sonyps4.ru

Токи высокой частоты. Резонансный трансформатор


Группа разработчиков на Смоленщине. Они использовали принцип описанной выше конденсаторной установки. Примерная схема устройства приведена на рис.5. Здесь также от источника колебательной энергии подаётся ток на три последовательно соединённые конденсатора С1, С2, С3. Заряд их пластин колеблется в такт источника раскачки колебаний, но С2 включён схемой в цепь высоковольтной обмотки бытового трансформатора в виде колебательного контура. Естественно, колебательный контур С2 с обмоткой трансформатора воспринимает "маленькие порции" раскачки, и уже сам собой, в результате резонанса с эфиром, начинает выдавать необходимую мощность во вторичную обмотку на полезную нагрузку ~ 220 V. Схема предельно простая, это надо отдать должное "сообразительности" смоленских "парней". Здесь сравнительно небольшой раскачки источника колебаний вполне хватает для резонансного возбуждения силовых колебаний тока в данном контуре, а с вторичной обмотки трансформатора можно спокойно снимать трансформированный ток на любую полезную нагрузку. Возможно, что сам Тесла использовал этот приём для привода своего электромобиля в движение, недаром же он покупал радиолампы в магазине, которые и являлись источником колебательной энергии для обкладок конденсаторов, а индуктивность статорной обмотки тягового электродвигателя служила основной частью колебательного контура – источника тока (вместо первичной обмотки трансформатора в схеме рис.5). А сейчас поговорим о главном – о величине мощности раскачки эфира вокруг ёмкостей и индуктивностей с целью получения свободной энергии (реактивной мощности), поисками которой заняты специалисты во всём техническом мире. Сначала рассмотрим теоретическую сторону вопроса.

Поскольку формула реактивной мощности для любой обмотки Q = I^2*2П*F* L,

Где I -величина тока, F - частота тока, L- индуктивность. Величина L задана геометрией обмотки трансформатора или контура, её изменять трудновато, но её и использовал Капанадзе. Другая величина - частота F может изменяться. В реактивной мощности она задаётся частотой электростанции (источником колебаний), но с увеличением её увеличивается мощность свободной энергии, значит, разумно её повышать при раскачке индуктивности. А раскачать индуктивность по частоте, для получения и повышения тока I необходим конденсатор, подключённый к индуктивности. Но, чтобы начать раскачку контура, нужен первоначальный импульс тока. А его сила, в свою очередь, зависит от активного сопротивления самой обмотки, сопротивления соединительных проводов и, как не удивительно, волнового сопротивления этой цепочки тока. Для постоянного тока этого параметра не существует, а для переменного обязательно возникает и ограничивает наши возможности, а с другой стороны помогает нам. Из уравнений длинных линий связи известно,-волновое сопротивление движения для любой электромагнитной волны по проводам должно быть согласовано с сопротивлением нагрузки в конце линии. Чем лучше согласование, тем экономичнее устройство. В контурах, состоящих из ёмкости и индуктивности, из которых состоит "тесловка", волновое сопротивление определяется величиной которая, если её поделить на активное сопротивление проводников, в принципе, является добротностью контура, т.е. числом, показывающим во сколько раз напряжение в катушке контура возрастает по отношению к задающему напряжению от генератора электростанции (источника раскачки).

Zв = КОРЕНЬ (L / С),

Вот этим принципом и пользовался Тесла, изготавливая катушки всё более солидные по размеру, т. е. увеличивая, и увеличивая L - индукцию катушки и чисто интуитивно стремился к волновому числу Zв = 377 Ом. А это и есть волновое сопротивление не чего нибудь, а обыкновенного эфира по Максвеллу, хотя его конкретную величину определили позднее исходя из условий распространения электромагнитных волн в атмосфере и космосе. Приближение к этому числу волнового сопротивления уменьшает мощность раскачки. Отсюда всегда можно хотя бы приблизительно вычислить даже частоту колебаний самого эфира, при которой требуется минимальная энергия раскачки от электростанции для "тесловки" вырабатывающей реактивную энергию, но это отдельная тема рассмотрения.

В будущем видится предельно простой генератор тока для любых мощностей. Это трансформатор приемлемой мощности, первичная обмотка которого подсоединяется через рассчитанный конденсатор (с соответствующей реактивной мощностью) к источнику электрической раскачки сравнительно небольшой мощности, работающего при запуске от аккумулятора. Вторичная обмотка трансформатора через выпрямитель и инвертор выдаёт в расходную сеть необходимый ток с частотой 50 Герц для потребителей и одновременно питает, минуя аккумуляторы, схему раскачки, точнее сам себя (по рис.5.). Сейчас это кажется нереальным в силу закона сохранения энергии, поскольку не учитывается действие эфира, однако в ближайшем будущем такие установки будут широко распространёнными в быту и на производствах. Реактивная мощность, точнее свободная энергия эфира, подчеркнём, эфира Максвелла и Кельвина, должна и будет работать на людей в полной мере, как это предсказывал великий Никола Тесла. Время, которое он предвидел, уже наступило благодаря воспитанной промышленностью громадной армии специалистов электриков и интернету, позволяющему обмениваться мировым опытом.

Еще в начале этого века Аркадьев (7] высказал мысль, что в переменных магнитных полях в ферромагнитных телах должен наблюдаться резонанс элементарных носителей магнитного момента - естественный ферромагнитный резонанс, и он же впервые наблюдал подобный ферромагнитный резонанс в железных и никелевых проволоках. Впервые объяснение этого явления было дано Дорфманом (13]. В 1935 г. Ландау и Лифшиц разработали общую теорию поведения ферромагнитных кристаллов в переменных магнитных полях с учетом структуры ферромагнитных областей и получили формулу для ферромагнитного резонанса. Позже Киттель , обобщив результаты исследования Ландау и Лифшица, учел действие поверхности образца и магнитной анизотропии и получил для резонансной частоты формулу

где - гиромагнитное отношение элементарных носителей магнитного момента, постоянное магнитное поле, направленное по оси составляющая намагниченности насыщения вдоль этого направления, размагничивающие факторы вдоль осей члены, учитывающие влияние магнитной анизотропии.

