sonyps4.ru

Intel представила платформу Haswell-E для компьютеров high-end-класса. Сравнительный анализ производительности Broadwell и Haswell

Тип микроархитектуры процессора играет одну из ключевых ролей в производительности ноутбука или пк, ведь от микроархитектуры зависит быстрота выборки и декодирования поступающих в процессор данных и инструкций, а затем их выполнение и запись в ОЗУ.

Сравнение микроархитектур процессоров Haswell, Broadwell и Skylake от Intel

На данный момент актуальными и конкурирующими между собой считаются микроархитектуры трех поколений от Intel. Это ядро 4-го поколения Haswell, 5-го поколения Broadwell и новейшая микроархитектура 6-го поколения Skylake. Как известно, в основе создания данных микроархитектур лежит экстенсивная стратегия под названием «Тик-так». «Тик» означает создание нового поколения процессоров на основе уменьшенного технологического процесса. «Так» же подразумевает выпуск новых микропроцессоров, но без изменения технологии создания. В статье будет проведен их сравнительный анализ и на его основе будет сделан вывод о наиболее производительном ядре.

Haswell

– микроархитектура, разработанная в 2012 году по 22 нм технологии. Поддерживает сокеты: LGA 1150, BGA 1364, LGA 2011-3. Работает с планкой ОЗУ DDR4. Шина: DMI2.

Плюсы процессора с данной микроархитектурой:

1) Энергоэффективный

2) Поддерживает DDR4

3) Низкая стоимость. К примеру, цена на Intel Core I3 4160 с ядром Haswell составляет 7800 рублей.

1) Изготовлен по устаревшей 22 нм технологии, в результате чего проигрывает по многим параметрам его улучшенной версии Broadwell.

Broadwell

– апгрейднутая версия Haswell, разработана для процессоров Intel серии Xeon, а также для седьмого поколения Intel Core I7. Изготовлена по 14 нм технологии. Принадлежит к ветви «тик» маркетинговой миссии «тик-так». По сравнению с Haswell имеет на 3-5% большую эффективность, чем Haswell, при этом потребляет энергии на 30%, также гораздо меньшее тепловыделение в ПК, 4.5 вт против 15 Haswell. Все это объясняется, прежде всего, уменьшенным технологическим процессом, по которому было изготовлено ядро, возможностью разгона процессора с данной микроархитектурой, а также наличием 4 кэша Crystalwell, дающего более высокую скорость обмена с ОЗУ, чем всего 3 кэша.

Плюсы ядра:

1) Эффективное энергопотребление

2) Возможность разгона

3) Поддержка DirectX 12

4) Именно в данной микроархитектуре получил распространение кэш L4, до сего использовавшийся лишь в редком числе микропроцессоров Haswell

5) Более высокое время автономной работы, чем Haswell

1) Стоимость (цена варьируется в пределах 13-150000 в зависимости от модели процессора, ибо предназначается данная микроархитектура для камней серии Xeon и Core I7 от Intel в то время как микропроцессор Haswell работает и на бюджетных камнях)

2) Соотношение цены/качества. В тестах микроархитектура показало невысокие результаты, опередив Haswell приблизительно на 3 процента, в том числе и в 3D Mark (Core I7-6850K на Broadwell-E: 19065 очков, Core I7-5820 на Haswell-E– 16598 очков). Если рассматривать это относительно сравнения Ivy Bridge и Haswell, то результат не впечатляющий.

Сравнительный анализ производительности Broadwell и Haswell

Skylake

– микроархитектура 6-го поколения, предназначенная, как и Haswell, в основном, для бюджетных энергоэффективных процессоров типа ULV. Разработана она согласно стратегии «тик-так» и затрагивает ветвь «так». То есть, ядро было изготовлено без изменения технологического процесса, но с кардинальным изменением микроархитектуры относительно Broadwell.

Микропроцессор работает на новом высокопроизводительном сокете LGA 1151, поддерживает DDR4, а также, в отличие от LGA 1150 работает с USB 3.0, имеет новую, гораздо более производительную шину DMI3 и большую энергоэффективность по сравнению со своим предшественником.

