излучение формируется в малорасходящийся луч, достигающий входного оптического узла, который фокусирует его на активную поверхность фотопреобразователя. С выхода последнего электрические сигналы поступают в узлы обработки информации. Выбор несущей частоты в системе О. с. - сложная комплексная задача, в которой должны учитываться условия распространения оптического излучения в среде передачи, технические характеристики лазеров, модуляторов, приёмников света (См. Приёмники света), оптических узлов. В системах О. с. находят применение два способа приёма сигналов - прямое детектирование и гетеродинный приём. Гетеродинный метод приёма, обладая рядом преимуществ, главные из которых - повышенная чувствительность и дискриминация фоновых помех, в техническом отношении много сложнее прямого детектирования. Серьёзным недостатком этого метода является существенная зависимость величины сигнала на выходе фотоприёмника от характеристик трассы.

В зависимости от дальности действия системы О. с. можно разделить на следующие основные классы: открытые наземные системы ближнего радиуса действия, использующие прохождение излучения в приземных слоях атмосферы; наземные системы, использующие закрытые световодные каналы (волоконные Световод ы, светонаправляющие зеркально-линзовые структуры) для высокоинформативной связи между АТС, ЭВМ, для междугородной связи; высокоинформативные линии связи (главным образом ретрансляционные), действующие в ближнем космическом пространстве; дальние космические линии связи.

В СССР и за рубежом накоплен определённый опыт работы с открытыми линиями О. с. в приземных слоях атмосферы с использованием лазеров. Показано, что сильная зависимость надёжности связи от атмосферных условий (определяющих оптическую видимость) на трассе распространения ограничивает применение открытых линий О. с. относительно малыми расстояниями (несколько километров) и лишь для дублирования существующих кабельных линий связи, использования в малоинформативных передвижных системах, системах сигнализации и т.п. Однако открытые линии О. с. перспективны как сродство связи между Землёй и космосом. Например, с помощью лазерного луча можно передавать информацию на расстояние Оптическая связь10 8 км со скоростью до 10 5 бит в сек , в то время как микроволновая техника при этих расстояниях обеспечивает скорость передачи только Оптическая связь10 бит в сек . В принципе, О. с. в космосе возможна на расстояниях до 10 10 км , что немыслимо для иных систем связи; однако построение космических линий О. с. технически весьма сложно.

В земных условиях наиболее перспективны системы О. с., использующие закрытые световодные структуры. В 1974 показана возможность изготовления стеклянных световодов с затуханием передаваемых сигналов не более нескольких дб /км . При современном уровне техники, используя полупроводниковые диодные излучатели, работающие как в лазерном (когерентном), так и в некогерентном режимах, кабели со световолоконными жилами и полупроводниковые приёмники, можно построить магистрали связи на тысячи телефонных каналов с ретрансляторами, располагаемыми на расстояниях около 10 км друг от друга. Интенсивные работы по созданию лазерных излучателей со сроками службы Оптическая связь10-100 тыс. ч , разработка широкополосных высокочувствительных приёмных устройств, более эффективных световодных структур и технологии изготовления световодов большой протяжённости, по-видимому, сделают О. с. конкурентоспособной со связью по существующим кабельным и релейным магистралям уже в ближайшем десятилетии. Можно ожидать, что О. с. займёт важное место в общегосударственной сети связи наряду с др. средствами. В перспективе системы О. с. со световодными линиями по своим информационным возможностям и стоимости на единицу информации могут стать основным видом магистральной и внутригородской связи.

Лит.: Чернышев В. Н., Шереметьев А. Г., Кобзев В. В., Лазеры в системах связи, М., ; Пратт В. К., Лазерные системы связи, пер. с англ., М., 1972; Применение лазеров, пер. с англ., М., 1974.

А. В. Иевский, М. Ф. Стельмах.


Большая советская энциклопедия . - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Оптическая связь" в других словарях:

    Передача информации с помощью света. Простейшие (малоинформативные) виды О. с. использовались с кон. 18 в. (напр., семафорная азбука). С появлением лазеров возникла возможность перенести в оптич. диапазон средства и принципы получения, обработки… … Физическая энциклопедия

    ОПТИЧЕСКАЯ СВЯЗЬ СМ - Связь оптическая … Большая политехническая энциклопедия

    Большой Энциклопедический словарь

    оптическая связь - См. optical communications. Различие в употреблении двух терминов состоит в следующем: понятие optical чаще всего относится к оборудованию оптической связи, а термин lightwave к средствам обработки оптических сигналов. [Л.М. Невдяев.… … Справочник технического переводчика

    Связь между двумя или несколькими пунктами посредством света, световых сигналов. Использование света для передачи простейших сообщений имеет давнюю историю. С древнейших времён огни костров предупреждали о приближении врагов, указывали путь… … Энциклопедия техники

    Связь посредством электромагнитных колебаний оптического диапазона (1013 1015 Гц), обычно с применением лазеров. Системы оптической связи структурно подобны системам радиосвязи. Перспективны линии оптической связи космические открытые и наземные… … Энциклопедический словарь

    оптическая связь - optinis ryšys statusas T sritis automatika atitikmenys: angl. optical communication vok. optische Kopplung, f; optische Nachrichtenübertragung, f rus. оптическая связь, f pranc. communication optique, m … Automatikos terminų žodynas

    Связь между двумя или неск. пунктами посредством электромагнитных волн оптич. диапазона. Емкость оптич. канала связи значительно превышает ёмкость радиочастотных каналов, т. к. оптическое излучение имеет частоты порядка 10 1000 ТГц (1012 1015 Гц) … Большой энциклопедический политехнический словарь

    Волоконно оптическая связь вид проводной электросвязи, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем волоконно… … Википедия

МИР ЦИФРЫ И СТЕКЛА

ВВЕДЕНИЕ

У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания

За последнюю четверть века оптоволоконная связь стала широко распространенным методом передачи видео- и аудиосигнала, других аналоговых сигналов и цифровых данных. У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания. По этим и многим другим причинам волоконно-оптические системы передачи информации все глубже проникают в самые разные области информационных технологий.

Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят

Однако, несмотря на эти преимущества, в оптоволоконных системах до недавнего времени использовались те же самые аналоговые технологии передачи сигнала, что и в их медных предшественниках. Сейчас, когда появилось новое поколение аппаратуры, основанное исключительно на цифровых методах обработки сигналов, оптоволоконная связь вновь выводит телекоммуникации на совершенно новый уровень. Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят.

В этом пособии рассматривается техника цифровой передачи сигнала по оптоволоконным кабелям и ее экономические и технологические преимущества.

АНАЛОГОВАЯ ПЕРЕДАЧА ПО ОПТОВОЛОКНУ

Чтобы в должной мере оценить преимущества цифровых технологий, давайте вначале рассмотрим традиционные методы передачи аналоговых сигналов по оптоволокну. Для передачи аналоговых сигналов используют амплитудную (АМ) и частотную (ЧМ) модуляцию. В обоих случаях на вход оптического передатчика поступает низкочастотный аналоговый аудио- и видеосигнал или данные, которые преобразуются в оптический сигнал. Делается это по-разному.

В системах с амплитудной модуляцией оптический сигнал – это световой поток с интенсивностью, меняющейся в соответствии с изменениями входного электрического сигнала. В качестве источника света используются либо светодиоды, либо лазеры. К сожалению, и те и другие нелинейны, то есть в полном диапазоне яркостей от отсутствия излучения до максимального значения не соблюдается пропорциональность между входным сигналом и интенсивностью света. Тем не менее, именно такой способ управления используется в системах с амплитудной модуляцией. В результате возникают различные искажения передаваемого сигнала:

  • снижение отношения сигнал/шум по мере роста длины кабеля;
  • нелинейное дифференциальное усиление и фазовые ошибки при передаче видеосигнала;
  • ограничение динамического диапазона аудиосигнала.

Для улучшения качества работы оптоволоконных систем передачи сигнала было предложено использовать частотную модуляцию, при которой источник света всегда либо выключен полностью, либо включен на полную мощность , а частота следования импульсов изменяется в соответствии с амплитудой входного сигнала. Для тех, кто знаком с частотной модуляцией сигналов в радиотехнике, применение здесь этого термина может показаться необоснованным, поскольку в контексте оптоволоконных систем это воспринимается как метод управления частотой самого светового излучения. Это не так, и в самом деле более правильно было бы использовать термин «фазоимпульсная модуляция» (ФИМ), но в области оптоволоконной техники устоялась именно такая терминология. Следует всегда помнить, что слово «частотная» в названии метода модуляции означает частоту следования импульсов, а не частоту несущих их световых волн.

При амплитудной модуляции уровень входного сигнала представляется интенсивностью светового луча

При частотной модуляции уровень входного сигнала представляется частотой следования световых импульсов
Рис. 1. Сравнение амплитудной и частотной модуляции

Хотя частотная модуляция устраняет многие проблемы управления яркостью излучателя, свойственные системам с АМ, у нее есть и свои трудности. Одна из них – известные в ЧМ-системах перекрестные помехи. Они наблюдаются, в частности, при передаче нескольких сигналов с частотной модуляцией по одному оптоволокну, например, при использовании мультиплексора. Перекрестные помехи возникают в передатчике или приемнике как результат нестабильности настройки важных схем фильтрации сигнала, предназначенных для разделения несущих частот. Если фильтры настроены некачественно, то частотно-модулированные несущие взаимодействуют друг с другом и искажаются. Инженеры, специализирующиеся на оптоволоконных системах, могут создать ЧМ-системы, в которых вероятность возникновения перекрестных помех сведена к минимуму, но любое усовершенствование конструкции влечет за собой возрастание стоимости приборов.

Еще один тип искажений называется интермодуляцией. Как и перекрестные помехи, интермодуляция возникает в системах, предназначенных для передачи сразу нескольких сигналов по одному оптоволокну. Интермодуляционные искажения возникают в передатчике чаще всего как результат нелинейности в цепях, общих для различных ЧМ-несущих. Как следствие, до объединения нескольких несущих в один оптический сигнал они действуют друг на друга, снижая точность передачи исходного сигнала.

ЦИФРОВЫЕ СИСТЕМЫ

Как и в аналоговых системах, на передатчики цифровых систем поступает низкочастотный аналоговый аудио- и видеосигнал или цифровые данные, которые преобразуются в оптический сигнал. Приемник получает оптический сигнал и выдает электрический сигнал исходного формата. Различие состоит в том, как сигналы обрабатываются и передаются от передатчика к приемнику.