В частном случае, когда, например, образец представляет собой тонкую пластинку и поле направлено параллельно плоскости пластинки, Пренебрегая поправками на анизотропию формулу (14.1) запишем

Если внешнее поле направлено перпендикулярно плоскости пластинки, то Резонансная частота определяется в этом случае так:

Для образца в форме шара имеем

Поправочные члены в общем случае имеют сложный вид , но для кристаллов кубической формы, если плоскость совпадает с плоскостью , эти члены определяют по следующим простым формулам:

где угол между полем и направлением , а постоянная анизотропии.

Формулы (14.5) дают возможность определить константу анизотропии.

Ферромагнитный резонанс во внешнем магнитном поле в никеле и железо-кремневых сплавах изучал Завойский , который создал высокочувствительную установку, основанную на методе вариации потерь в контуре. Почти одновременно этот эффект в ферромагнитных металлах обнаружил Гриффите . Он применял для этой цели волновод с полым резонатором. В дальнейшем это явление было исследовано в других металлах и в ферромагнитных полупроводниках - ферритах . В этих и многих других работах определяли ширину резонансной линии и ее изменение с температурой и рассчитывали гиромагнитное отношение у или значение фактора Ланде Оказалось, что между значениями определенными из опытов по ферромагнитному резонансу и из гиромагнитных опытов, есть расхождение. В последнее время ферромагнитный резонанс исследовали в ферромагнетиках нового типа, ферритах со структурой граната . У ферритов-гранатов обнаружена самая узкая ширина резонансной линии

Ферромагнитный резонанс можно исследовать при помощи резонансной полости, в которую помещают исследуемый металл в форме пластинки или образец из его порошка. При этом производят измерение добротности полости. На рис. 111 показана принципиальная схема установки для исследования ферромагнитного резонанса, которая была применена в работе .

Источником высокочастотных колебаний является клистронный генератор 1. Прямоугольные колебания подают на отражатель, который модулирует высокочастотные колебания. Калиброванный аттенюатор 3 регулирует амплитуду этих колебаний, которые частично отражаются резонансной полостью, расположенной на одном конце волновода. Отраженная мощность микроволнового

излучения поступает в кристаллический детектор 12 через направленный ответвитель 4 и выпрямляется. Затем выпрямленный сигнал проходит через узкополосный усилитель 14 и синхронизированный детектор.

При отражении высокочастотных колебаний от резонансной полости образуются стоячие волны, коэффициент которых можно измерить при помощи индикатора стоячих волн.

Рис. 111. Блок-схема установки для изучения ферромагнитного резонанса: 1 - клистрон, 2 - генератор прямоугольных колебаний, 3 - калиброванный аттенюатор, 4 - направленный ответвитель, 5 - индикатор стоячей волны, 6 - слюдяное окошко, 7 - трубка, соединяющаяся с насосом, 8 - охлаждающая водяная рубашка, 9 - полюсные наконечники электромагнита, 10 - резонансная полость, 11 - печь, 12 - кристаллический детектор, 13 - аттенюатор, 14 - узкополосный усилитель, 15 - синхронизированный усилитель, 16 - спектральный анализатор, 17 - катодный осциллограф, 18 - исследуемый образец

Для определения частотных характеристик кристаллического детектора 12 и усилителя 15 используют калиброванный аттенюатор 3. В случае необходимости высокочастотные колебания можно направить в спектральный анализатор 16, где с помощью волномера измеряется частота. Резонансная полость 10 прямоугольного сечения является частью волновода. С одной стороны она заканчивается пластиной из ферромагнитного материала, а с другой - связана с окошком волновода, через который можно возбуждать колебания определенного типа. Следует отметить, что размеры диафрагмы (окошка) выбирают таким образом, чтобы резонансная полость имела слабую связь с волноводом. Отраженная мощность излучения должна составлять 10-20% падающей мощности.

Резонансную полость с образцом помещают в пространство между полюсами 9 электромагнита, создающего постоянное магнитное поле напряженностью до 1,6» 106 а/л. Ширина зазора между полюсами электромагнита позволяет поместить там резонансную полость вместе с печью 11 для проведения исследования при различных температурах. Температуру измеряют с помощью

платино-родиевой термопары, один конец которой прикреплен к торцовой стенке резонансной полости. Для предохранения стенок полости от окисления в ней создан вакуум порядка

Волновод охлаждается проточной водой, которая протекает через охладительную рубашку.

При проведении эксперимента необходимо особое внимание уделить изготовлению образца из исследуемого материала. При этом следует помнить, что образцы не должны иметь внутренних напряжений и поверхностных загрязнений, так как глубина проникновения высокочастотного электромагнитного поля равна приблизительно Для изготовления образцов можно использовать электролитическую фольгу толщиной После того как из фольги будут вырезаны образцы нужных размеров, их припаивают золотом к держателю из меди, имеющему вид диска, и подвергают температурному отжигу в течение часа при -Затем образец вместе с печью медленно охлаждается до комнатной температуры. Чтобы поверхность образца была гладкой, ее полируют. После всех этих операций образец припаивают серебром к концу волновода. Следует помнить, что припой не должен проникать на внутреннюю поверхность стенок волновода. Поэтому пайку следует проводить аккуратно и желательно в атмосфере очищенного водорода. Чтобы убедиться в правильности проведенной пайки, нужно провести исследование с другой полостью, в которой образец плотно прижимается к узкому краю стенки волновода. При измерениях частота медленно изменяется до тех пор, пока минимальное отражение в направленный ответвитель не покажет на резонанс в полости. Коэффициент стоячей волны напряжения в момент резонанса выражается так:

где и - потери в медной и ферромагнитной стенках, - внешняя добротность, которая определена как отношение запасенной энергии к энергии, расходуемой на внешней нагрузке, добротность ненагруженной полости.

