sonyps4.ru

Программа daily road voyager ночью записывать нормально.

Haswell – четвертое поколение ЦП микроархитектуры Intel Core. Этакий «так» для Ivy Bridge, с типичной 22 нм технологией производства. Но мне хотелось бы начать обзор с одной причины, а вернее – следствия того, куда направлен вектор развития процессоров.

«Темный кремний»

Полвека назад один из основателей Intel Гордон Мур сформулировал закон, согласно которому количество транзисторов на кристалле удваивается приблизительно каждые два года. Правило соблюдалось на протяжении половины столетия, поскольку появлялись новые технические процессы, и производство постепенно переходило с 150 нм на 28 нм, продолжая постоянно уменьшаться. Еще несколько лет тому назад считалось, что после 45 нм перейти на 28 нм будет трудно, а до 14-10 нм доберутся только самые продвинутые и богатые производители.

Но в этом году AMD готовится освоить 20-22 нм техпроцесс, а Intel изготавливает 22-нанометровые решения уже больше года. К 2018-2020 годам число слоев металлизации достигнет 18-20, а количество транзисторов внутри процессора превысит триллион! Сумасшедшие цифры, говорящие о практически достигнутом пределе технологий.

Обратная сторона медали – это растущие токи утечки, протекающие через закрытый транзистор, что является основным фактором роста энергопотребления, которое в идеальном случае не должно меняться. Но в существующей реальности в результате глобального роста энергопотребления, а значит, и тепловыделения, процессоры постепенно превращаются в маленькие ядерные реакторы. И на этом этапе инженерам пришлось искать варианты решения проблемы.

Существует несколько подходов, позволяющих микроэлектронике процветать в эпоху темного кремния: внедрение новых технологических достижений, специализация и управление энергопотреблением и оптимизация на системном уровне, параллелизация для повышения энергоэффективности.

Так как процессор в разный период времени своей работы задействуется не полностью, а лишь частично, появилась идея отключать неиспользуемые блоки, которые получили название «темный кремний». И чем больше погасших участков (те, что работают на значительно пониженной тактовой частоте или полностью отключены), тем меньше энергопотребление CPU.

В будущем микроэлектронике потребуется совершить прорыв в использовании транзисторов, которые изготовлены не по традиционной MOSFET-технологии. Изобретение Tri-Gate- и FinFET-транзисторов, а также High-K-диэлектриков позволило на одно-два поколения процессоров отсрочить неизбежное, все же микроэлектроника приближается к финальной стадии развития. Хотя бы потому, что недавно внедренные технологии являются, по сути, разовыми улучшениями.

Попытки найти замену MOSFET предпринимаются давно, и часть из них уже существует в кремнии. Сейчас есть как минимум два кандидата: TFET-транзисторы и наноэлектромеханические транзисторы. От них ожидают радикального уменьшения токов утечки, но промышленное изготовление пока не освоено. По той же причине из-за роста токов утечки увеличивать число ядер по мере уменьшения размера ячеек невозможно. Иначе одновременное включение всех исполнительных устройств приведет к чрезвычайно высокому уровню энергопотребления.

По мнению современных аналитиков, это недопустимо. Да и снабжать такие ЦП двухкилограммовыми радиаторами глупо. Не стоит забывать и о силовой части, расположенной на материнской плате. Ей придется выдавать ток огромный силы. Поэтому внедрение «темного кремния» в процессоры на данный момент единственный способ сдержать TDP в разумных рамках и не уменьшить удельную производительность CPU. Фактически это ответ на рост частоты, энергопотребления и числа транзисторов.

Отдельного внимания требует оговорка о финансовой стороне вопроса производства процессоров. Теоретически, чем больше кристаллов помещается (поскольку их размер уменьшился), тем выгоднее производить новые модели. Но на практике это становится практически бессмысленным: появляются проблемы корпусирования, затраты на разработку и изготовление новых литографических масок составляют до трети себестоимости производства, что приводит к росту стоимости за единицу площади кремния. И, в конечном счете, делает переход на новый техпроцесс финансово непривлекательным. Не забудьте и о возврате потраченных средств. Чем быстрее и чаще вы переходите с большего на меньший техпроцесс, тем дольше вам надо выпускать и продавать товар. С другой стороны, выход годных кристаллов выше.