Рис. 2. Цифровая система передачи аналогового сигнала

В чисто цифровых системах входной низкочастотный сигнал сразу поступает на аналого-цифровой преобразователь, который входит в состав передатчика. Там сигнал преобразуется в последовательность логических уровней – нулей и единиц, называемую цифровым потоком. Если передатчик многоканальный, то есть рассчитан на работу с несколькими сигналами, то несколько цифровых потоков объединяются в один, и он управляет включением и выключением одного излучателя, которое происходит с очень высокой частотой.

На приемном конце происходит обратное преобразование сигнала. Из комбинированного цифрового потока выделяются индивидуальные потоки, соответствующие отдельным передаваемым сигналам. Они поступают на цифро-аналоговые преобразователи, после чего выдаются на выходы в исходном формате (рис. 2).

Чисто цифровая передача сигнала имеет массу преимуществ над традиционными АМ- и ЧМ-системами – от универсальности и более качественного сигнала до меньшей стоимости монтажа. Давайте рассмотрим некоторые из преимуществ более подробно и попутно обсудим выгодные как для установщика систем, так и для их пользователя экономические показатели.

ТОЧНОСТЬ ПЕРЕДАЧИ СИГНАЛА

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи. ЧМ-системы работают несколько лучше: в них качество сигнала хотя и снижается, но в не очень длинных линиях остается примерно постоянным, резко снижаясь лишь при достижении некоторой предельной длины. Только в полностью цифровых системах гарантируется сохранение качества сигнала при передаче по оптоволоконной линии связи независимо от расстояния между передатчиком и приемником и количества передаваемых каналов (конечно, в пределах возможностей системы).

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи

Точность воспроизведения передаваемого сигнала представляет значительную проблему при разработке систем для организации нескольких каналов передачи по одному оптоволокну (мультиплексоров). Например, в аналоговой системе, рассчитанной на передачу четырех каналов видео- или аудиосигнала, для того, чтобы уложиться в полосу пропускания системы, приходится ограничивать полосу, отводимую отдельным каналам. В цифровых системах не приходится идти на такой компромисс: по одному световоду можно передавать один, четыре и даже десять сигналов без снижения качества.

БОЛЕЕ ВЫСОКОЕ КАЧЕСТВО ПЕРЕДАЧИ СИГНАЛОВ

Рис. 3

Передача аналоговых сигналов в цифровой форме обеспечивает более высокое качество, чем чисто аналоговая. Искажение сигнала при таком способе передачи может происходить только при аналого-цифровом и обратном цифро-аналоговом преобразовании. Хотя никакое преобразование не идеально, современные технологии настолько совершенны, что даже недорогие АЦП и ЦАП обеспечивают гораздо более высокое качество видео- и аудиосигнала, чем можно достичь в аналоговых АМ- и ЧМ-системах. Это легко видно из сравнения отношений сигнал-шум и нелинейных искажений (дифференциальной фазы и дифференциального усиления) цифровых и аналоговых систем, предназначенных для передачи сигналов одного формата по оптоволокну одинакового типа на одной и той же длине волны.

Цифровые технологии предоставляют инженерам невиданную ранее гибкость при создании оптоволоконных систем. Теперь для различных рынков, задач и бюджетов легко подобрать нужный уровень производительности. Например, меняя разрядность аналого-цифрового преобразователя, можно влиять на необходимую для передачи сигнала полосу пропускания системы, и, как следствие, общую производительность и стоимость. При этом другие свойства цифровой системы – отсутствие искажений и независимость качества работы от длины линии – сохраняются вплоть до максимального расстояния передачи. При разработке аналоговых систем инженеры всегда находятся в клещах между стоимостью системы и ее техническими характеристиками , пытаясь сбалансировать их без ущерба для критически важных параметров передаваемых сигналов. В цифровых системах масштабирование систем и управление их производительностью и стоимостью – гораздо менее сложная задача.

НЕОГРАНИЧЕННОЕ РАССТОЯНИЕ ПЕРЕДАЧИ

Другое преимущество цифровых систем над аналоговыми предшественниками – их способность восстанавливать сигнал, не внося в него дополнительных искажений. Такое восстановление выполняется в специальном приборе, называемом репитером или линейным усилителем.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ- систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

По мере прохождения света по оптоволокну его интенсивность постепенно снижается и, в конце концов, становится недостаточной для детектирования. Если же немного не доходя до того места, где свет становится слишком слабым, установить линейный усилитель, то он усилит сигнал до его исходной мощности, и его можно будет передавать дальше на такое же расстояние. Важно отметить, что в линейном усилителе восстанавливается цифровой поток, что не оказывает никакого влияния на качество закодированного в нем аналогового видео- или аудиосигнала независимо от того, сколько раз выполнялось восстановление в линейных усилителях на пути следования сигнала по длинной оптоволоконной линии.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ-систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

МЕНЬШАЯ СТОИМОСТЬ

Оценивая те многочисленные преимущества, которыми обладают цифровые оптоволоконные системы, можно предположить, что они должны стоить гораздо дороже традиционных аналоговых систем. Однако это не так, и пользователи цифровых систем, напротив, экономят свои деньги.

На конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы

Стоимость цифровых компонентов существенно снизилась за последние годы, и изготовители оборудования смогли разработать и предложить к продаже изделия, которые стоят так же или даже дешевле, как и аналоговые приборы предыдущего поколения. Конечно, некоторые фирмы хотят убедить общественность в том, что превосходное качество цифровых систем можно получить только за дополнительную плату, но на деле они просто решили не делить сэкономленное со своими клиентами. Но на конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы.

Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем

На стоимость установки и эксплуатации оптоволоконной системы влияют и другие факторы. Наиболее очевидный из них - затраты на кабель. Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем. Преимущество особенно хорошо заметно там, где надо одновременно передавать сигналы различных типов, например, видео и звук или звук и данные. Без особых проблем инженеры смогут сконструировать цифровую систему с приемлемой стоимостью, в которой по одному оптоволокну будут передаваться сигналы различных типов, например, два канала видео и четыре канала звука. При использовании аналоговых технологий, скорее всего, пришлось бы делать две отдельные системы, или, как минимум, использовать два раздельных кабеля для передачи аудио- и видеосигналов.

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны

Даже в случаях, когда по одному оптоволокну надо передавать несколько однотипных сигналов, цифровые системы предпочтительнее, поскольку работают более надежно и обеспечивают более высокое качество сигнала. Например, в цифровом видеомультиплексоре можно передать десять каналов с одинаково высоким качеством , а в аналоговой системе такое вообще невозможно.

Следует учитывать и неизбежные за годы эксплуатации оптоволоконных систем расходы на техническое обслуживание и ремонт. И здесь преимущество за цифровыми системами. Во-первых, для них не требуется первоначальная настройка после монтажа – передатчик и приемник просто соединяются оптоволоконным кабелем, и система готова к работе. Аналоговым системам, как правило, требуется подстройка под параметры конкретной линии передачи, учитывающая ее длину и интенсивность сигнала. Дополнительное время на регулировку влечет за собой дополнительные затраты.

Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны. Для них не потребуется повторная на- стройка, а поиск неисправности займет гораздо меньше времени, поскольку в них нет перекрестных искажений, дрейфа параметров и других недостатков, свойственных традиционным аналоговым системам.

Подведем итог. Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже. Цифровые оптоволоконные системы обеспечивают очевидное экономическое преимущество на всех уровнях.

ВЫВОДЫ

Как оптоволоконная технология имеет много преимуществ по сравнению с традиционными медными проводами и коаксиальными кабелями, так и цифровая передача информации продвигает оптоволоконную технологию на несколько ступеней вверх, давая пользователям целый набор новых полезных качеств. Цифровые системы обладают уникальными характеристиками: точностью передачи сигнала на всей длине линии связи, минимальными вносимыми искажениями (в том числе отсутствием перекрестных искажений и интермодуляции), возможностью многократного восстановления цифрового потока при его передаче по длинной линии без ущерба для качества закодированного в нем аналогового сигнала. Это гарантирует уровень верности воспроизведения аналогового сигнала, недостижимый для аналоговых систем.

Цены на компоненты цифровых и аналоговых оптоволоконных систем сопоставимы, а с учетом затрат на монтаж, эксплуатацию и техническое обслуживание цифровые системы дают очевидную экономическую выгоду.

Разрабатывая новую оптоволоконную систему, не тратьте время на анализ преимуществ и недостатков цифровых и аналоговых систем, поскольку выбор совершенно очевиден: цифровые системы лучше с любой точки зрения. Гораздо полезнее будет ограничиться только ими и подобрать те изделия, которые наилучшим образом соответствуют вашим потребностям. Даже среди цифровых систем существует огромное разнообразие решений. Вот некоторые вопросы, которые помогут вам при их оценке:

  • насколько проста установка системы?
    • если передатчик и приемник настраиваются пользователем, то насколько просто это сделать и какие существуют проблемы?
  • компактна ли, прочна и надежна конструкция приборов?
  • выпускаются ли приборы в настольных корпусах или предназначены для установки в стойку? Существуют ли варианты в обоих типах корпусов?
    • пригодны ли приборы для использования как с одномодовыми, так и многомодовыми световодами?
    • обладает ли изготовитель достаточным опытом и репутацией на рынке предлагаемых им изделий?
    • как соотносится цена изделия с ценой традиционных аналоговых систем? (Цифровые приборы в производстве не дороже аналоговых и их стоимость не должна быть выше).

Анализ рынка и сравнение характеристик аналогичных изделий позволит вам в итоге подобрать элементы цифровых оптоволоконных систем, которые верой и правдой будут служить вам в течение многих лет.

Большинство технических специалистов, работающих с оптоволокном, знают об отличии многомодовых волокон от одномодовых. Но не все информированы о характеристиках оптических волокон и о протоколах передачи информации по ним. В статье приведены описания конкретных характеристик оптоволокон и протоколов передачи Ethernet, вызывающих, иногда, противоречивые толкования.

Характеристики оптических волокон

Пожалуй, не найдется специалиста-кабельщика, работающего с оптическим волокном, который не знал бы отличие многомодовых волокон от одномодовых. Мы не собираемся повторять прописные истины в данной статье. Остановимся на конкретных характеристиках оптоволокон, вызывающих, подчас, противоречивое толкование.