Для вычисления коэффициента стоячей волны можно также использовать формулу

где отраженная мощность на выходе направленного ответвителя.

При применении последней формулы не нужно знать зависимость в функции постоянного магнитного поля Но при различных температурах. В этом случае при каждом цикле измерения измеряется индикатором стоячей волны только при двух значениях В других точках определяют только Нахождение

коэффициента стоячей волны последним методом дает более точные результаты, особенно вблизи максимума поглощения, где становится очень большим. Полную добротность полости определяют по измерению зависимости коэффициента стоячей волны напряжения от частоты. Применяя соотношение (14.6) и формулу

можно найти

Добротность вычисляют из геометрических размеров резонансной полости и из данных проводимости меди. Тогда, используя формулу (14.6), можно рассчитать а для вычисления проницаемости применить формулу

где добротность стенки при условии, что ее проницаемость равна единице.

Вычисление по формуле (14.9) дает значение этой величины, которое отличается от истинного раза в три и более, что связано с большой ошибкой в определении Такая погрешность является результатом различных дефектов на поверхности образца, потерь в местах припоя и в зажимных соединениях. Чтобы избежать этих ошибок, обычно берут два значения проницаемости которые соответствуют двум значениям магнитного поля Но и Но, и для них определяют коэффициенты стоячей волны Тогда из соотношений (14.6) и (14.9) можно получить выражение следующего вида:

За эталонное значение берут предельное значение проницаемости для больших значений магнитных полей Но. Ошибка, при определении абсолютных значений этим методом довольно велика и может достигнуть

Установка, показанная на рис. не дает возможности вести измерения при различных частотах и, как уже отмечалось выше, имеет сравнительно невысокую точность измерения.

Лазукин для изучения ферромагнитного резонанса применил метод, основанный на использовании стоячих волн внутри коаксиального волновода, куда помещают исследуемый образец. Этот метод в некоторой мере устраняет отмеченные выше недостатки. У коаксиального волновода отсутствует излучение электромагнитной волны во внешнее пространство и его можно использовать в широком диапазоне частот. Измерительная линия в этой

установке состояла из латунной трубки с внутренним диаметром Вдоль оси этой трубки расположен стержень диаметром Один конец трубки соединен с генератором сантиметровых волн, на другом ее конце находится исследуемый образец, который вставлен внутрь линии. Генератор подключали к измерительной линии с помощью коаксиального кабеля или специальной генераторной головки.

Для получения лучшей стабильности частоты осуществлялась двойная стабилизация питающего напряжения: ферромагнитным и электронным стабилизаторами. Это давало возможность поддерживать частоту клистрона с точностью до 0,1%. Чтобы нагрузка в линии не влияла на режим работы генератора, между нагрузкой и генератором вводили поглощающее сопротивление, которое обеспечивало нужную развязку. Измерительная линия на протяжении имела узкую щель, через которую в полость вводили зонд, укрепленный на каретке. Каретка могла свободно перемещаться вдоль щели с помощью микрометрического винта. Положение каретки и зонда отсчитывали с точностью до

Энергия резонатора отсасывалась прямоугольной петлей и подавалась на высокочастотный кристаллический детектор, который был соединен с высокочувствительным гальванометром. При погружении зонда в измерительную полость изменение интенсивности колебаний не наблюдалось до глубины погружения, а форма волны заметно искажалась только при погружении зонда на

Исследуемое вещество применяли в виде порошков и лент. Из мелкодисперсного порошка - ферромагнетика и диэлектрика приготовляли смесь, из которой затем изготовляли нужной формы образец. Размеры зерен порошка не превышали а объемная концентрация ферромагнитной компоненты составляла 60-70%. Такие условия обеспечивали изоляцию зерен друг от друга.

Для определения комплексной магнитной проницаемости измеряли коэффициент стоячей волны смещение узлов длину волны и толщину образца Измерение длины волны производили по двум узлам стоячей волны напряжения. Положение узла отмечали как среднее между двумя положениями зонда по обе стороны узла в тот момент, когда ток через детектор имел одинаковое значение. Два последовательных положения минимума позволяют определить смещение узлов стоячей волны Если коэффициент стоячей волны нельзя измерить непосредственно как отношение то он рассчитывается по формуле

где сила тока, измеренная в минимуме и на расстоянии х от узла.

Исследование резонансного поглощения производили в следующем порядке. Прежде всего образец помещали в измерительную линию около поршня и вместе с ней располагали между полюсами электромагнита. Не меняя частоту генератора, измеряли смещение узлов и коэффициент при нескольких значениях напряженности магнитного поля. Затем образец перемещали на расстояние четверти волны от поршня, опять устанавливали в прежнее положение между полюсами электромагнита и производили те же измерения.

В заключение рассмотрим высокочувствительную схему, основанную на использовании разделительного кольца . Эта схема позволяет наблюдать ферромагнитный резонанс на частоте На рис. 112 показана блок-схема установки.

Как видно из рисунка, мощность микроволнового излучения от клистронного генератора 1 подается через плечо на разделительное кольцо 2. В кольце мощность делится на две части, которые поступают в плечи II и IV. В плече II имеется волновод с поршнем, к которому прикрепляли исследуемый образец. Отраженная мощность в плече II делится между плечами и III. В плечах III находится детектор. Ферритовые вентили 12, находящиеся в плечах развязывают генератор от разделительного кольца и не дают возможности пропускать отраженную мощность от трактов III и IV. Для получения постоянного магнитного поля напряженностью до используют электромагнит, полюсные наконечники которого имеют диаметр

Рис. 112. Блок-схема установки с разделительным кольцом для исследования ферромагнитного резонанса: 1 - генератор, 2 - разделительное кольцо, которое заменяет двойной тройник, 3 - отрезок волновода с поршнем и образцом, 4-датчик измерителя поля, 5 - детектор, 6 - протонный измеритель напряженности поля, 7 - усилитель низкой частоты, 8 - осциллограф, 9 - электромагнит, 10 - волномер, 11 - согласователи, 12 - ферритовые вентили, 13 - держатель образца, 14 - исследуемый образец, 15 - модулирующие катушки

Кривые резонансного поглощения наблюдают на экране осциллографа, развертка луча которого синхронизирована с частотой модулирующего поля, создаваемой катушками 15. Исследуемые образцы можно использовать или в виде полушара (монокристаллы) диаметром от 2 до или в форме шариков (поликристаллы) диаметром от 1 до Эта установка позволяет исследовать ферромагнитный резонанс как при комнатных, так и при низких температурах.

