sonyps4.ru

Снс спутниковая. Спутниковые навигационные системы

Ограничения целостности данных позволяют добавить для них требования, дополнительные к соблюдению типа. Заявляемые (схемные, формальные, "декларативные") ограничения целостности записываются ("провозглашаются") в виде условий, которые должны соблюдаться явно как таковые , на уровне схемы данных, и этим отличаются от правил целостности, сформулированных в виде запрограммированных проверок (см. ниже). Поэтому иначе такие ограничения можно называть "явными". Оригинальный термин имеет полное название " integrity data constraints" - "ограничения на значения данных, налагаемые для более точного учета обстоятельств предметной области ", но часто сокращается до " integrity constraints " или даже просто "constraints". Слово " integrity " вряд ли хорошо понятно массам разработчиков.

Само понятие заявляемых ограничений целостности в SQL было унаследовано от реляционной модели и усложнялось вместе с развитием стандарта. В Oracle номенклатура ограничений целостности в целом соответствует SQL -92 (при том, что объем реализации не выдержан), но не доведена до уровня SQL :1999. Так, Oracle не позволяет завести ограничение целостности на уровне БД (с помощью служебного слова ASSERTION ) и сильно ограничен в формулировании условия проверки значений конструкцией CHECK тем, что не допускает обращения к данным базы.

Слово ASSERTION из стандарта SQL подсказывает еще один перевод (и понимание) integrity constraints , как "утвердительные ограничения целостности".

Заявляемые ограничения целостности в Oracle можно задавать на уровнях:

  • отдельного поля строки в таблице;
  • отдельной строки;
  • пары таблиц.

Проверка на выполнение действующих заявляемых ограничений целостности выполняется СУБД автоматически и всегда, вне зависимости от источника поступления изменений, чем и гарантировано их соблюдение, в отличие, скажем, от проверок вводимых значений, осуществляемых клиентскими прикладными программами.

Oracle позволяет формулировать подобные ограничения при создании таблицы командой CREATE TABLE , а для уже существующих таблиц их можно добавлять и отменять следующими командами:

  • ALTER TABLE … MODIFY - добавление ограничений всех видов и снятие ограничения NOT NULL ;
  • ALTER TABLE … ADD/DROP - добавление и снятие ограничений всех видов, кроме NOT NULL .

Всем ограничениям целостности, сформулированными в схеме, Oracle сообщает имена. Если при создании ограничения употребить конструкцию CONSTRAINT имя , ограничение получит имя от программиста, в противном случае СУБД создаст имя по своему усмотрению. Сведения о каждом существующем ограничении можно найти в таблице словаря-справочника USER_CONSTRAINTS по его имени. Неудачное имя ограничения можно изменить; к примеру:

ALTER TABLE projx RENAME CONSTRAINT sys_c0011509 TO name_is_needed;

Разновидности заявляемых ограничений целостности

Ограничение NOT NULL

Ограничение NOT NULL обязывает столбец или группу столбцов всегда иметь значение (если группа - то хотя бы в одном поле). Требование непустоты столбца крайне желательно, так как избавляет программиста от многочисленных забот, связанных с особенностями обработки NULL . К сожалению, требования предметной области и некоторые действия в SQL (например, GROUP BY ROLLUP … ) не позволяют совсем отказаться от столбцов со свойством NULL .