Второй сценарий развития процессоров – это уменьшение площади кристалла. Что и происходит каждые два-три года. Сам по себе вариант неплохой, разве что придется усложнять разводку микросхемы, закупать дорогостоящее оборудование, проводить исследования. Помимо этого, на определенном этапе разработчики получат сильно перегретые участки в процессоре и столкнутся с проблемой охлаждения. Явный тому пример – переход от Sandy Bridge к Ivy Bridge.

А с выходом Haswell дополнительный нагрев создают элементы управления питанием, расположенные теперь под крышкой. Вероятнее всего оставшаяся часть площади при переходе на более тонкий техпроцесс будет использована для снижения энергопотребления – с девизом «Больше темного кремния – значит лучше!».

И в итоге ввод нового понятия («темный кремний») позволяет производителям экономить пиковое и среднее энергопотребление, оставаясь в рамках фиксированного размера кристалла и ограниченного TDP. Так что в ближайшем будущем процессоры будут сохранять полезную площадь и постепенно сокращать энергопотребление.

Haswell: вид снаружи

Двух- и четырехъядерный варианты Haswell.

Решения поколения Haswell создавались с оглядкой на постоянно растущий сектор ноутбуков и ультрабуков. Поэтому к новым процессорам выдвигались соответствующие требования. А десктопный вариант – это адаптированный к настольным системам ЦП с большими частотами. Увы, но вычислительная часть Haswell не является его преимуществом по отношению к Ivy Bridge. Вообще, говоря о производительности новых моделей Intel, в первую очередь обращают внимание на структурные изменения (система питания перебралась в CPU, новое графическое ядро), а не на удельную скорость выполнения 2D задач.

Революционных изменений архитектуры Intel HD Graphics в Haswell по сравнению с Ivy Bridge нет, но есть новые возможности (в том числе увеличенное количество исполнительных устройств и некоторые архитектурные улучшения), приводящие к росту производительности и существенному снижению энергопотребления.

Поддерживаемые API:

  • Haswell – DirectX 11.1, OpenGL 4.0 и OpenCL 1.2;
  • Ivy Bridge – DirectX 11.0, OpenGL 3.3 и OpenCL 1.1.

В зависимости от модели процессора GPU Haswell будут выпускаться в разных модификациях, отличающихся количеством исполнительных устройств (EU). К модификациям GT1 и GT2 добавится новая - GT3. Она будет включать не только вдвое больше EU, чем GT2, но и двукратное увеличение количества блоков растеризации, операций с пикселями (Stensil buffer, Color Blend), и кэша третьего уровня. Такой подход теоретически на 50-70% поднимет пиковую производительность встроенной графики, которая, как вы знаете, все еще существенно проигрывает APU (Accelerated Processing Unit) AMD.

Смотрим вглубь

Для того чтобы понять, насколько серьезно Intel расширила отведенную для GPU часть процессора, сначала надо оценить количественные улучшения. Так, Command Streamer (CS) дополнен одним блоком Resource Streamer (RS). Блок сам по себе уникален для современной архитектуры Intel, потому как отлично вписывается в концепцию переложения работы с CPU на GPU. Частично он делает то, что раньше делали драйверы, но, увы, полностью заменить программную сущность он не в силах.

Продолжается и развитие управлением Ring Bus. Еще со времен Sandy Bridge Intel уловила направление развития технологий и высокую значимость энергопотребления, и «отвязала» частоту кольцевой шины от вычислительных блоков ЦП. Теперь Ring Bus изменяет свою частоту в более широких пределах и даже независимо от частоты процессора, что дополнительно экономит энергию.

Обновились и блоки медиасистемы - в целом они такие же, как и в Ivy Bridge, но, как всегда , лучше.