Оптические волокна допускают распространение сигналов передачи данных вдоль них при условии, что световой сигнал вводится в волокно под углом, обеспечивающим полное внутреннее отражение на границе раздела двух сред из двух типов стекла, имеющего различные показатели преломления. В центре сердцевины находится особо чистое стекло с показателем преломления 1.5. Диаметр сердцевины находится в пределах от 8 до 62,5 мкм. Окружающее ядро стекло, называемое оптической оболочкой, немного менее свободное от примесей, имеет показатель преломления 1.45. Общий диаметр сердцевины и оболочки находится в пределах от 125 до 440 мкм. Поверх оптической оболочки наносят полимерные покрытия, укрепляющие волокно, защитные нити и внешнюю оболочку.

При вводе оптического излучения в волокно, луч света, падающий на его торец под углом больше критического, будет распространяться вдоль границы раздела двух сред в волокне. Каждый раз, когда излучение попадает на границу между ядром и оболочкой, оно отражается обратно в волокно. Угол ввода оптического излучения в волокно определяется максимально допустимым углом ввода, называемым числовой апертурой или апертурой волокна. Если вращать этот угол вдоль оси сердцевины, формируется конус. Любой луч оптического излучения, падающий на торец волокна в пределах этого конуса, будет передан дальше по волокну.

Находясь внутри сердцевины, оптическое излучение многократно отражаетсяот границы раздела двух прозрачных сред, имеющих различные показатели преломления. Если физические размеры сердцевины оптического волокна существенные, отдельные лучи света будут введены в волокно и, в последующем, претерпевают отражение под разными углами. Поскольку ввод лучей оптической энергии в волокно был осуществлен под разными углами, то и расстояния, которые они проходят, будут также различными. В результате, они достигают приемного участка волокна в разное время. Импульсный оптический сигнал, прошедший по волокну будет расширен, по сравнению с тем, который был отправлен, следовательно, ухудшается и качество переданного по оптоволокну сигнала. Это явление получило название модовой дисперсии (DMD).

Другой эффект, который тоже вызывает ухудшение передаваемого сигнала, получил название хроматической дисперсии . Хроматическая дисперсия обусловлена тем, что световые лучи разных длин волн распространяютсявдоль оптического волокна с различной скоростью. При передаче серии световых импульсов через оптоволокно, модовая и хроматическая дисперсии, в конечном итоге, могут вызвать слияние серии в один длинный импульс, возникновению интерференции бит сигнала и потере передаваемых данных.

Еще одной типичной характеристикой оптического волокна является затухание . Стекло, используемой для изготовления сердцевины оптического волокна (ОВ), является очень чистым, но, все же, не идеально. В результате, свет может поглощаться материалом стекла в оптоволокне. Другими потерями оптического сигнала в волокне могут быть рассеяние и потери, а также затухание от плохих оптических соединений. Потери при соединении оптоволокон могут быть вызваны смещением сердцевин волокна или его торцевых поверхностей, которые не были отполированы и очищеныдолжным образом.

Сетевые протоколы для оптической передачи Ethernet

Перечислим основные протоколы передачи Ethernet по многомодовым и одномодовым оптическим волокнам.

10BASE-FL - 10 Мбит/с передача Ethernet по многомодовому оптоволокну.

100BASE-SX - 100 Мбит/с передача Ethernet по многомодовому ОВ на длине волны850-nm. Максимальное расстояние передачи до 300 м. Большие расстояния передачи возможны при использовании одномодового ОВ. Обратно совместимый с 10BASE-FL.

100BASE-FX - 100 Мбит/с передача Ethernet (Fast Ethernet) по многомодовому ОВ на длине волны 1300-nm. Максимальное расстояние передачи составляет до 400 м для полудуплексных соединений (с обнаружением коллизий) или до 2 км для полнодуплексной связи. Большие расстояния возможны с применением одномодового ОВ. Не обратно совместим с протоколом 10BASE-FL.

100BASE-BX - 100 Мбит/с передача Ethernet по одномодовому ОВ. В отличие от протокола 100BASE-FX, в котором используются два оптоволокна, 100BASE-BX работает по одному волокну с технологией WDM (Wavelength-Division Multiplexing), которая позволяет разделить длины волн сигнала на приеме и передаче. Для передачи и приема используются две длины волны из возможных: 1310 и 1550 nm или 1310 и 1490 nm. Расстояние передачи до 10, 20, или 40 км.

1000BASE-SX - 1 Гбит/с передача Ethernet (Gigabit Ethernet) по многомодовому ОВ на длине волны 850-nm и на максимальное расстояние до 550 м, в зависимости от используемого класса ОВ.

1000BASE-LX - 1 Гбит/с передача Ethernet (GigabitEthernet) по многомодовому ОВ на длине волны 1300-nm на максимальное расстояние до 550 м. Протокол оптимизирован для передачи на большие расстояния (до 10 км) по одномодовому ОВ.

1000BASE-LH - - 1 Гбит/с передача Ethernet по одномодовому ОВ на максимальное расстояние до 100 км.

10GBASE-SR - 10 Гбит/с передача Ethernet (10 GigabitEthernet) по многомодовому ОВ на длине волны over 850-nm. Расстояние передачи может быть 26 м или 82 м, в зависимости от типа применяемого ОВ с сердцевиной 50- или 62.5 мкм. Поддержка передачи на расстояние 300 м по многомодовому ОВ класса ОМ3 и выше, с коэффициентом широкополосности не менее 2000 MГц/км.