1) Поддержка нового разъема LGA 1151, более производительного, чем LGA 1150 – сокет Broadwell

2) Поддержка USB 3.0

3) Возможность разогнать GPU на новом сокете

4) Поддержка DDR4 и оптимизация работы с данной планкой ОЗУ

5) Лучшая энергоэффективность относительно Broadwell

6) Одно из главных достоинств - поддержка новой шины DMI 3, дающей в 2 раза большую скорость, чем DMI 2, на котором работают Broadwell и Haswell. Данное преимущество особенно заметно на примере такой программы, как Sony Vegas, где производительность Skylake выше почти в 1.5 раза

7) Стоимость (для бюджетных моделей Intel Core I3 в среднем цена составляет 3000-7000 рублей)

Относительно Broadwell и Skylake только плюсы, в сравнении же с Kaby Lake 7-го поколения – новейшей микроархитектурой, которой оснащено пока небольшое количество процессоров, дает производительность на несколько процентов ниже.

Подведение итогов:

Если взять все показатели, в том числе, стоимость микроархитектур, то рейтинг, составленный автором, будет такой:

1 место: Skylake

2 место: Haswell (данная микроархитектура, как показали тесты, хоть и является более старшей и менее энергоэффективной, но по производительности отстает от Broadwell на 2-3 процента, при этом имеет более низкую стоимость)

3 место: Broadwell

Вывод:

Несмотря на различные маркетинговые ухищрения, которых придерживается корпорация Intel, она все же показывает определенный результат и хоть понемногу, но улучшает с каждым поколением производительность и быстродействие своих процессоров. Так что, кто знает, возможно, к 2030 году, начнет выпускать первые квантовые процессоры, которые будут в миллион раз лучше нынешних, но это уже другая история.

Проапгрейдив до упора Sandy Bridge и переведя его на новый техпроцесс в прошлом году, Intel вплотную подошла к очередному шагу «tock», предписанному самой себе несколькими годами ранее.

«Тик-так» Intel - это не всегда бомба, но, определенно, символ технологического прогресса

На шагах «tock», как явствует из иллюстрации, необходимо вводить новую архитектуру. Что и было сделано - мир увидел микроархитектуру под кодовым именем Haswell и базирующиеся на ней 14 моделей процессоров Core i5 и i7 под разъем LGA 1150 (также известного как Socket H3), из них восемь «обычных» и шесть low power. Вообще, тема энергопотребления (или, если быть точным, «энергопотребления, адекватного для текущей вычислительной мощности») проходит красной нитью через микроархитектуру Haswell, потому как Intel видит большое будущее для своего творения в мобильном сегменте, а без процессора или SoC с умеренными аппетитами делать там нечего. Основным своим конкурентом, судя по сравнениям в открытых источниках, Intel считает поделки на ARM-процессорах, так как они уже хорошо прижились в мобильном сегменте и показали там свою жизнеспособность.

На ниве питания процессоров Intel уже немало сделала. Уходя от изначального регулирования TDP только с помощью напряжения питания процессора, подаваемого на него с преобразователя материнской платы и тактовой частоты ядер, Intel перенесла часть преобразователей в CPU, тем самым открыв для себя возможность более точно (а значит, эффективно) дозировать напряжение на каждом из других блоков, расположенных на кристалле. К тому времени процессор уже перестал быть только процессором в изначальном понимании этого слова и включал в себя контроллер памяти и другие части северного моста (NB), что в свое время позволило существенно упростить разводку материнских плат и снизить энергопотребление связки CPU+NB.

Работа с питанием также велась и в сторону рационального использования, когда тот или иной блок функционировал (читай - потреблял электричество) только в нужные моменты, а в периоды простоя отключался и не тратят попусту энергию. Одним из плодов работ в этом направлении стало появление в системах Intel наряду с состоянием S0 состояний S0ix, который значительно сокращал энергопотребление процессора в моменты простоя до состояния «спящей системы» (состояние S3, в него переходит ноутбук после захлопывания экрана в рабочем состоянии). Фактически, система могла «спать» абсолютно прозрачно для пользователя, так как переход в S0iх составляет 450 микросекунд, а пробуждение - 3,2 миллисекунды (0,00045 с и 0,0032 с соответственно). Для сохранения экрана в активном состоянии разработана технология PSR (Panel Self-Refresh), подразумевающая наличие буфера, хранящего несколько последних кадров. Это позволяет снижать нагрузку на графический процессор, особенно при нечастом обновлении информации на экране (например, при чтении текста), что, в свою очередь, дает возможность снизить энергопотребление графического процессора.