Как мы уже отмечали, ширина резонансной кривой поглощения показывает зависимость поглощаемой мощности в исследуемом образце от величины постоянного магнитного поля. Эту величину определяют ядерным или парамагнитным датчиком, который помещают в магнитном поле рядом с образцом. На кривой поглощения, наблюдаемой на экране осциллографа, есть метка датчика, соответствующая кривой поглощения ядерного или парамагнитного

резонанса. Эта метка и дает возможность измерить ширину кривой поглощения.

В работе разработан метод определения ширины линии по изменению частоты высокочастотных колебаний. Для этой цели применяют эхорезонатор, метка от которого находится также на кривой поглощения. Этот способ измерения ширины линии в основном применяют для измерения очень узких кривых поглощения.

Основы ЯМР

В сети Интернет в данный момент достаточно мало информации, где на простых практических опытах демонстрируется явление ЯМР, для не сильно подготовленной аудитории, например, для радиолюбителей. Восполним этот пробел. Вот видео наиболее интересного, классического эксперимента по ЯМР

Ядерный магнитный резонанс в земном поле за пять минут (попытки)

Вкратце ЯМР это резонанс атомов конкретно взятого вещества, на определенной частоте, находящегося в супер однородном магнитном поле определенной напряженности, идущей с поглощением этой радиочастоты. Поглощается радиочастота ядром атома примерно по тем же принципам как и поглощается радиочастота LC колебательным контуром с высокой (Q более 1000), но ограниченной добротностью, за счет чего излишки энергии переизлучаются атомом в виде тепла, на подобие как это происходит в не идеальном колебательном контуре или идеальном, но с параллельными и последовательными резисторами. Явление ЯМР можно наблюдать и без накачки, просто при смене сильного однородного поля на более слабое однородное поле повернутое на 90 градусов, годится даже откорректированное земное фоновое магнитное поле. Равномерность магнитного поля для обнаружения явления ЯМР в исследуемом образце крайне важна, так как ядерный магнитный резонанс очень узкий и при незначительной смене напряженности поля будет меняться и резонансная частота атомов, их фаза, что будет приводить к интерференции и уменьшению интенсивности частоты релаксации. При поглощении в неоднородном магнитном поле радиочастота будет поглощаться не всем объемом рабочего тела, а узким слоем, что может составлять менее 1% от рабочего тела, соответственно в однородном поле ЯМР будет наблюдаться у 100% атомов исследуемого вещества. В какой-то степени релаксационное излучение ядер атомов можно сравнивать со стрелкой компаса, которого извлекли из сильного поля и оставили в повернутом на 90 градусов, допустим фоновом поле. Стрелка будет испытывать колебания и чем слабее фоновое поле, тем ниже частота колебаний

Частоты ЯМР некоторых веществ в магнитном поле 2,3488 Тл

подробнее

Компьютерный анализ спектров химических сдвигов используется в ЯМР спектроскопии сложных молекул

Ядерный магнитный резонанс для неспециалистов (чайников)

Лекция-беседа о явлении магнитного резонанса (спектры и релаксация)

Spinus 2014 Чижик В. И.

Лекция-беседа о явлении магнитного резонанса (спектры и релаксация)

Основные явления, относящиеся к понятию «магнитный резонанс» - ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР) и ядерный квадрупольный резонанс (ЯКР) - представляют собой интересные физические явления, связанные с излучением или поглощением электро-магнитных волн радиодиапазона при взаимодействии магнитных или электрических мультиполей ядер и электронов со статическими, переменными и флуктуирующими полями. Эти явления лежат в основе современных мощных методов исследования вещества на микро-, нано- и макро- уровнях. Целью этой лекции-беседы (конкретное изложение будет зависеть от интересов аудитории) является дать представление о ЯМР, ЭПР и ЯКР тем, кто приехал на Школу с «нулевыми» (или почти «нулевыми») знаниями о физике этих явлений, и, одновременно, оттенить те черты этих явлений, которые могут быть неизвестными или «слишком привычными» для широкого круга специалистов

Простая серийная лабораторная установка для студентов и простых экспериментов с ЯМР показана на видео

Простой учебный ЯМР-прибор для демонстрации эффекта ЯМР

ЯМР для «чайников», или Десять основных фактов о ядерном магнитном резонансе

Как самому собрать простой ЯМР спектрометр

Способов определения спектров ЯМР много. Например, как уже говорилось, можно пользоваться и эффектом поглащения радиочастоты на частоте ЯМР в магнитном поле. Однако чтобы изучить процесс шире и поставить определенные эксперименты прибор лучше делать методом детектирования частоты релаксации исследуемого образца. Для этого потребуется создать экранированный от электромагнитных наводок металлический не железный (не магнитный материал) шкаф. Слева и справа можно разместить две обмотки создающие поле первичной поляризации (сильное поле), а сверху и снизу размещают две обмотки создающие супер однородное поле для релаксации ядер атомов. Третья обмотка мотается, допустим на стакане, в котором будет размещаться исследуемый образец. Размещается эта обмотка в центре шкафа. К съемной обмотке можно подключить резонансный конденсатор, а можно этого и не делать, однако в случае такого конденсатора нужно учитывать, что будет наблюдаться и звон самого съемного колебательного контура. Съемный колебательный контур подключается через коаксиальной кабель к приемной аппаратуре находящейся в другом экранированном корпусе, находящемся рядом. В качестве приемной аппаратуры можно использовать даже радиоприемник на произвольной выбранной частоте или его блок усиления промежуточной частоты на 465 кГц или 10.7 МГц, но лучше самому собрать узкополосный усилитель, допустим с биквадратным перестраиваемым фильтром или узкополосный усилитель на любую оптимальную частоту лежащую в диапазоне от килогерц до мегагерц. Усилитель может выглядеть так