  • Кодирование MPEG2;
  • Улучшение качества кодирования видео, возможность выбора между производительностью и качеством (режимы Fast, Normal и Quality);
  • Декодирование SVC (Scalable Video Coding) в AVC, VC1 и MPEG2;
  • Декодирование Motion JPEG;
  • Декодирование видео высокого разрешения - до 4096х2304 пикселей.

В процессоре появилось новое исполнительное устройство – Video Quality Engine («Блок качества видео»), которое отвечает за различные улучшения качества (шумоподавление, деинтерлейсинг, коррекция тона кожи, адаптивное изменение контраста). Но только в Haswell к ним добавили еще две особенности: стабилизацию изображения и преобразование частоты кадров.

Со стабилизацией изображения мы знакомы давно, поскольку GPU и APU AMD давно предложили ее нам, а преобразование частоты кадров фишка гораздо более интересная. Это аппаратное решение, которое преобразует 24-30 кадровое видео в 60 кадров! В компании Intel заявляют об интеллектуальном совмещении и добавлении кадров, а не о простом размножении или интерполировании кадров. Если кратко, технология вычисляет движение соседних кадров и с помощью блока «преобразования частоты кадров» делается интерполяция и вставка.

Помимо этого появились следующие возможности:

  • Работа трех мониторов одновременно;
  • Display Port 1.2 с последовательным подключением панелей;
  • Поддержка дисплеев высокого разрешения до 3840х2160 @ 60 Гц через Display Port 1.2 и 4096х2304 @ 24 Гц через HDMI включительно;
  • Расположение «Коллаж».

Режим «Коллаж» соединяет четыре монитора, превращая всю доступную поверхность в 4К дисплей. Для этого предполагается использовать специальные разветвители.

Что касается самой архитектуры, то блочная схема, когда все процессоры построены из отдельных унифицированных блоков, никуда не делась. Но самое главное то, что процессоры Haswell просто-таки требуют нового разъема, очевидно тоже энергоэффективного .

Новая архитектура Haswell по-прежнему отлично справляется с моно- и многопоточной нагрузкой. Ревизии подверглись две вещи: очередь декодированных инструкций и емкость буферов (в сторону увеличения). Это дало некоторое увеличение точности предсказания переходов и повышение оптимизации разделения потоков в режиме Hyper-Threading. Важным элементом в строении стали новые инструкции, призванные в нужный момент дать двукратный рост скорости. К сожалению, увеличенная пропускная способность кэш-памяти (первого и второго уровней) соседствует со старой латентностью.

Процессоры Intel Core выполняли до шести микроопераций параллельно. Хотя внутренняя организация и содержит более шести исполнительных устройств, в системе есть только шесть стеков исполнительных блоков. Три порта задействуются для операций с памятью, оставшиеся три – для других вычислений (математических).

На протяжении многих лет Intel добавляла дополнительные типы инструкций и меняла ширину исполнительных блоков (например, в Sandy Bridge были добавлены 256-битные AVX операции), но она не пересматривала количество портов. А вот Haswell наконец-то обзавелся еще двумя исполнительными портами.

Для модельного ряда Haswell Intel ввела новое условие по части питания. Процессоры будут работать с интегрированными регуляторами напряжения, которые установлены внутри. Хотя нет никаких преград для полной интеграции питания в кремний, разработчики ограничились отдельной микросхемой рядом с кристаллом CPU.

В Haswell установлено двадцать ячеек, каждая из которых размером 2.8 мм 2 и создает виртуальные 16 фаз с максимальной силой тока 25 ампер. Несложно подсчитать, что в общей сложности регулятор содержит 320 фаз для питания процессора и обеспечивает очень точную регулировку напряжения. Возможно, в следующем поколении ЦП Broadwell эти компоненты питания будут окончательно перенесены внутрь кристалла CPU.