Это единственное из ограничений целостности, информация о котором хранится не только в таблице USER_CONSTRAINTS , но и в таблице USER_TAB_COLUMNS в качестве свойства столбца. (Когда-то признак NULL/NOT NULL формально считался свойством столбца, а не ограничением целостности). По этой причине добавление и упразднение этого ограничения оформляется по правилам изменения свойства столбца, только через ключевое слово MODIFY :

ALTER TABLE proj MODIFY (budget NOT NULL); -- создание ограничения с системным именем; скобки необязательны ALTER TABLE proj MODIFY (budget NULL); -- упразднение ограничения; скобки необязательны ALTER TABLE proj MODIFY (budget CONSTRAINT is_mandatory NOT NULL); -- создание ограничения с именем, заданным программистом

В современных версиях Oracle самостоятельное ограничение NOT NULL будет оформлено технически как ограничение вида CHECK с условием для проверки: budget IS NOT NULL и одновременно будет зафиксировано в USER_CONSTRAINTS значением NULLABLE = "Y" . Свойство NOT NULL , вытекающее из правила первичного ключа, будет отражено только в USER_CONSTRAINTS .

Первичные ключи

От столбцов, назначенных первичным ключом, требуется, чтобы значения в их полях всех строк были уникальными и имелись всегда (для ключа из нескольких столбцов значение должно быть хотя бы в одном поле). Примеры создания и удаления:

ALTER TABLE proj ADD PRIMARY KEY (projno, pname); -- создание ограничения (первичный ключ на основе двух столбцов) с системным именем ALTER TABLE proj DROP PRIMARY KEY; -- упразднение ограничения ALTER TABLE proj ADD CONSTRAINT pk_proj PRIMARY KEY (projno); -- создание ограничения с именем, заданным программистом

Значения в полях первичного ключа должны существовать всегда.

Некоторые типы столбцов не допускаются до формирования первичного ключа (например, LOB или TIMESTAMP WITH TIME ZONE ).

Уникальность значений в столбцах

От столбцов, назначенных уникальными, требуется, чтобы значения в их полях всех строк были уникальными. Уникальность в SQL наиболее близка к понятию "альтернативного", "возможного" (candidate) или же просто "ключа" в реляционной модели.

Пример создания:

ALTER TABLE proj ADD UNIQUE (pname);

Обратите внимание, что в столбце PNAME не запрещаются пропуски значений. По стандарту SQL уникальность отслеживается для имеющихся значений столбца. Если на такой столбец дополнительно наложить ограничение

ALTER TABLE proj MODIFY (pname NOT NULL);

он сможет играть роль ключа в реляционной модели и быть объявлен первичным (путем замены двух ограничений: UNIQUE и NOT NULL на одно PRIMARY KEY ). Если же уникальной объявляется группа столбцов, сообщить ей свойства ключа средствами SQL сложнее (обязательность хотя бы одного значения в уникальной группе можно потребовать ограничением вида CHECK ).

Другое отличие ограничения уникальности от первичного ключа в том, что первых в таблице может быть сформулировано несколько, а второе присутствует разве что в единственном числе. Oracle не препятствует объявлению уникальности не только непересекающихся групп столбцов, но даже и повторяющихся. Следующая цепочка команд не вызовет ошибок:

ALTER TABLE t ADD CONSTRAINT xx UNIQUE (a, b); -- Ошибка!

Внешние ключи

Столбцы, объявленные внешним ключом, обязаны (а) ссылаться на однотипные столбцы из другой или той же таблицы при условии, что адресат - это первичный ключ или уникальная группа столбцов, и (б) принимать только существующие в данный момент в столбцах-адресатах значения. Пример создания:

ALTER TABLE proj ADD (ldept NUMBER (2)) ; ALTER TABLE proj ADD FOREIGN KEY (ldept) REFERENCES dept (deptno) ;

По правилам внешнего ключа в столбце LDEPT не запрещаются пропуски значений. Стандарт SQL требует от СУБД проверки соответствия значениям в столбцах-адресатах таблицы только имеющихся значений внешнего ключа; иными словами, значения в полях внешнего ключа могут отсутствовать.

Внешних ключей в таблице может быть определено несколько. Например, при более тщательном моделировании примера "сотрудники - отделы" в дополнение к имеющемуся внешнему ключу DEPTNO таблицы EMP можно было бы объявить внешним ключом столбец JOB , заставив его ссылаться на отдельную таблицу с описаниями штатных должностей.