Научный прибор своими руками

Две внутренние обмотки для поля поляризации и поля релаксации подключают к блокам питания с вольтметрами и амперметрами и регулируемыми токами и/или напряжениями. На обмотку поляризации подается достаточно большой ток на короткое время, так как длительность поляризации не важна, а короткое время поляризации не позволит обмотке перегреться, даже если проходящий через нее ток будет достаточно большим. Вторая обмотка - обмотка поля релаксации может быть включена постоянно и она призвана создавать супер однородное не сильное поле, соизмеримое с земным фоновым или несколько большим. После выключения сильного поля поляризации образец оказывается в повернутом на 90 градусов поле релаксации заданным второй катушкой и начинает излучать радиочастоту, которую принимает приемная обмотка расположенная вокруг образца и подключенная к усилителю. Сигнал с усилителя можно наблюдать по осциллографу, лучше цифровому с режимом запоминания, так как длительность ЯМР звона в лучших случаях не превышает 1-2 секунды, но как правило меньше, хотя и должна быть больше, чем собственный звон приемной катушки

ЯМР в альтернативной энергетике

В альтернативной энергетике имеется несколько запатентованных изобретений, позволяющих получать энергию благодаря ЯМР. Однако отсутствие репликаций, практического использования и некоторые неточности делают эти патенты сомнительными документами.

Известен патент Michel Meyer - NMR Generator

Наибольшую известность имеют два патента по получению энергии на основе ЯМР

Французский патент FR2680613 Michel Meyer

Чешский патент. CZ 284333. ЯМР железа. 23.04.16

Первое, что бросается в глаза в чешском патенте это то, что речь идет о процессе ЯМР в атомах железа - 56 и превращении их в атомы железа - 54 в следствие низкоэнергетической ядерной реакции. Здесь явно присутствует ошибка или неточность в описании (!!!), так как ЯМР Fe56, так же как и Fe54 невозможен (!!!). Читаем краткую справку в википедии по изотопам железа и их спинам

Видим, что Fe-54 так же как и Fe56 имеют 0+ (нулевой спин), а ЯМР при нулевом спине невозможен, о чем также читаем в википедии в определении ЯМР

Однако с точки зрения LENR реакция может быть, хотя зачем тогда ЯМР непонятно

АТОМИСТИКА. ЯМР. ЧЕШСКИЙ ПАТЕНТ. 22.11.17

Изобретение оказывает дистанционное каталитическое воздействие или обеспечивает активацию ядер, что способствует поддержанию, ускорению или инициации потенциальной химической или ядерной реакции, которая в противном случае либо не могла бы протекать, либо протекала бы в очень медленном ритме

Патент РФ 2348051 http://www.freepatent.ru/patents/2348051

Однако точность в описании процессов расписанная в патенте вызывает некоторые сомнения в плане его прямого отношения к ЯМР и ЭПР, а больше напоминает грубый малоизбирательный способ осуществления LENR по принципу лишь бы как

Среди альтернативщиков хорошо известно такое устройство как ТПУ Стивена Марка , однако на данное устройства нет известных патентов и никакой официальной информации и тем не менее информация об устройстве широко распространена и многие экспериментаторы пытаются его повторить. Результативность таких экспериментов противоречива, но есть смысл рассказать об основных принципах работы устройства. Устройство работает на перпендикулярных магнитных полях, что позволяет заподозрить в основе работы устройства вращение протонов атомов меди.

Схематично берется катушка индуктивности диаметром 10 см и количеством витков равное 40, намотанная литцендратом, это основная резонансная намотка, параллельно ей мотается обмотка в 40 витков намотанная одножильным проводом. Вокруг этого кольца наматываются 3-4 обмотки с количеством витков 5-10 толстого провода и подключаются эти обмотки к ключам, которые срабатывают по очереди, по принципу бегущего огня с небольшим нахлестом, создавая как бы вращающееся по кругу магнитное поле, частота вращения поля лежит в диапазоне 1.8-2.5 МГц.

Одна из возможных схем ТПУ Стивена Марка с обратной связью по питанию (самозапит) представлена ниже

Попытки запустить генератор Стивена Марка

Среди людей интересующихся альтернативной энергетикой хорошо известен такой деятель, как Роман Карнаухов, он же фигурирует под псевдонимом Акула.

На видео ниже он показывает в Германии кольцо Стивена Марка мощностью 1 Ватт в режиме самозапита, а далее разбирает его в присутствии интересующихся людей, чтобы показать отсутствии спрятанных химических источников энергии

Здесь Акула подробно рассказывает о принципе действия кольца ТПУ Стивина Марка

Однако, на данное время нет достоверных данных, о том, что кто-либо повторил работу этого устройства должным образом

О ЯМР в металлических проводниках и ферромагнетиках

Если в качестве исследуемого образца брать не жидкости или растворы солей металлов, а токопроводящие материалы, то излучение ЯМР этих образцов будет иметь свои особенности, при этом подойдет не любой способ исследования. Например, способ основанный на пропускании радиосгнала через образец может не дать корректного результата, так как металл может поглощать или отражать радиоволну исключительно за счет своих токопроводящих свойств, а не за счет ЯМР. В этом случае интересней способ основанный на поляризации образца в сильном поле и релаксации атомов образца в повернутом на 90 градусов слабом супер однородном магнитном поле. Но и здесь не все так просто.