10GBASE-LX4 - 10 Гбит/с передача Ethernetпо многомодовому ОВ на длине волны 1300-nm. Использует технологию WDM для передачи на расстояния до 300 м по многомодовым волокнам. Поддержка передачи по одномодовому ОВ на расстояния до 10 км.

В заключение статьи, приведем некоторые данные по используемым типам многомодовых оптических волокон и стандартам передачи. Данные сведены в табл.1 (выдержки из Стандартов).

Международный Стандарт: ISO/IEC 11801 “GenericCablingforCustomerPremises”

МеждународныйСтандарт: IEC 60793-2-10 “Product Specifications - Sectional Specification for Category A1 Multimode Fibers”

Стандарт ANSI/TIA/EIA-492-AAAx “Detail Specification for Class 1a Graded-Index Multimode Optical Fibers”

(1) класс OM1 многомодовое ОВ с сердцевиной 62.5-мкм или 50-мкм.

(2) класс OM2 многомодовое ОВ с сердцевиной 50-мкм или 62.5-мкм.

(3) класс OM4 ратифицирован IEEE в июне 2010 и является Стандартом 802.ba для 40G/100G Ethernet. Работает на расстояниях до 1000 м по 1 Гбит/с Ethernet, 550 м по 10 Гбит/с Ethernet и 150 м по 40 ГБит/с и 100 ГБит/с сетевым протоколам Ethernet.

(4) Международный Стандарт ISO/IEC 11801 определяет максимальное значение затухания ОВ. Стандарты IEC и TIA описывают(минимальное) или среднее затухание «голого» ОВ.

1. Общие понятия электромагнитных излучений
2. Понятие "Свет"

а. История
б. Общие сведения
в. Развитие
4. Заключение

1. Общие понятия электромагнитных излучений.
Электромагнитное излучение - это движение возмущений электромагнитного поля в пространстве. Существуют невидимые и видимые электромагнитные излучения. Электромагнитное излучение порождается движущимися электрическими зарядами, и распространяется во все направления и практически во всех средах. Они переносятся без затуханий насколько угодно большие расстояния.

Электромагнитное излучение подразделяется на:
. радиоволны (начиная со сверхдлинных);
. инфракрасное излучение;
. видимый свет;
. ультрафиолетовое излучение;
. рентгеновское излучение и жесткое (гамма-излучение).

Электромагнитная шкала (спектр) - совокупность всех диапазонов частот электромагнитного излучения. В качестве спектральной характеристики используют следующие величины:
. Длина волны;
. Частота колебания;
. Энергия фотона.

Спектр делится на следующие участки:
. Низкочастотные колебания;
. Радиоволны;
. Инфракрасное излучение;
. Видимое излучение (cвет);
. Ультрафиолетовое излучение;
. Рентгеновское излучение;
. Гамма-излучение.
Электромагнитные волны широко используются в наше время в радио и электротехнике, современных приборах. Радиоволны применяются для радиосвязи, телевидения, радиолокации. Инфракрасное излучение используют в печах, обогревателях и всех приборах для обогревания и сушки. Ультрафиолетовое излучение используют для обеззараживания помещений, изучений и исследований атомов и молекул. Широко используется в криминалистике для нахождения биологических следов. Рентгеновские лучи используют в медицине для диагностики заболеваний и для лечения некоторых болезней.

2. Понятие "Свет".
Свет - это видимое электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом. Но также за свет принимают и примыкающие к нему широкие области спектра: ультрафиолетовое и инфракрасное излучение. Длины волн видимого излучения лежат в диапазоне от 380 до 780 нанометров. Свет изучает раздел физики под названием оптика. Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой.
Свету присущи все свойства электромагнитных волн:
. Отражение;
. Преломление;
. Интерференция;
. Дифракция;
. Поляризация.
Свет может оказывать давление на вещество, поглощаться средой, вызывать явление фотоэффекта. Свет отклоняется от прямолинейного направления. Имеет конечную скорость распространения в вакууме 300 000 км/с, а в среде скорость убывает. Помимо падения скорости, свет начинает преломляться и может начать распадаться на световой спектр при определенных обстоятельствах. Это объясняется явлением интерференции. Именно интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде. Световые волны частично отражаются от поверхности тонкой пленки, частично проходят в нее, и мы наблюдаем на поверхности радужный рисунок.
Дифракция света - это отклонение световой волны от прямолинейного распространения. Это хорошо видно, когда в комнате занавешенной темными, плотными шторами в занавеске сделать небольшую дырочку, свет пойдёт как конус вершина которого будет находиться в нашей проделанной дырочке. Преломление света мы можем наблюдать, поставив в стакан с водой ложку. Она будет поделена на границе между воздухом и водой.
Мы наблюдаем окружающий мир только потому, что человек может воспринимать видимый спектр электромагнитных волн. Это происходит из-за того, что специальные рецепторы, находящиеся в сетчатке глаза могут реагировать на световые излучения. И мы можем различать зрительные образы: цвет, форму, величину, расстояние до предмета и многое другое. Человеческое зрение обладает рядом свойств:
. Световой чувствительностью;
. Остротой;
. Полем обзора;
. Бинокулярностью;
. Контрастностью и адаптацией.