Определение своего местоположения, как на суше, так и на море, в лесу или в городе - вопрос такой же актуальный на сегодняшний день, как и на протяжении прошлых веков. Эпоха открытия радиоволн существенно упростило задачу навигации и открыло новые перспективы перед человечеством во многих сферах жизни и деятельности, а с открытием возможности покорения космического пространства совершился огромный прорыв в области определения координат местоположения объекта на Земле. Для определения координат используется спутниковой системы навигации, который получает необходимую информацию от спутников, расположенных на орбите.

Сейчас в мире существуют две глобальных системы определения координат – российская ГЛОНАСС и американская NavStar, более известная как GPS (аббревиатура названия Global Position System – глобальная система позиционирования).

Cистема спутниковой навигации ГЛОНАСС была изобретена в Советском союзе еще в начале 80х годов прошлого века и первые испытания прошли в 1982 г. Она разрабатывалась по заказу Министерства Обороны и была специализирована для оперативной глобальной навигации наземных передвигающихся объектов.

Американская система навигации GPS по своей структуре, назначению и функциональности аналогична ГЛОНАСС и также разработана по заказу Министерства Обороны Соединенных Штатов. Она имеет возможность с высокой точностью определять как координаты наземного объекта, так и осуществлять временную и скоростную привязку. NavStar имеет на орбите 24 навигационных спутника, обеспечивающих непрерывное навигационное поле на всей поверхности Земли.

Приемоиндикатор системы спутниковой навигации (GPS-навигатор или ) принимает сигналы от спутников, измеряет расстояния до них, и по измеренным дальностям решает задачу определения своих координат – широты, долготы и, при приеме сигналов от 4-х и более спутников – высоты над уровнем моря, скорость, направление (курс), пройденный путь. В состав навигатора входят приемник с для приема сигналов, компьютер для их обработки и навигационных вычислений, дисплей для отображения навигационной и служебной информации и клавиатура для управления работой прибора.

Такие приемники предназначены для постоянной установки в рулевых рубках и на приборных панелях. Их основными особенностями являются: наличие выносной антенны и питание от внешнего источника постоянного тока. Они имеют, как правило, крупные жидкокристаллические монохромные экраны с алфавитно-цифровым и графическим отображением информации.

:

Компактный водонепроницаемый GPS/DGPS/WAAS приемник с высокими характеристиками, спроектированный для малых судов. Этот GPS приемник от компании способен принимать и обрабатывать дополнительные сигналы дифференциальных поправок DGPS/WAAS. Эта возможность обеспечивает, принимая поправки от радиомаяка или геостационарных спутников WAAS, использовать точность выше 5 метров.

Новый (D)GPS навигатор встроенным приемником дифференциальных поправок. Технология прокладки пути позволяет точно создавать маршруты высокой дальности. Есть возможность выбирать локсодромический курс (RL) для коротких дистанций и ортодромический (GC) для длинных.

С технологией прокладки пути позволяет точно создавать маршруты высокой дальности. Есть возможность выбирать локсодромический курс (RL) для коротких дистанций и ортодромический (GC) для длинных.

Стационарные приемники имеют широкие функциональные возможности, особенно профессиональные приборы для использования на море. Они обладают большим объемом памяти, возможностью решения различных навигационных задач, а их интерфейс предоставляет возможность включения в навигационную систему судна.

:

Это современный приемоиндикатор навигационных спутниковых систем ГЛОНАСС/GPS разработанный для судов всех типов.

Разработан специалистами компании «Радио Комплекс» с использованием новейших достижений в области морской навигации. РК-2006 имеет возможность принимать сигналы уже развернутых спутниковых группировок, таких как ГЛОНАСС и GPS, но так же и перспективных европейских и азиатских систем позиционирования, это позволяет с повышенной помехоустойчивостью, и защищенностью от вывода из строя какой-либо системы, определять координаты судна и его курс и скорость.