Новый процессор Intel умеет экономить энергию значительно лучше предшественников

Правда, для этого необходима аппаратная поддержка со стороны монитора, так что широкое применение этот способ энергосбережения может найти в мобильном сегменте, где «монитор» и «вычислительная часть» являются одним устройством. Но для демонстрации наработок Intel пример очень подходит, тем более что они нашли реализацию в процессорах на архитектуре Haswell. Так, блок PCU (Power Control Unit) в Haswell умеет очень эффективно использовать энергию за счет множества «режимов работы», в каждом из которых активны только необходимые сейчас блоки. Это, по заверениям Intel, позволило снизить энергопотребление в простое почти в пять раз по сравнению с прошлым (третьим) поколением процессоров, Переключение между «режимами» ускорено на четверть, что позволяет более активно управлять энергопотреблением ядер и «засыпать их» даже в тех случаях,которые в прошлом поколении были нецелесообразны из-за долгой процедуры включения/выключения. Тут ядро пару миллисекунд «поспало», сэкономим доли милливатта, там «вздремнуло»... Так и набираются сэкономленные ватты.

Внутренняя архитектура процессора также была серьезно доработана, хотя глобально ничего не изменилось. Intel продолжает шлифовать и дорабатывать кусками архитектуру, применявшуюся ещё в Conroe. Правда, различий между Ivy Bridge и Haswell куда больше, чем между Sandy Bridge и Ivy Bridge. Последний, по моему скромному мнению, вообще был рестайлингом для «Санди»; из существенных изменений можно отметить лишь переход с 32 нм на 22 нм техпроцесс.

Архитектура Intel Haswell в виде схемы

В процессорном блоке Haswell сохранился 14-19 ступенчатый конвейер, без изменений перешел и кэш на полторы тысячи микроинструкций, а вот блок декодирования инструкций теперь единый и не делится между двумя потоками. Размер блока Out-of-Order Window (OoO) увеличен со 168 до 192 записей, а в Reservation Station добавились два порта, увеличив общее число до восьми. В Sandy Bridge было шесть портов для параллельного выполнения шести микроопераций. Три из них используются для операций с памятью (чтение/запись), три - математическими операциями. Один добавленный порт используется для выполнения целочисленных математических операций и ветвления, а второй - для вычисления адреса.

Были переработаны блоки FMA (Fused Multiply-Add) в портах 0-1, а также добавлена поддержка набора инструкций AVX2 (Advanced Vector Extensions 2). Это позволяет значительно повысить производительность как при однотипной, так и при смешанной нагрузке, но все-таки более всего выросла скорость выполнения операций с плавающей точкой - Intel заявляет о двукратном повышении производительности.

Новые наборы инструкций - залог будущей эффективности

На практике можно ожидать прирост при работе с мультимедийным контентом и в 3D.

Новый блок FMA способен дать серьёзный выигрыш FLOPS за такт

Не остался без внимания и КЭШ. Скорость работы L1 и шины между L1 и L2 были увеличены вдвое, с 32 до 64 байт за цикл в обоих случаях; латентность осталась без изменений. Доработан универсальный TLB (Translation Lookaside Buffer): с 4К до расширенного 4К+2M, ширина шины увеличена вдвое. Доступ к КЭШу L3 теперь шире благодаря возможности обрабатывать запросы data и non data одновременно.

Блок TSX поможет распределить нагрузку между ядрами процессора

В Haswell был добавлен набор инструкций TSX (Transactional Synchronization eXtensions), позволяющий повысить скорость работы за счет «умного» оперирования теми данными, к которым одновременно обращаются несколько ядер. Это должно повысить эффективность работы процессора с теми задачами, которые трудно распараллелить, а также дает программистам возможность переложить часть работы по распределению нагрузки между ядрами на процессор. TSX, как и AVX2 - удобный инструмент для разработчиков, которые, умело оперируя им, могут добиться значительного роста быстродействия для своих приложений. По этой же причине мгновенного результата «здесь и сейчас» от этих новых наборов инструкций ждать не стоит.