3. Применение света в оптоволокне.
а. История
Свет широко используют в технике, но особое развитие в наши дни получил в оптоволоконных сетях. История передачи данных на расстоянии с помощью света и прозрачных материалов началась в 1934 году. Норман Френч предложил преобразовывать голос в световые сигналы и передавать его по стеклянным стержням. Через несколько лет, швейцарский физик Жан-Даниэль Колладон, провел эксперимент с передачей света через “параболический жидкий поток”, то есть воду.
Оптоволокно современного вида изобрели в 1954 году. Это сделали два английских физика Нариндер Сингх Капани, Гарольд Хопкинс и голландский исследователь Абрахам Ван Хил. О своих изобретениях они объявили в одно время, поэтому всех троих считают основателями этой технологии. Кстати, оптоволокно назвали оптоволокном через два года после изобретения.
Первые оптоволоконные кабели имели большую потерю света. Уменьшить потери удалось Лоуренсу Кертису в конце 50-ых годов. После того, как в 1962 году была открыта лазерная технология, оптоволокно получило еще один толчок в развитии.
б. Общие сведения
Волоконно-оптическая связь — вид проводной электросвязи, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем — волоконно-оптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования, пропускная способность волоконно-оптических линий многократно превышает пропускную способность всех других систем связи и может измеряться терабитами в секунду. Но от истории вернемся к современности. Сегодня, оптоволоконный кабель представляет собой самый быстрый способ передачи данных. Это и не удивительно. В качестве переносчика информации выступает свет, а он, как известно, имеет самую высокую скорость перемещения во Вселенной (300 тысяч километров в секунду). Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконно-оптическая связь свободна от электромагнитных помех и труднодоступна для несанкционированного использования — незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно. Если сравнивать с другими способами передачи информации, то порядок величин Тбайт/с просто недостижим. Еще один плюс таких технологий — это надежность передачи. Передача по оптоволокну не имеет недостатков электрической или радиопередачи сигнала. Отсутствуют помехи, которые могут повредить сигнал, и нет необходимости лицензировать использование радиочастоты. Однако не так много людей представляют себе, как вообще происходит передача информации по оптоволокну, и тем более не знакомы с конкретными реализациями технологий. Вначале рассмотрим, как вообще передается информация по оптоволокну. Оптоволокно — это волновод, по которому распространяются электромагнитные волны с длиной волны порядка тысячи нанометров (10-9 м). Это область инфракрасного излучения, не видимого человеческим глазом. И основная идея состоит в том, что при определенном подборе материала волокна и его диаметра возникает ситуация, когда для некоторых длин волн эта среда становится почти прозрачной и даже при попадании на границу между волокном и внешней средой большая часть энергии отражается обратно внутрь волокна. Тем самым обеспечивается прохождение излучения по волокну без особых потерь, и основная задача — принять это излучение на другом конце волокна. Конечно, за столь кратким описанием скрывается огромная и трудная работа многих людей. Не надо думать, что такой материал просто создать или что этот эффект очевиден. Наоборот, к этому нужно относиться как к большому открытию, так как сегодня это обеспечивает лучший способ передачи информации. Нужно понимать, что материал волновода — это уникальная разработка и от его свойств зависит качество передачи данных и уровень помех; изоляция волновода разработана с учетом того, чтобы выход энергии наружу был минимален. Что же касается конкретно технологии, называемой «мультиплексинг», то это означает, что вы одновременно передаете несколько длин волн. Между собой они не взаимодействуют, а при приеме или передаче информации интерференционные эффекты (наложение одной волны на другую) несущественны, так как наиболее сильно они проявляются при кратных длинах волн. Здесь же речь идет об использовании близких частот (частота обратно пропорциональна длине волны, поэтому все равно, о чем говорить). Устройство под названием «мультиплексор» — это аппарат для кодирования или декодирования информации в формат волн и обратно.
в. Развитие
Плавно перейдя к тенденциям развития этой технологии, мы наверняка не откроем Америки, если скажем, что DWDM является наиболее перспективной оптической технологией передачи данных. Это можно связать в большей мере с бурным ростом Интернет - трафика, показатели роста которого приближаются к тысячам процентов. Основными же отправными точками в развитии станут увеличение максимальной длины передачи без оптического усиления сигнала и реализация большего числа каналов (длин волн) в одном волокне. Сегодняшние системы обеспечивают передачу 40 длин волн, что соответствует 100-гигагерцевой сетке частот. На очереди к выходу на рынок устройства с 50-гигагерцевой сеткой, поддерживающие до 80 каналов, что соответствует передаче терабитных потоков по одному волокну. И уже сегодня можно услышать заявления лабораторий фирм-разработчиков, таких как Lucent Technologies или Nortel Networks, о скором создании 25-гигагерцевых систем.
Однако, несмотря на столь бурное развитие инженерной и исследовательской мысли, рыночные показатели вносят свои коррективы. Прошедший год ознаменовался серьезным падением оптического рынка, что подтверждается существенным падением курса акций Nortel Networks (29% за один день торгов) после объявления ею о трудностях со сбытом своей продукции. В аналогичной ситуации оказались и другие производители.
В то же время, если на западных рынках наблюдается некоторое насыщение, то восточные только начинают разворачиваться. Наиболее ярким примером служит рынок Китая, где десяток операторов национального масштаба наперегонки строят магистральные сети. Китайцам нельзя не позавидовать - они теперь будут строить дома только в непосредственной близости от оптоволоконного кабеля. Министерство промышленности и информационных технологий Китая недавно издало соответствующий циркуляр. Кроме того, согласно этой новой политике, для поддержания здоровой конкуренции, услуги подключения должны предоставляться абонентам сразу несколькими провайдерами. Правда, скорость соединения никак не оговаривается.
Подобная политика конечно выгодна и китайским операторам. В 2012 году China Unicom (Hong Kong) Ltd (вторая по величине телекоммуникационная компания Китая) обеспечила подключение к своим FTTH-сетям для 10 миллионов китайских домохозяйств. А по информации Economic Information Daily, в 2015 году к ним присоединятся еще примерно 40 миллионов. Постановление китайского правительства вступает в силу с 1 апреля 2013 года. А в США, тем временем, обсуждается инициатива компании Google под названием "Google Fiber". Суть в том, что Google собирается предлагать FTTH-соединение на скорости 1 гигабит в секунду для конечного потребителя. Ранее, скорость 1 Гбит/с использовалась только в некоторых научных, государственных и военных учреждениях. А теперь речь идет про общенациональную сеть с такой скоростью связи. В качестве пилотной версии "гуглволокно" начали внедрять в Канзасе. И хотя работа в этом направлении продолжается, ждать появления общенациональной оптоволоконной сети Google придется еще долго. Компания Goldman Sachs оценивает стоимость этого проекта в сумму более 140 миллиардов долларов.
Напомню, что в США оптоволоконных сетей и так уже построено немало. Наиболее известный пример - компания Verizon, которая много лет строит собственную оптоволоконную инфраструктуру, и уже потратили на нее 15 миллиардов долларов, обеспечив подключение для примерно 15 миллионов домов. Но Verizon предлагает скорость 50 Мбит/с, которая может быть увеличена пока лишь до 100 Мбит/с. И если «у них» вопросы построения магистральных сетей уже практически решены, то в нашей стране, как это ни печально, пока просто нет необходимости в толстых каналах для передачи собственного трафика.
Сегодня на российском рынке высокоскоростного подключения к Интернету выделяется два основных конкурирующих направления - это домашние оптоволоконные сети и ADSL-подключение.
Домашние сети - это определенная разновидность «выделенного подключения», обеспечивающего подключение домашнего компьютера к сети через оптоволоконный кабель, который провайдер подводит к каждой квартире. Технология ADSL, в свою очередь, относится к виду широкополосных подключений, которые функционируют по принципу телефонного модема, преобразуя аналоговую телефонную линию в высокоскоростной канал передачи с помощью специальной технологии. Таким образом, главное отличие двух конкурирующих технологий - технологическое.
Тем не менее, прошедшая в начале декабря выставка «Ведомственные и корпоративные сети связи» выявила огромный интерес отечественных связистов к новым технологиями, и к DWDM в том числе. И если такие монстры, как «Транстелеком» или «Ростелеком», уже имеют транспортные сети масштаба государства, то нынешние энергетики только начинают их строить. Так что, несмотря на все неурядицы, за оптикой — будущее. И немалую роль здесь сыграет DWDM. Стоимость использования волоконно-оптической технологии уменьшается, что делает данную услугу конкурентоспособной по сравнению с традиционными услугами. Технология оптоволоконной передачи данных будет развиваться до тех пор, пока не будет придумана альтернатива. Из будущих конкурентов видится только квантовая сеть, но эта технология находится еще в рамках становления и пока не страшна оптоволокну.
Что касается минусов, то он один - дороговизна оборудования и инструментов монтажа оптоволокна. Сам кабель стоит в десятки раз меньше, чем передатчики, приемники и усилители сигнала. Кроме того, для спайки кабелей, используются специальные инверторы, некоторые из них стоят как дорогой автомобиль.