Новый набор логики

Модель Седьмая
серия
Восьмая
серия
Количество USB портов 14 14
Порты USB 3.0 до 4 до 6
xHCI порты 4 USB 3.0 20 USB (14+6)
PCI-e

В этой статье будут детально рассмотрены последние поколения процессоров Intelна основе архитектуры «Кор». Эта компания занимает ведущее положение на рынке компьютерных систем, и большинство ПК на текущий момент собираются именно на ее полупроводниковых чипах.

Стратегия развития компании «Интел»

Все предыдущие поколения процессоров Intel были подчинены двухлетнему циклу. Подобная стратегия выпуска обновлений от данной компании получила название «Тик-Так». Первый этап, называемый «Тик», заключался в переводе ЦПУ на новый технологический процесс. Например, в плане архитектуры поколения «Санди Бридж» (2-е поколение) и «Иви Бридж» (3-е поколение) были практически идентичными. Но технология производства первых базировалась на нормах 32 нм, а вторых — 22 нм. То же самое можно сказать и про «ХасВелл» (4-е поколение, 22 нм) и «БроадВелл» (5-е поколение, 14 нм). В свою очередь, этап «Так» означает кардинальное изменение архитектуры полупроводниковых кристаллов и существенный прирост производительности. В качестве примера можно привести такие переходы:

    1-е поколение Westmere и 2-е поколение «Санди Бридж». Технологический процесс в этом случае был идентичным — 32 нм, а вот изменения в плане архитектуры чипа существенные — северный мост материнской платы и встроенный графический ускоритель перенесены на ЦПУ.

    3-е поколение «Иви Бридж» и 4-е поколение «ХасВелл». Оптимизировано энергопотребление компьютерной системы, повышены тактовые частоты чипов.

    5-е поколение «БроадВелл» и 6-е поколение «СкайЛайк». Снова повышены частота, еще более улучшено энергопотребление и добавлены несколько новых инструкций, которые улучшают быстродействие.

Сегментация процессорных решений на базе архитектуры «Кор»

Центральные процессорные устройства компании «Интел» имеют следующее позиционирование:

    Наиболее доступные решения — это чипы «Целерон». Они подходят для сборки офисных компьютеров, которые предназначены для решения наиболее простых задач.

    На ступеньку выше расположились ЦПУ серии «Пентиум». В архитектурном плане они практически полностью идентичны младшим моделям «Целерон». Но вот увеличенный кэш 3-го уровня и более высокие частоты дают им определенное преимущество в плане производительности. Ниша этого ЦПУ — игровые ПК начального уровня.

    Средний сегмент ЦПУ от «Интел» занимают решения на основе «Кор Ай3». Предыдущие два вида процессоров, как правило, имеют всего 2 вычислительных блока. То же самое можно сказать и про «Кор Ай3». Но вот у первых двух семейств чипов отсутствует поддержка технологии «ГиперТрейдинг», а у «Кор Ай3» - она есть. В результате на уровне софта 2 физических модуля преобразуются в 4 потока обработки программы. Это обеспечивает существенный прирост быстродействия. На базе таких продуктов уже можно собрать игровой ПК среднего уровня, или даже сервер начального уровня.

    Нишу решений выше среднего уровня, но ниже премиум-сегмента заполняют чипы занимают решения на базе «Кор Ай5». Этот полупроводниковый кристалл может похвастаться наличием сразу 4 физических ядер. Именно этот архитектурный нюанс и обеспечивает преимущество в плане производительности над «Кор Ай3». Более свежие поколения процессоров Intel i5 имеют более высокие тактовые частоты и это позволяет постоянно получать прирост производительности.

    Нишу премиум-сегмента занимают продукты на основе «Кор Ай7». Количество вычислительных блоков у них точно такое же, как и у «Кор Ай5». Но вот у них, точно также, как и у «Кор Ай3», есть поддержка технологии с кодовым названием «Гипер Трейдинг». Поэтому на программном уровне 4 ядра преобразуются в 8 обрабатываемых потоков. Именно этот нюанс и обеспечивает феноменальный уровень производительности, которым может похвастаться любой Цена у этих чипов соответствующая.