Для примера возьмем медный цилиндр. Медь является диамагнетиком и в природе встречается 2 изотопа Cu-65 и Cu-63 в соотношении 27% к 73% соответственно. ЯМР этих изотопов имеет разные частоты. Медь-63 (Cu-63) имеет частоту ЯМР 26.505 МГц в поле напряженностью 2.3488 Тл

Слабые диамагнитные свойства меди делают ее легко проницаемой для постоянного магнитного поля, однако сигнал релаксации ядер цельного медного цилиндра может подавляться токами Фуко и сомнительно, что образец в виде цельного медного цилиндра даст хороший звон, способный выйти из образца ввиде переменного магнитного поля, это же явление делает неприменимым способ основанный на прохождении радиочастотного магнитного поля на частоте ЯМР сквозь образец. Поэтому проще всего исследовать раствор медной соли, например, хлорид меди или медный купорос. Но если нас интересует цельная металлическая медь, то форма образца играет большую роль.

Наиболее интересная версия заключается в том, чтобы образец сделать в форме катушки индуктивности, однако для чисто исследовательского эксперимента эту индуктивность не следует дополнять колебательным контуром, так как он будет давать самостоятельный звон при смене поля, который можно перепутать со звоном ЯМР. Провод лучше брать тонким, чтобы убрать токи Фуко. Длинна провода также важна и может быть достаточно большой, дабы увеличить количество вовлеченных в процесс ядер, но не столько большой, чтобы не начал проявляться волновой резонанс, который может также нарушить чистоту эксперимента. Чтобы еще больше увеличить количество вовлеченных в процесс ядер проводник можно сделать многожильным ввиде нескольких параллельных тонких проводов, так называемый литцендрат. В некоторых случаях для увеличения чистоты эксперимента все другие катушки в системе, кроме исследуемого образца необходимо выполнить из другово металла, не из меди, но и не из железа, например, подойдет золото или гораздо более дешевое серебро, алюминий также нежелателен, так как имеет близкие к меди частоты ЯМР. Как вариант исследуемый образец может выступать в качестве съемной катушки, однако это не следует делать основным способом, а делать лишь дополнительным экспериментом, так как собственные резонансные свойства съемной катушки могут сбивать общие показания

Магнитные свойства меди

Передача энергии через магнитные моменты атомов окружающего вещества

Владимир Ильич Бровин, инженер, изобретатель , имееющий несколько действующих патентов РФ 2075726, 2444124, 2551806

обнаружил, что энергия от одной катушки индуктивности задействованной в схеме качера к другой катушке индуктивности задействованной в схеме детекторного приемника мощности передается линейно, что противоречит законам Ампера и Био-Савара. После многочисленных экспериментов Бровин пришел к выводу, что энергия от одной катушки индуктивности к другой передается не только через магнитное поле, как это могло бы происходить в вакууме, а еще и через магнитные моменты атомов окружающего катушки вещества

взято здесь:

- "Качер вызывает в течение единиц наносекунд «кивок» (так кратко я называю механическое перемещение магнитных моментов атомов вещества, совершающееся под действием магнитных полей в парамагнетиках, и прецессию, вызываемую в диамагнетиках) магнитных моментов атомов, составляющих окружающее индуктор пространство вдоль магнитных силовых линий, образуемых индуктором. Магнитные моменты кивают не одномоментно, а в течение некоторого промежутка времени, подобно падающим костяшкам домино, от более плотной упаковки в объеме вблизи индуктора, к более рыхлой вдали от него"

-" Я предполагаю, что вблизи индуктора должна быть максимальная концентрация кивков, возбуждаемых индуктором. Кивки передаются на периферию связанными магнитным полем цепочками, и поглощают энергию от индуктора в течение наносекунд, вызывая этим экстраток самоиндукции. Вдоль оси цепи, составленной из магнитных моментов атомов, удаляющихся от индуктора в периферию, напряженность магнитного поля больше, чем в других направлениях (в моем представлении магнитный момент атома - это логическая сумма составляющих атом магнетонов - квантовых констант). Плоскость рамки приемника, пересекающая некоторое количество цепочек, (магнитный поток) при приближении к индуктору захватывает большее количество цепочек, при удалении - меньшее. Этим и определяется прямо пропорциональная зависимость передачи энергии от индуктора к приемнику, что и подтверждается экспериментом "

-"Новый взгляд на явление появился, когда я понял, что следует учесть экстратоки самоиндукции. Экстраток - это такое же поглощение энергии, которое наблюдается при ядерном магнитном резонансе "

Формула открытия

- " Проводник, являющийся индуктивностью, с током продолжающимся от десятков и менее наносекунд, создает в окружающем пространстве намагниченность проявляющуюся в механическом изменении положения магнитных моментов атомов окружающего активную и приемную индуктивности вещества, и это позволяет передавать энергию от активной индуктивности к приемной не только через собственно магнитное поле активной индуктивности, но и от изменяющегося механического перемещения магнитных моментов окружающего индуктивности вещества. В результате изменение энергии в приемной индуктивности в зависимости от расстояния происходит по закону U=U0(1 - kX) "

Профессиональные ЯМР спектрометры

Профессиональные ЯМР спектрометры представляют собой сложные, крупногабаритные и дорогостоящие приборы. Среди них, например,

ЯМР-АНАЛИЗАТОР ХРОМАТЭК-ПРОТОН 20М

Внесён в Государственный реестр средств измерений РФ под № 24791-08.

ЯМР-анализатор ПРОТОН 20М предназначен для измерения амплитудно-релаксационных характеристик протоносодержащих веществ при контроле показателей качества продукции и параметров технологических процессов, позволяет проводить быстрое и неразрушающее исследование веществ в любом агрегатном состоянии.

Принцип действия ЯМР-анализатора ПРОТОН 20М основан на явлении резонансного поглощения веществом радиочастотной электромагнитной энергии импульсов.