Процессоры Intel Core 4-го поколения (Haswell) входят в линейки Core i7 и Core i5, изготовлены по нормам 22-нм технологического процесса под сокет LGA 1150 и предназначены в первую очередь для устройств формата 2-в-1, поддерживающих функциональные возможности мобильных и планшетных ПК, а также и портативных моноблоков.

Процессоры Intel Core 4-го поколения Haswell, в первую очередь разрабатывались для устройств класса ультрабук.
Они обеспечивают на 50% более длительное время работы при активных нагрузках по сравнению с процессорами предыдущего поколения.
Высокая энергоэффективность позволяет отдельным моделям ультрабуков работать более 9 часов без подзарядки.

Процессоры имеют встроенные графические системы, производительность которых сопоставима с дискретными графическими решениями.
Производительность графики этих процессоров в два раза превышает показатели процессоров Intel предыдущего поколения.

Корпорация готова представить более 50 различных вариантов устройств форм-фактора 2-в-1 в самых разных ценовых категориях.

Флагманом данного семейства является процессор Core i7-4770K, состоящий из 1,4 миллиарда транзисторов и помимо квартета x86-ядер с поддержкой Hyper-Threading включающий в себя графику HD Graphics 4600, контроллер с поддержкой до 32 ГБ двухканальной памяти DDR3 1600 и 8 МБ кэша третьего уровня.

Тактовая частота CPU равна 3,5 ГГц (до 3,9 ГГц с Turbo Boost), кроме того, эту модель отличает TDP в 84 ватта и разблокированный множитель, что позволяет весьма серьезно разгонять ее.

4-е поколение Intel Core i7 для десктопов:

. Intel Core i7-4770T : разблокированный множитель, TDP 45 Вт, 4 ядра, 8 потоков, 2,5 ГГц базовая, 3,7 ГГц Turbo, 1333/1600 МГц DDR3, 8 МБ L3 кэш, графика Intel HD Graphics 4600 до 1200 МГц, LGA-1150

. Intel Core i7-4770S : разблокированный множитель, TDP 65 Вт, 4 ядра, 8 потоков, 3,1 ГГц базовая, 3,9 ГГц Turbo, 1333/1600 МГц DDR3, 8 МБ L3 кэш, графика Intel HD Graphics 4600 до 1200 МГц, LGA-1150

. Intel Core i7-4770 : разблокированный множитель, TDP 84 Вт, 4 ядра, 8 потоков, 3,4 ГГц базовая, 3,9 ГГц Turbo, 1333/1600 МГц DDR3, 8 МБ L3 кэш, графика Intel HD Graphics 4600 до 1200 МГц, LGA-1150

. Intel Core i7-4770K : разблокированный множитель, TDP 84 Вт, 4 ядра, 8 потоков, 3,5 ГГц базовая, 3,9 ГГц Turbo, 1333/1600 МГц DDR3, 8 МБ L3 кэш, графика Intel HD Graphics 4600 до 1250 МГц, LGA-1150

. Intel Core i7-4770R : разблокированный множитель, TDP 65 Вт, 4 ядра, 8 потоков, 3,2 ГГц базовая, 3,9 ГГц Turbo, 1333/1600 МГц DDR3, 8 МБ L3 кэш, графика Intel Iris Pro 5200 до 1300 МГц, BGA

. Intel Core i7-4765T : разблокированный множитель, TDP 35 Вт, 4 ядра, 8 потоков, 2,0 ГГц базовая, 3,0 ГГц Turbo, 1333/1600 МГц DDR3, 8 МБ L3 кэш, графика Intel HD Graphics 4600 до 1200 МГц, LGA-1150

4-е поколение Intel Core i5 для десктопов:

. Intel Core i5-4670T : разблокированный множитель, TDP 45 Вт, 4 ядра, 4 потока, 2,3 ГГц базовая, 3,3 ГГц Turbo, 1333/1600 МГц DDR3, 6 МБ L3 кэш, графика Intel HD Graphics 4600 до 1200 МГц, LGA-1150

. Intel Core i5-4670S : разблокированный множитель, TDP 65 Вт, 4 ядра, 4 потока, 3,1 ГГц базовая, 3,8 ГГц Turbo, 1333/1600 МГц DDR3, 6 МБ L3 кэш, графика Intel HD Graphics 4600 до 1200 МГц, LGA-1150