Процессорные разъемы

Поколения устанавливаются в разные типы сокетов. Поэтому установить первые чипы на этой архитектуре в материнскую плату для ЦПУ 6-го поколения не получится. Или, наоборот, чип с кодовым названием «СкайЛайк» физически не получится поставить в системную плату для 1-го или 2-го поколения процессоров. Первый процессорный разъем назывался «Сокет Н», или LGA 1156 (1156 - это количество контактов). Выпущен он был в 2009 году для первых ЦПУ, изготовленных по нормам допуска 45 нм (2008 год) и 32 нм (2009 год), на базе данной архитектуры. На сегодняшний день он устарел как морально, так и физически. В 2010 году на смену приходит LGA 1155, или «Сокет Н1». Материнские платы данной серии поддерживают чипы «Кор» 2-го и 3-го поколений. Кодовые названия у них, соответственно, «Санди Бридж» и «Иви Бридж». 2013 год ознаменовался выходом уже третьего сокета для чипов на основе архитектуры «Кор» - « LGA 1150», или «Сокет Н2». В этот процессорный разъем можно было установить ЦПУ уже 4-го и 5-го поколений. Ну а в сентябре 2015 года на смену LGA 1150 пришел последний актуальный сокет - LGA 1151.

Первое поколение чипов

Наиболее доступными процессорными продуктами этой платформы являлись «Целерон G1101»(2,27 ГГц), «Пентиум G6950» (2,8 ГГц) и «Пентиум G6990»(2,9 ГГц). Все они имели всего 2 ядра. Нишу решений среднего уровня занимали «Кор Ай3» с обозначением 5ХХ (2 ядра/4 логических потока обработки информации). На ступеньку выше находились «Кор Ай5» с маркировкой 6ХХ (у них параметры идентичные «Кор Ай3», но частоты выше) и 7ХХ с 4-мя реальными ядрами. Наиболее производительные компьютерные системы собирались на базе «Кор Ай7». Их модели имели обозначение 8ХХ. Наиболее скоростной чип в этом случае имел маркировку 875К. За счет разблокированного множителя можно было разогнать такой Цена же у него была соответствующая. Соответственно можно было получить внушительный прирост быстродействия. Кстати, наличие приставки «К» в обозначении модели ЦПУ означало то, что множитель разблокирован и эту модель можно разгонять. Ну а приставка «S» добавлялась в обозначении энергоэффективных чипов.

Плановое обновление архитектуры и «Санди Бридж»

На смену первому поколению чипов на основе архитектуры «Кор» в 2010 году пришли решения под кодовым названием «Санди Бридж». Ключевыми «фишками» их были перенос северного моста и встроенного графического ускорителя на кремниевый кристалл кремниевого процессора. Нишу наиболее бюджетных решений занимали «Целероны» серий G4XX и G5XX. В первом случае был урезан кэш 3-го уровня и присутствовало всего одно ядро. Вторая серия, в свою очередь, могла похвастаться наличием сразу двух вычислительных блоков. Еще на ступеньку выше расположились «Пентиумы» моделей G6XX и G8XX. В этом случае разница в производительности обеспечивалась более высокими частотами. Именно G8XX из-за этой важной характеристики выглядели предпочтительнее в глазах конечного пользователя. Линейка «Кор Ай3» была представлена моделями 21ХХ (именно цифра «2» и указывает на то, что чип относится ко второму поколению архитектуры «Кор»). У некоторых из них в конце добавлялся индекс «Т» - более энергоэффективные решения с уменьшенной производительностью.

В свою очередь решения «Кор Ай5» имели обозначения 23ХХ, 24ХХ и 25ХХ. Чем выше маркировка модели, тем более высокий уровень производительности ЦПУ. Индекс «Т» в конце - это наиболее энергоэффективное решение. Если добавлена в конце наименования буква «S» - промежуточный вариант по энергопотреблению между «Т» - версией чипа и штатным кристаллом. Индекс «Р» - в чипе отключен графический ускоритель. Ну и чипы с буквой «К» имели разблокированный множитель. Подобная маркировка актуальна также и для 3-го поколения этой архитектуры.