Приёмник глобальных навигационных спутниковых систем GPS и ГЛОНАСС, от южнокорейского производителя морского радионавигационного оборудования Samyung ENC Co., Ltd - SGN-500.

При использовании ГЛОНАСС и GPS в комбинированных приёмниках (практически все ГЛОНАСС-приёмники являются комбинированными) точность определения координат практически всегда «отличная» вследствие большого количества видимых КА и их хорошего взаимного расположения.

Отображение навигационной информации

В приемниках ГЛОНАСС/ GPS используются два способа отображения информации: алфавитно-цифровой и графический (иногда используется термин «псевдографический»).

Алфавитно-цифровой способ для отображения получаемой информации использует:

  • цифры (координаты, скорость, пройденный путь и т. п.)
  • буквенные сочетания, поясняющие цифровые данные – обычно аббревиатуры фраз (например, МОВ – «Man Over Board» или, по-русски – «Человек за бортом!»
  • сокращения слов (например,SPD – speed – скорость, TRK – Track – трасса), имена путевых точек. Алфавитно-цифровое отображение информации в чистом виде использовалось на начальном этапе развития техники GPS.

Графический способ отображения осуществляется с помощью образуемых на экране рисунков, представляющих характер движения носителя (судна, автомобиля, человека). Графика в аппаратах различных фирм практически одинакова и различается, как правило, в деталях. Наиболее распространенными рисунками являются:

  • электронный компас (не путать с магнитным!)
  • графический указатель движения
  • трасса движения, маршруты
  • символы для путевых точек
  • координаты судна
  • направление на путевую точку
  • скорость

Характеристики:

Точность определения координат места

Точность определения координат места является фундаментальным показателем любой навигационной системы, от значения которого будет зависеть, насколько правильно судно будет следовать по проложенному маршруту и не попадет ли оно на находящиеся поблизости мели или камни.

Точность приборов обычно оценивают по величине среднеквадратической погрешности (СКО) – интервалу, в который попадает 72 % измерений, или по максимальной ошибке, соответствующей 95 %. Большинство фирм-производителей оценивают СКО своих приемников GPS в 25 метров, что соответствует максимальной ошибке 50 метров.

Навигационные характеристики

Навигационные возможности приемников ГЛОНАСС/GPS характеризуют количеством запоминаемых прибором путевых точек, маршрутов и содержащихся в них маршрутных точек. Под путевыми понимаются используемые для навигации характерные точки на поверхности Современные могут создавать и хранить, в зависимости от модели, от 500 до 5000 путевых точек и 20–50 маршрутов с 20–30 точками в каждом.

Помимо путевых точек в любом приемнике есть запас точек для записи и сохранения пройденной трассы. Это количество может достигать от 1000 до нескольких десятков тысяч точек в профессиональных навигаторах. Записанная трасса может быть использована для возврата по ней назад.

Количество одновременно отслеживаемых спутников

Этот показатель характеризует устойчивость работы навигатора и его возможность обеспечения наивысшей точности. Учитывая тот факт, что для определения двух координат позиции – долготы и широты – нужно одновременно отслеживать 3 спутника, а для определения высоты – четырех. Современные ГЛОНАСС/ GPS навигаторы, даже носимые, имеют 8 или 12-канальные приемники, способные одновременно принимать и отслеживать сигналы соответственно до 8 или 12 спутников.

Спутниковые навигационные системы GPS и ГЛОНАСС создавались исходя из определенных требований, соответствующих их прямому назначению. Подразумевалась их глобальность; независимость от метеорологических условий, рельефа местности, степени подвижности объекта; непрерывность работы и круглосуточная доступность; помехозащищенность; компактность аппаратуры потребителя и др.