4. Заключение .
В наше время информационных технологий, государство начало особое внимание уделять процессу информатизации общества. Этот процесс не мог не затронуть такой аспект общественной жизни, как образование. Сегодня все больше бюджетных средств тратится на поднятие уровня технического оборудования в школах, для улучшения информационной образованности молодежи. Эти улучшения также касаются качества Интернет-соединения в образовательных учреждениях. А самый прогрессивный и быстрый способ Интернет-соединения - оптоволоконные системы. Их внедрение в образование позволит добиться огромного скачка в информационной образованности студентов и школьников, что в будущем позволит воспитать отличнейших специалистов в сфере международных Интернет-систем, которые поднимут нашу страну на более высокий уровень развития в мире. Параллельно с этим развитие телекоммуникации поможет воспитать людей, способных поддерживать стабильность и безопасность наших интернет ресурсов.
С моей точки зрения, изучение поставленной проблемы имеет большое будущее и я предполагаю продолжить работу над данной темой уже будучи студентом. Я считаю, что изучая современные технологии, участвуя в различного уровня исследованиях, конференциях, можно стать конкурентоспособным специалистом.

Литература:
1) Большая Российская энциклопедия.
2) Газета "White Paper".
3) Журнал "КомпьютерПресс №1 2001.
4) Кудряшов Ю. Б., Перов Ю. Ф. Рубин А. Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения.
5) Листвин А. В., Листвин В. Н., Швырков Д. В. Оптические волокна для линий связи. М.: ЛЕСАРарт, 2003.
6) Отчет фирмы Alcatel-Lucent за 28 СЕНТЯБРЯ 2009.
7) Советская энциклопедия.
8) Тарасов К. И. Спектральные приборы.



Загрузка...