Появления нового более прогрессивного технологического процесса

В 2013 году свет увидело уже 3-е поколение ЦПУ на основе данной архитектуры. Ключевое его нововведение — это обновленный техпроцесс. В остальном же не было введено в них каких-либо существенных нововведений. Физически они были совместимы со предыдущим поколением ЦПУ и их можно было ставить в те же самые материнские платы. Структура обозначений у них осталась идентичной. «Целероны» имели обозначение G12XX, а «Пентиумы» - G22XX. Только в начале вместо «2» была уже «3», которая и указывала на принадлежность к 3-му поколению. Линейка «Кор Ай3» имела индексы 32ХХ. Более продвинутые «Кор Ай5» обозначались 33ХХ, 34ХХ и 35ХХ. Ну флагманские решения «Кор Ай7» имели маркировку 37ХХ.

Четвертая ревизия архитектуры «Кор»

Следующим этапом стало 4 поколение процессоров Intel на основе архитектуры «Кор». Маркировка в этом случае была такая:

    ЦПУ экономкласса «Целероны» обозначались G18XX.

    «Пентиумы» же имели индексы G32XX и G34XX.

    За «Кор Ай3» были закреплены такие обозначения - 41ХХ и 43ХХ.

    «Кор Ай5» можно было узнать по аббревиатуре 44ХХ, 45ХХ и 46ХХ.

    Ну и для обозначения «Кор Ай7» были выделены 47ХХ.

Пятое поколения чипов

на базе данной архитектуры в основном было ориентировано на использование в мобильных устройствах. Для десктопных же ПК были выпущены лишь чипы линеек «Ай 5» и «Ай 7». Причем лишь весьма ограниченное количество моделей. Первые из них обозначались 56ХХ, а вторые — 57ХХ.

Наиболее свежие и перспективные решения

6 поколение процессоров Intel дебютировало в начале осени 2015 года. Это наиболее актуальная процессорная архитектура на текущий момент. Чипы начального уровня обозначаются в этом случае G39XX («Целерон»), G44XX и G45XX (так маркируются «Пентиумы»). Процессоры «Кор Ай3» имеют обозначение 61ХХ и 63ХХ. В свою очередь, «Кор Ай5» - это 64ХХ, 65ХХ и 66ХХ. Ну на обозначение флагманских решений выделено лишь маркировка 67ХХ. Новое поколение процессоров Intelпребываетлишь только в начале своего жизненного цикла и такие чипы будут актуальными еще достаточно длительное время.

Особенности разгона

Практически все чипы на основе данной архитектуры имеют заблокированный множитель. Поэтому разгон в этом случае возможен лишь за счет увеличения частоты В последнем, 6-м поколении, даже эту возможность увеличения быстродействия должны будут отключить в БИОСе производители материнских плат. Исключением в этом плане являются процессоры серий «Кор Ай5» и «Кор Ай7» с индексом «К». У них множитель разблокирован и это позволяет существенно увеличивать производительность компьютерных систем на баз таких полупроводниковых продуктов.

Мнение владельцев

Все перечисленные в этом материале поколения процессоров Intel имеют высокую степень энергоэффективность и феноменальный уровень быстродействия. Единственный их недостаток — это высокая стоимость. Но причина здесь кроется в том, что прямой конкурент «Интела» в лице компании «АМД», не может противопоставить ей более или менее стоящие решения. Поэтому «Интел» уже исходя из своих собственных соображений и устанавливает ценник на свою продукцию.

Итоги

В этой статье были детально рассмотрены поколения процессоров Intel лишь для настольных ПК. Даже этого перечня достаточно для того, чтобы потеряться в обозначениях и наименованиях. Кроме этого, есть также варианты для компьютерных энтузиастов (платформа 2011) и различные мобильные сокеты. Все это сделано лишь для того, чтобы конечный пользователь мог выбрать наиболее оптимальный для решения своих задач. Ну а наиболее актуальным сейчас из рассмотренных вариантов являются чипы 6-го поколения. Именно на них и нужно обращать внимание при покупке или сборке нового ПК.