. Intel Core i5-4670K

. Intel Core i5-4670 : разблокированный множитель, TDP 84 Вт, 4 ядра, 4 потока, 3,4 ГГц базовая, 3,8 ГГц Turbo, 1333/1600 МГц DDR3, 6 МБ L3 кэш, графика Intel HD Graphics 4600 до 1200 МГц, LGA-1150

. Intel Core i5-4570 : разблокированный множитель, TDP 84 Вт, 4 ядра, 4 потока, 3,2 ГГц базовая, 3,6 ГГц Turbo, 1333/1600 МГц DDR3, 6 МБ L3 кэш, графика Intel HD Graphics 4600 до 1200 МГц, LGA-1150

. Intel Core i5-4570S : разблокированный множитель, TDP 65 Вт, 4 ядра, 4 потока, 2,9 ГГц базовая, 3,6 ГГц Turbo, 1333/1600 МГц DDR3, 6 МБ L3 кэш, графика Intel HD Graphics 4600 до 1200 МГц, LGA-1150

. Intel Core i5-4570T : разблокированный множитель, TDP 35 Вт, 2 ядра, 4 потока, 2,9 ГГц базовая, 3,6 ГГц Turbo, 1333/1600 МГц DDR3, 6 МБ L3 кэш, графика Intel HD Graphics 4600 до 1200 МГц, LGA-1150

Компанию Intel можно упрекнуть в чем угодно — от завышения цен и необходимости частой смены платформы, до блокирования средств разгона в своих младших моделях. Но одного у полупроводникового гиганта не отнять: вот уже много лет выход новых продуктов неукоснительно следует так называемой стратегии «Тик-Так», где на каждый «Тик» приходится переход на новый, более тонкий технологический процесс производства, а на «Так» припадает обновление микроархитектуры. В прошлом году Intel анонсировал 22-нм полупроводниковые кристаллы Ivy Bridge, которые сменили своих предшественников — 32-нм Sandy Bridge . Различия между представителями двух генераций заключались в модернизации графической подсистемы, тогда как вычислительные ядра претерпели минимальные изменения. При этом переход на тонкий технологический процесс оказался отнюдь не безболезненным, вследствие чего разгонный потенциал 22-нм Ivy Bridge оказался не таким впечатляющим, как у предшественников. Стоит ли говорить, что энтузиасты и продвинутые пользователи с нетерпением ждали официального анонса носителей новой микроархитектуры, известных под кодовым именем Haswell. Еще до анонса в сети Интернет курсировали самые различные гипотезы, приписывающие новейшим CPU Intel невиданный разгонный потенциал в сочетании с высочайшей производительностью. И вот мы, наконец, можем сдернуть завесу тайны и представить подробный обзор центрального процессора Intel Core четвертого поколения — Core i7-4770K.


Новое семейство включает множество продуктов: от энергоэффективных моделей для ультратонких ноутбуков и систем All-in-One, до классических процессоров с оптимальным соотношением производительности и энергопотребления, а также модификаций с разблокированными коэффициентами умножения, предназначенными для продвинутых пользователей и любителей разгона.

Особенности микроархитектуры Haswell

Производитель здраво рассудил, что в большинстве сценариев домашнего применения, да и во многих сферах профессионального использования четырех вычислительных ядер более чем достаточно, поэтому, в основе процессоров Core i5 и Core i7 лежат четрехъядерные полупроводниковые кристаллы Haswell. Использование тонкого 22-нм литографического техпроцесса позволило уместить 1400 млн. полупроводниковых устройств на площади в 177 кв. мм. Сами транзисторы имеют трехмерную конструкцию (Tri-Gate), что обеспечивает их малые физические размеры и минимизирует токи утечки. Подобная конструкция впервые была применена в процессорах Ivy Bridge, ставших пионерами освоения 22-нм техпроцесса. Помимо снижения стоимости производства эти меры позволили уменьшить до 20% напряжение питания по сравнению с 32-нм Sandy Bridge.

Полупроводниковый кристалл процессора Haswell включает в себя четыре вычислительных ядра, графический ускоритель, массив кэш-памяти третьего уровня, и «системный агент», в который входят двухканальный контроллер ОЗУ стандарта DDR3, контроллеры шин DMI и PCI Express, а также трансмиттеры цифрового изображения. Процессорные ядра, и встроенная видеокарта используют общую разделемую кеш-память, а для связи между внутренними блоками используется высокоскоростная кольцевая шина данных, которая впервые появилась в процесорах Intel Sandy Bridge.