Гражданские применения СНС, развившиеся уже после разработки концепции систем ГЛОНАСС и GPS, особенно такие, как управление гражданским воздушным движением, навигацией судов, спасательные работы, предъявляют к СНС повышенные требования в плане доступности, целостности и непрерывности обслуживания. Дадим определения этим важным терминам:

Доступность (готовность) - степень вероятности работоспособности СНС перед ее применением и в процессе применения.

Целостность - степень вероятности выявления отказа системы в течение заданного времени или быстрее.

Непрерывность обслуживания - степень вероятности сохранения непрерывной работоспособности системы на заданном промежутке времени.

Под заданным промежутком времени, как правило, подразумевается отрезок времени, наиболее важный с практической точки зрения, например, время захода авиалайнера на посадку. В настоящее время среди гражданских применений наиболее критичным к работоспособности СНС является управление воздушным движением, включая навигационное обеспечение воздушных судов. Требования к доступности зависят от этапов полета и интенсивности воздушного движения. Доступность при маршрутном полете должна быть не хуже 0,999…0,99999; при полете в зо-не аэродрома и некатегорированном заходе на посадку не хуже 0,99999. Требования к целостности достигают, согласно требованиям ИКАО, значения 0,999999995 при допустимом времени предупреждения не более 1 с. Приведенные данные показывают, насколько велики требования, предъявляемые к надежности СНС потребителями.

В СНС ГЛОНАСС и GPS высокие эксплуатационные характеристики на структурном уровне достигаются путем совместного функционирования трех основных сегментов:

Космического сегмента;

Сегмента управления;

Сегмента потребителей.

Кроме основных сегментов существует такое функциональное дополнение, как дифференциальная подсистема (DGPS) и ряд вспомогательных элементов: специальные каналы наземной и космической связи, средства вывода спутников на орбиту и т.п.

Основу концепции СНС ГЛОНАСС и GPS составили независимость и беззапросность навигационных определений. Независимость подразумевает определение искомых навигационных данмирудование, но при современном уровне развития электроники подобное усложнение уже не имеет значения. Беззапросность системы означает, что все вычисления в аппаратуре потребителя вычисляются только на основе пассивно принятых сигналов от НКА с заранее точно известными орбитальными координатами. В свою очередь, отсутствие необходимости передавать запрос от потребителя к НКА позволяет сделать оборудование потребителя весьма компактным и экономичным.

Космический сегмент.

Точность местоопределения и стабильность функционирования СНС в большой степени зависит от взаимного орбитального расположения спутников и параметров их сигналов. Как правило, требуется, чтобы в зоне видимости потребителя находились не менее 3 - 5 НКА. На практике орбитальная структура строится таким образом, что для большинства потребителей постоянно видны более 6 НКА и потребитель имеет возможность выбирать оптимальное созвездие по определенному алгоритму, заложенному в вычислитель приемника. Кроме действующих НКА, завершенная СНС имеет в своем составе несколько резервных спутников, которые могут быть оперативно введены для замены вышедших из строя либо для увеличения степени покрытия определенного региона. Действующие НКА могут быть перегруппированы (в ограниченных пределах) по команде с наземной станции управления. Действующие в настоящее время средневысотные орбиты с высотой около 20 000 км позволяют принимать сигналы каждого НКА почти на половине поверхности Земли, что обеспечивает непрерывность радионавигационного поля и достаточную избыточность при выборе оптимального созвездия НКА. Системы GPS и ГЛОНАСС часто называют сетевыми СНС, поскольку принципиальное значение для их функционирования имеет взаимная синхронизация НКА по орбитальным координатам и параметрам излучаемых сигналов, т.е. объединение группы НКА в сеть.

Основное значение НКА - формирование и излучение сигналов, необходимых для решения потребителем задачи позиционирования и контроля исправности самого НКА. В состав стандартного НКА входят: радиопередающее оборудование для передачи навигационного сигнала и телеметрической информации; радиоприемное оборудование для приема команд наземного комплекса управления; антенны; бортовая ЭМВ; бортовой эталон времени и частоты; солнечные батареи; аккумуляторные батареи; системы ориентации на орбите и т.д. Современные НКА могут нести сопутствующее оборудование, такое как детекторы для обнаружения наземных ядерных взрывов и элементы систем боевого управления.