Вещество в пробирке помещается в однородное магнитное поле. Спины ядер вещества начинают прецессировать вокруг направления магнитного поля с частотой ядерного магнитного резонанса. При приложении импульсов слабого радиочастотного излучения ориентация спина ядер изменяется. После окончания действия импульса ядра возвращаются в первоначальное состояние, испуская ЯМР-сигнал, который регистрируется анализатором. Амплитуда сигнала зависит от количества резонирующих ядер, а времена ядерной магнитной релаксации от окружающей структуры ядер образца. По амплитуде сигнала и временам релаксации можно судить о физико-химических свойствах исследуемых веществ

Подробнее

Литература

Инструкция для желающих потрогать ферро-резонанс "своими руками"

Для успешных испытаний нужен трансформатор с быстро разбираемым железом марки ОСД или ему подобные мощностью 100…300 Вт. Подходят от старых ламповых телевизоров. Удобны в работе трансы стержневого типа (две обмотки на разных стержнях). Разобранный транс мощностью 150 Вт такого типа смотри фото удобство в быстрой смене катушек на новые или перемотка старых. Но и трансы броневого типа дадут такой же результат.

Для приведенного описания взят транс 150 Вт сердечник стержневого типа, на котором по обе стороны две катушки. Левая половина сетевой обмотки (130 вольт сопротивлением 7,7 Ома). Диаметр провода 0,5 мм, сечение 0,2 мм кв., индуктивность 0,2 Гн, такая же обмотка с правой стороны использовалась для подключения нагрузки лампы накаливания 220в на 100ват. Замеряем величину индуктивности резонансной катушки. Прибор любого производителя. Если не известно напряжение обмоток а их много вбирают ту, у которой наибольшая индуктивность (будет меньше емкость а значит дешевле). По замеренной индуктивности и рабочей частоте найдем реактивное сопротивление обмотки. Индуктивность 0,2 Гн, частота 50 Гц по сопротивлению емкость резонансного конденсатора:

Можно ставить расчетный, но чтобы попасть в насыщение сердечника емкость увеличивают на 15…20 % (поясню ниже). Теперь мы готовы к сборке схемы. Смотри рисунок съем мощности с дросселя. Включаем латер и плавно увеличивая напряжение смотрим на лампу. При входе схемы в резонанс яркость лампы увеличивается скачком. Это контур вошел в резонанс и начал черпать из гравитационного поля земли или по Мельниченко из магнитопровода. Но нам, строителям вечняка, сейчас по барабану, где он ее черпает. Главное побольше. Теперь можно крутить латер в сторону уменьшения и лампа будет гореть с постоянным свечением до определенного момента а потом скачком погаснет. Схема вышла из резонанса. Не спешите искать халяву, поработайте на разных режимах измерьте токи и напряжения в разных точках попробуете разные емкости. В общем, почувствуйте схему. Но долго работать со схемой не получится, т.к. дроссель перегревается и дымит. И чем больше насыщение сердечника, тем быстрее нагрев. Трансформатор (дроссель) не рассчитан на работу в резонансном режиме. На форуме Сергей пишет у него нет нагрева. Давайте прервемся и попробуем разобраться. Построим вольт амперную характеристику (ВАХ) контура. Для этого совместим на одном графике ВАХ дросселя и ВАХ емкости. Подключают дроссель к латеру и, меняя напряжение на дросселе и замеряя ток, для каждой точки строим ВАХ характеристику достаточно 4…6 точек. На практике выглядит так. К латеру подключают только дроссель и увеличивая напряжение с шагом 20… 30 В строят ВАХ. До начала насыщения дроссель работает тихо и токи малы на этом участке характеристика линейна и тут хватит двух точек, при подходе к точке насыщения появляется легкий гул и заметно возрастает ток тут тоже поставить одну точку далее уверенно гудит ток растет быстрее напряжения тут тоже хватит двух трех точек после все точки соединяем плавной кривой (L на рис 6).

По этому графику легко найти величину емкости для резонанса(точка тр на рис. 6) или с помощью латера построить на этом же графике ВАХ кондера хватит двух точек так она линейна. (50мкф на рис. 6) по разности напряжений ВАХ дросселя и кондера строится результирующая ВАХ резонансного контура (Красная кривая на рис. 6) по этой характеристике видно как на карте точки входа схемы в резонанс(Т2 рис. 6) выхода из него (Т3 рис.6) токи при которых схема работает в резонансе(от т4 до т3), короче не проводя глобальных расчетов можно найти любой параметр. На рисунке 6 ВАХ для моего транса. Точка нн начало насыщения сердечника. Точка тр пересечение характеристик катушки и емкости линия резонанса.

При напряжении Uр=85 В вход в резонанс скчком из т2 в т4 ток при этом подпрыгивает с 0,8 до 3,4 Ампера. А дроссель расчитан на 1А куда идет лишка - в нагрев. То есть для нормальной работы дросселя нужно увеличить сечение провода. Теперь уменьшим емкость резонансного конденсатора до 30 мкф. Рис 9.

ВА смещается к началу насыщения сердечника а прыжек тока уменьшается до 2 А. при дальнейшем уменьшении емкости система может не войти в резонанс или резонанс будет неустойчив. При увеличении емкости картина будет противоположной (см график емкость 90 мкф).

Выбирай но осторожно. думаю понятно имея характеристики разных катушек и емкостей можно высчитать поведение контура даже не включая его в розетку.

Соберем схему резонанса напряжений с отбором нагрузки со вторичной обмотки. В качестве нагрузки удобно использовать лампы накаливания ват по 20…40 увенчивая мощность параллельным включением. Дешево а главное наглядно. Введем схему в резонанс при 85 В т4 рис 6. И начнем увеличивать нагрузку. И вот он катаклизм и парадокс. Нагрузка растет а мощность потребления контуром падает. Контур движется из т4 в т3 и далее выход из резонанса

Нагрузку можно воткнуть и в параллельный контур (резонанс токов). Результат будет аналогичный только прыжок не по току а по напряжению. контур надо питать источником тока. Подойдет или мощный реостат или емкость в виде баластника.