Сами же вычислительные ядра Haswell претерпели минимум изменений в сравнении с Ivy Bridge, во всяком случае, дизайн вычислительного конвейера остался прежним, а все доработки носят характер оптимизаций. Например, были улучшены механизмы выборки и предсказания ветвлений, увеличена пропускная способность диспетчера задач путем добавления двух дополнительных портов, оптимизирован размер буфера TLB (translation lookaside buffer) в кэше L2, а также уменьшены задержки при работе технологий виртуализации. Небольшим изменениям подверглась работа блоков, обрабатывающих векторные инструкции, которые получили поддержку новых инструкций AVX2, ускоряющих операции криптографии, хеширования и обработку мультимедиа. Также, вдвое, по сравнению с Ivy Bridge, увеличилась глубина выборки данных из кэшей L1 и L2 за такт, а значит, в оптимизированных задачах новые процессоры Haswell могут быть заметно быстрее своих предшественников.

Что касается графической составляющей процессоров Haswell, то в большинстве десктопных модификаций Core i5 и Core i7 будет использоваться видеоядро Intel HD Graphics 4600, содержащее 20 унифицированных шейдерных процессоров, два блока растеризации и четыре текстурных модуля. Графический ускоритель совместим с DirectX 11, а поддержка API OpenCL и DirectCompute 5.0 дает прирост в неграфических вычислениях. В состав видеоядра также входит аппаратный блок декодирования Quick Sync, использование которого обеспечивает прибавку скорости обработки видеоконтента, а в качестве приятного дополнения отметим поддержку одновременного вывода изображения на три монитора. Отличительной чертой графических адаптеров Intel HD Graphics 4-й серии является их модульный дизайн, что позволяет легко масштабировать количество функциональных блоков, создавая на их основе, как решения начального уровня, так и достаточно мощные видеоускорители.


Контроллер оперативной памяти процессорам Haswell достался от Ivy Bridge почти без изменений. Он поддерживает два канала ОЗУ DDR3 c частотами 1333 МГц и 1600 МГц, в том числе низковольтную DDR3L. Впрочем, никто не мешает эксплуатировать высокочастотные модули, для этого контроллер поддерживает большой набор множителей, кратных эффективным 200 и 266 МГц. Для связи с чипсетом используется шина DMI 2.0, пропускная способность которой достигает 20 Гбит/с. Подключение дискретных графических ускорителей обеспечивает контроллер шины PCI Express 3.0, 16 линий которого могут быть гибко сконфигурированы для организации систем из нескольких видеокарт.

Но самой неожиданной из инновацией в архитектуре Intel Haswell стала размещение на полупроводниковом кристалле интегрального регулятора напряжения! По мнению разработчиков только таким образом можно достичь максимально гибкого управления электропитанием, которое является залогом высокой энергоэффективности. Еще не понятно, как это отразится на разгонном потенциале, но уже совершенно очевидно, что от VRM системной платы теперь требуется подача только двух напряжений: Vddq, необходимого для электропитания модулей ОЗУ, и Vccin, из которого интегральный регулятор формирует все напряжения, необходимые для работы внутренних блоков центрального процессора.


Штатное значение Vccin составляет около 1,8 В, но, при необходимости, например, во время разгона при использовании жидкого азота, его можно увеличить до 3 В. Интегральный регулятор обеспечивает два режима управления напряжениями: статический, при котором пользователь указывает требуемое значение в явном виде, и динамический, когда задается прирост к штатной величине. Очевидно, первый способ будет востребован у любителей разгона, тогда как второй обеспечит необходимое напряжение вне зависимости от режима работы. Очевидно, что столь кардинальное изменение силовой подсистемы потребовало перехода на новый процессорный разъем Socket LGA1150, являющийся частью новой платформы Intel — Lynx Point.

Платформа Lynx Point

В основе платформы Lynx Point лежат чипсеты Intel 8-й серии. Обновленная системная логика сохранила одночиповую компоновку, тогда как функциональность в сравнении с предшественниками несколько расширилась. Для удобства сравнительные характеристики чипсетов Intel 7-й и 8-й серий приведены на следующей иллюстрации.