Излучаемые НКА сигналы содержат дальномерную и служебную составляющие. Дальномерная составляющая используется потребителями непосредственно для определения навигационых параметров - дальности до НКА, вектора скорости потребителя, его пространственной ориентации и т.п. Служебная составляющая содержит информацию о координатах спутников, шкале времени, векторах скоростей НКА, исправности и т.д. В основном служебная информация готовится командно-измерительным комплексом и закладывается в бортовую память НКА во время сеанса связи. И лишь незначительная ее часть формируется бортовой аппаратурой. Процедура переноса служебной информации из командного комплекса в память бортовой ЭВМ часто называется загрузкой данных.

Дальномерная составляющая содержит компоненты стандартной и высокой точности. Стандартная точность измерений доступна всем потребителям, а высокая - только авторизованным, т.е. имеющим разрешение военных контролирующих органов. Разграничение доступа достигается путем кодирования сигналов высокой точности.

В условиях военных действий возможны попытки как постановки преднамеренных помех с целью подавления сигнала СНС (джаминг), так и попытки навязывания (спуфинг), т.е. подмены сигнала и ввода в приемную аппаратуру противника заведомо ложной информации при помощи сторонних передатчиков. Поскольку в литературе весьма редко встречается четкое толкование термина «антиспуфинг» применительно к СНС, следует особо подчеркнуть, что речь идет именно о защите от навязывания.

Сегмент управления.

Сегмент управления состоит из главной станции, совмещенной с вычислительным центром; группы контрольно-измерительных станций (КИС), связанных с главной станцией и между собой каналами связи; наземного эталона времени и частоты. Контрольно-измерительные станции ста-раются размещать как можно равномернее по поверхности Земли, сообразуясь с геополитически-ми факторами и экономической целесообразностью. Координаты КИС (фазового центра антенны) определены в трех измерениях с максимально доступной точностью. При пролете НКА в зоне видимости КИС, она осуществляет наблюдение за спутником, принимает навигационные сигналы, осуществляет первичную обработку информации и производит обмен данными с главной стан-цией. На главной станции происходит сбор информации от всех КИС, ее математическая обработка и вычисление различных координатных и корректирующих данных, подлежащих загрузке в бортовую ЭВМ НКА.

Данные, подлежащие загрузке, подразделяются на оперативные, обновляемые при каждом сеансе связи, и долговременные. В случае возникновения нештатной ситуации возможно проведение внеплановых сеансов связи и загрузки данных при условии нахождения НКА в зоне видимости одной из КИС.

Наземный эталон времени и частоты имеет более высокую точность, чем бортовые эталоны и предназначен для синхронизации всех процессов, происходящих в СНС и коррекции бортовых эталонов.

Сочетание независимости и беззапросности придает СНС неограниченную пропускную способность - произвольное число потребителей может использовать сигналы СНС в любой момент времени.

Сегмент потребителей.

Сегмент потребителей можно условно разбить на три части: военные организации; гражданские организации; частные лица. Независимо от назначения потребительского оборудования, в нем присутствуют радиочастотный тракт, в котором происходит прием радиосигналов НКА и их первичная обработка, и вычислитель, предназначенный для вторичной обработки сигнала, выделения навигационной информации, реализации алгоритма вычисления оптимального созвездия и вычисления пространственных координат и вектора скорости потребителя. Обычно сначала определяются текущие координаты НКА и дальности до них, затем вычисляются географические координаты потребителя. Вектор скорости потребителя вычисляется путем измерения доплеровских сдвигов частоты НКА при известных векторах скорости спутников. Для некритичных транспортных применений вектор скорости может рассчитываться по разности координат в два фиксированных момента времени. Далее, в зависимости от назначения приемника, информация может поступать на устройство отображения, в канал передачи, либо на блок управления внешними исполнительными механизмами.