DailyRoads Voyager - программа на Андроид, имитирует видеорегистратор. И теперь пользователи автовладельцы получили возможность непрерывно записывать процесс поездки. К тому же в программе есть множество других фишек, которые вам пригодятся. На сегодня эта программа является одним из лучших в своей категории.

Продвинутый видеорегистратор с простым интерфейсом позволит мгновенно сориентироваться в любой ситуации. На главном экране программы располагаются четыре большие кнопки, позволяющие сделать следующие действия: записать видео в конкретный момент, настроить камеру, сделать фотографию и просмотреть записанные файлы. Приложение записывает все события на дороге. Но чтобы сохранить важный момент, пользователям придется это сделать вручную и определить нужные отрезки съемки. Когда память заполнится и станет невозможным дальнейшая запись, видеорегистратор вас предупредит. Это поможет избежать удаления важных событий. Если вы хотите сделать снимок, то также придется всё делать вручную. Помните, что качество записи и фото зависит только от камеры вашего устройства с которого они сделаны.

DailyRoads Voyager выступает в качестве черного ящика автомобиля и непрерывно записывает видео с дороги. Но стоит помнить, что, используя, непрерывную запись видео программа довольно сильно истощит заряд аккумулятора смартфона или планшета. И видео, и снимки с камеры, которые сохраняются на устройстве, помечены gps – координатами. Вручную или автоматически можно помечать фотографии и видео файлы названиями мест, географическими привязками и адресами.

Особенности DailyRoads Voyager на Android:

  • заменяет видеорегистратор;
  • оставляет метаданные;
  • поддержка циклической записи;
  • непрерывная запись видео;
  • сохраняйте выбранные события на записи в одно касание;
  • выгрузка файлов на DailyRoads.com;
  • возможность делать фото;
  • отображение высоты, скорости, GPS-координаты и метка времени на фото и видео файлах;
  • фото/видео и отметкой времени и геотегом;
  • автосохранение при внезапном ударе;
  • регулировка яркости позволит меньше отвлекаться в ночное время суток;
  • добавление закладок к файлам, названия и описания;
  • возможность настройки качества видео и звука;
  • поддержка нового разрешения видео: 3840×2160 (4K UHD);
  • интерфейс приложения достаточно прост.

Видео является отличным доказательство в случае ДТП, нарушений со стороны сотрудников ДПС, обманов со страховкой, защиты от подстав и от разнящихся показаний свидетелей.

Скачать DailyRoads Voyager на Андроид бесплатно , без регистрации и смс, можно с нашего сайта.

DailyRoads Voyager Pro – отличное приложение, которое превратит телефон в видеорегистратор.

Программа способна записывать в виде видеофайлов все происходящее на автодорогах и делать высококачественные фотоснимки во время езды на автомобиле. Примечательно, что в приложении предусмотрена цикличное сохранение данных, что не позволит ему переполнить память устройства ненужными файлами.


На видео и фотографиях будет указана дата их создания, а также геотег. С помощью настройки чувствительности к перегрузкам инструмент может автоматически сохранять ролик при ДТП или внезапной остановке. В опциях можно выбрать промежуток времени, через который будут сделаны снимки и разрешение фото. Важно отметить, что сохранять файлы можно и на серверах сервиса.


Интерфейс сделан очень качественно и удобно. Кнопки меню большие и информативные, что позволяет пользоваться ими даже во время езды. Также радует наличие локализации. Перевод сделан очень хорошо, а опечатки или ошибки в словах отсутствуют. Приложение отлично оптимизировано, не перегружает устройство и, что особо важно, не вылетает.


DailyRoads Voyager Pro – одна из лучших программ в своем сегменте. Проект обладает огромным функционалом, порадует наличием обширных настроек, постоянно обновляется разработчиками, а также отличается своей надежностью и стабильностью в работе. Не лишней оказалась и локализация. Недостатков практически нет – 4.9 балла.

Загрузка...