Все графики сделаны по реальным испытаниям резонанса проведены 2005 г. при разных значениях емкостей 45,50,90 мкф. Поэтому любой параметр ток или напряжение можно взять из графика. При нагрузке сто ват (схема на фото) Из розетки тянет восемьдесят. И это на стандартном трасе. Думаю что проще уже некуда. Фото сделал вчера. Собрал на скорую руку, благо транс валялся, хоть и разобранный, но рядом.

Насчет простоты. Ясно, что это для красного словца. Даже проведение таких простейших опытов требуют времени и материальных затрат. Трансы хоть и бу но не дешевы. Конденсаторы больших емкостей еще дороже. Кстати, о емкостях - это только фазосдвигающие кондеры для моторов или гасители реактивной мощи. Электролиты не годятся. И еще питание резонансного контура от сети это явное расточительство и годится только для наработки опыта. Это можно проверить Если запитать рез контур через диод (диод помощнее), то есть половиной синусоиды контур упорно продолжает выдавать синус. Вспомним тесла питание его катушек только от однополярных импульсов а это блокинг-генератор.

Тому, кто хочет строить доказательную схему или мини черпачок. Схему резонанса токов (она лучше всех подходит) запитать от блокинг-генератора катушки, которого можно намотать прямо на железо дросселя. Можно, как у М, выполнить отдельным блоком. Частоту поднять, но для железа не выше килогерца оптимально 400 Гц. Совет тем у кого, как говорят, выпадает из резонанса под нагрузкой. Для начала получите результат на конкретную нагрузку. Лампа накаливания или двигатель.


Научные открытия в области магнетизма.

Научное открытие "Электронный парамагнитный резонанс Завойского".

Формула открытия: "Установлено неизвестное ранее явление квантовых переходов между электронными энергетическими уровнями парамагнитных тел под влиянием переменного магнитного поля резонансной частоты (явление электронного парамагнитного резонанса)".
Е. К. Завойский.
Номер и дата приоритета: № 85 от 12 июля 1944 г.

Описание открытия.
К числу фундаментальных открытий, раскрывающих тайны электрона, по праву относят открытие академиком Е. К. Завойским явления электронного парамагнитного резонанса (ЭПР). Оно было сделано в годы Великой Отечественной войны. В те времена автор открытия был доцентом Казанского государственного университета. В 1944 году он провел важные научные эксперименты, положившие начало новой области науки – радиоспектроскопии и позволившие создать на новом принципе сотни изобретений.
Одна из японских фирм, выпускающая приборы, основанные на использовании электронного парамагнитного резонанса, сделала своей эмблемой ключ, вокруг которого на орбите движется электрон. Открытие советского ученого действительно стало ключом ко многим тайнам природы.

Все металлы в той или иной степени способны намагничиваться. Однако наиболее сильно намагничиваются только четыре чистых металла: железо, никель, кобальт и редкоземельный элемент гадолиний. Хорошо намагничиваются многие сплавы этих металлов: сталь, чугун и др., получившие название ферромагнитных сплавов. Значительно слабее намагничиваются алюминий, титан, хром, марганец, платина. Эти металлы называют парамагнитными. Группа других металлов, в которую входят олово, свинец, медь, серебро, золото, намагничивается очень слабо. К магниту эти металлы не притягиваются, а, наоборот, отталкиваются от него. Они относятся к диамагнетикам. В диамагнитных телах магнитные поля электронов и ядра взаимно погашают друг друга. Но в магнитном поле атомы этих металлов становятся миниатюрными магнитиками, причем северный полюс каждого диамагнитного атома оказывается против северного полюса внешнего магнита, и тело отталкивается от магнита. В парамагнитных и ферромагнитных телах магнитные поля электронов и ядра, складываясь, усиливают друг друга.

Развитие учения о строении атома, появление квантовой теории позволили глубже понять природу магнетизма. Стало ясно, что магнитные свойства вещества заложены в мельчайших частицах атома – электронах, протонах, нейтронах. Эти частицы напоминают крошечные намагниченные волчки. Все дело в том, как скомбинированы эти волчки в атомах и молекулах.

И ферромагнетизм и парамагнетизм своим происхождением обязаны главным образом электронам. В железе и подобных ему сильномагнитных телах электроны объединены в большие колонии – домены. Во внешнем магнитном поле все магнитики электронов такой колонии, как по команде, выстраиваются одинаково, т. е. их действия суммируются, поэтому тело сильно намагничивается. В парамагнетиках электроны гораздо менее "дисциплинированы". Они более связаны с окружающими их атомами и молекулами, поэтому такие тела намагничиваются меньше. Однако, хотя их реакция на внешнее магнитное поле слабее, именно по ней приходится определять строение и состав вещества.

– это отклик магнитных атомов, молекул или электронов на радиоволны. Он имеет резонансный характер. Резонанс возникает, когда частота радиоволны совпадает с частотой вращения магнитного момента атома. Последняя зависит от силы внешнего магнитного поля и от электрических и магнитных микрополей в самом веществе. Поэтому, меняя силу поля, нетрудно создать условия для парамагнитного резонанса. Тело начнет сильно поглощать, преломлять и отражать радиоволны. Наблюдая любое из этих явлений, легко установить присутствие в нем даже ничтожного количества магнитных частиц и, самое главное, определить тончайшие особенности структуры микрополей внутри вещества, что невозможно сделать другими физическими методами. Благодаря этому ЭПР широко используется в физике твердого тела, ядерной физике, химии (для изучения обширного класса веществ, называемых радикалами), биологии, медицине, технике.

В последние годы ЭПР нашел применение в дальней космической связи и астрофизике. Так, с помощью квантовых усилителей радиоизлучения (мазеров), использующих ЭПР, действуют линии связи с космическими станциями, работают гигантские радиоастрономические интерферометры, служащие для изучения звездных источников радиоизлучения. На ЭПР основаны поиск и технологическая проверка веществ, составляющих основу квантовых генераторов и усилителей. Испытание активного вещества квантового генератора с помощью ЭПР позволяет заранее определить пригодность его для работы.



Загрузка...