Определение текущих координат НКА.

Несмотря на некоторое сходство с радиомаячными навигационными системами (беззапросность, дальномерный метод), СНС имеют также и существенные отличия. Координаты радиомаяков неизменны и заранее известны, тогда как координаты НКА необходимо постоянно находить. Определение текущих координат НКА, движущихся с большими непостоянными относительно потребителя скоростями представляет собой сложную техническую и вычислительную задачу.

При существующем подходе к построению СНС максимально возможный объем вычислений стараются перенести на наземный комплекс управления. Контрольно-измерительные станции расположены на ограниченных территориях и не обеспечивают непрерывное наблюдение за НКА. По результатам доступных наблюдений в вычислительном центре главной командной станции вычисляются параметры орбит НКА. Они подвергаются математической обработке по алгоритмам устранения погрешностей. Затем на основании обработанных данных составляется прогноз параметров орбиты в фиксированные (опросные) моменты времени вплоть до выработки следующего прогноза.

Спрогнозированные параметры орбиты и их производные называются эфемеридами. Во время сеанса связи эфемериды передаются на НКА, а затем в виде навигационного сообщения, содержащего эфемериды и соответствующие метки времени - потребителям. Зная предполагаемые параметры орбиты и точные координаты НКА в опорные моменты времени, потребитель может вычислить координаты НКА в произвольный момент времени. Кроме эфемерид в навигационное сообщение закладывается альманах - набор сведений о текущем состоянии СНС в целом, включая загрубленные эфемериды, применяемые для поиска видимых НКА и выбора оптимального созвездия.

Общепринятые единицы мер времени.

Рассмотрение принципов построения и функционирования спутниковых навигационных систем невозможно без предварительного ознакомления с основными понятиями, относящимися к единицам мер времени. Эти единицы применяются для определения пространственного положения НКА, привязки сигналов НКА к единой шкале времени и т.д.

Принято различать две группы единиц отсчета времени:

Астрономические;

Неастрономические.

Основной астрономической единицей отсчета являются сутки, разбитые на 86400сек и равные интервалу времени, за который Земля делает один полный оборот вокруг своей оси относительно некой фиксированной точки отсчета на небесной сфере, для неподвижного наблюдателя, находящегося на поверхности Земли. Характерной особенностью астрономических суток является то, что в зависимости от выбранной точки отсчета (центр видимого диска Солнца, точка весеннего равноденствия и т.д.), сутки имеют разную длительность и различаются по названию.

Звездные сутки. Интервал времени, отмеренный между двумя последовательными верхними кульминациями точки весеннего равноденствия, называется звездными сутками, или, иначе, звездным периодом обращения Земли. Время, измеренное на определенном меридиане, называется местным временем данного меридиана. Поэтому, в случае со звездными сутками, говорят о местном звездном времени меридиана.

Местное звездное время измеряется часовым углом положения точки весеннего равноденствия относительно небесного меридиана. Под небесным меридианом понимают проекцию земного меридиана на условную поверхность небесной сферы, поэтому часовой угол аналогичен географической долготе, отсчитывается от часового меридиана наблюдателя по часовой стрелке и измеряется в часах, минутах, секундах.

Известно, что ось вращения Земли совершает медленные периодические движения, состоящие из движений по конусу - прецессий, и небольших колебаний - нутаций. Прецессия и нутации вносят погрешность в определение звездного времени, поскольку из-за них перемещается точка весеннего равноденствия. Если при расчетах учитывают только прецессию, то получают среднее звездное время. Когда совместно с прецессией учтена и нутация, то получается истинное звездное время. Звездное время, измеренное на Гринвичском меридиане, называется гринвичским звездным временем.



Загрузка...