Общее количество разъемов SATA не изменилось, их по-прежнему шесть, но все они совместимы с высокоскоростным интерфейсом SATA 6 Гбит/с. Число портов USB 3.0 увеличилось с четырех до шести, тогда как общее суммарное количество составляет те же 14 штук. В чипсетах 8-й серии завершен переход на контроллер xHCI (eXtended Host Controller Intarface), который обеспечивает расширенные возможности управления передачей данных между системной платой и периферией. Также, платформа Lynx Point лишена поддержки шины PCI, встречавшаяся в модификациях B и Q системной логики Intel 7-й серии.

Одним из ключевых отличий платформы Lynx Point от предшественников является изменение подхода к формированию тактовых частот для отдельных функциональных блоков процессора и материнской платы. В системной логике Intel 8-й серии генерируются два таковых сигнала: фиксированная частота 100 МГц, от которой синхронизируются чипсетные контроллеры, и управляемая BCLK, из которой через систему множителей формируется весь ансамбль частот, необходимый для работы внутренних блоков центрального процессора.


Как вы помните, основным нареканием на платформу LGA1155 со стороны любителей разгона было отсутствие запаса увеличения BCLK из-за нестабильности работы контроллеров шин DMI и PCI Express на повышенных частотах. В чипсетах Intel 8-й серии для формирования базовой частоты процессора и его блоков используются множители х1,00, х1,25 и х1,67. Аналогичное решение можно встретить в платформе LGA2011 . Теперь BCLK без проблем можно будет поднять до 125/167 МГц (± 5%), не затрагивая чувствительные компоненты системы.

Как мы уже упоминали, процессоры Haswell получили новый Socket LGA1150, который внешне почти не отличим от привычного LGA1155. Расположение и размеры отверстий для крепления системы охлаждения идентичны, поэтому к системным платам для Intel Haswell подходят кулеры, совместимые с платформами LGA1155 и LGA1156.



Но, конечно, установить процессоры предыдущих поколений в новый разъем не удастся из-за иного расположения механических ключей и другого количества контактных площадок.Процессор Intel Core i7-4770K

На момент своего анонса продуктовая линейка CPU в исполнении LGA1150 будет состоять из четырехъядерных Core i5 и Core i7, которые отличаются поддержкой технологии Hyper Threading, позволяющей выполнять на одном логическом ядре два вычислительных потока. Как обычно, варьируя тактовыми частотами и значениями TDP, на базе одного единственного кристалла производитель создал целый модельный ряд:

Intel Core i7-4770/
i7-4770K*
Intel Core i7-4770S Intel Core i7-4770T Intel Core i7-4765T Intel Core i5-4670/
i7-4670K*
Intel Core i5-4670S Intel Core i5-4670T Intel Core i5-4570 Intel Core i5-4570S Intel Core i5-4570T
Семейство Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell Haswell
Разъем LGA1150 LGA1150 LGA1150 LGA1150 LGA1150 LGA1150 LGA1150 LGA1150 LGA1150 LGA1150
Техпроцесс CPU, нм 22 22 22 22 22 22 22 22 22 22
Число ядер 4 (8 потоков) 4 (8 потоков) 4 (8 потоков) 2 (4 потока) 4 (4 потока) 4 (4 потока) 4 (4 потока) 4 (4 потока) 4 (4 потока) 2 (4 потока)
Номинальная частота, ГГц 3,4/3,5* 3,1 2,5 2,0 3,4 3,1 2,3 3,2 2,9 2,9
Частота Turbo Boost, ГГц 3,9 3,9 3,7 3,0 3,8 3,8 3,3 3,6 3,6 3,6
Объем L3 кэша, Мбайт 8 8 8 8 6 6 6 6 6 4
Графическое ядро GMA HD 4600 GMA HD 4600 GMA HD 4600 GMA HD 4600 GMA HD 4600 GMA HD 4600 GMA HD 4600 GMA HD 4600 GMA HD 4600 GMA HD 4600
1200/1250* 1200 1200 1200 1200 1200 1200 1150 1150 1150
Каналов памяти 2 2 2 2 2 2 2 2 2 2
Поддерживаемый тип памяти DDR3-1333
DDR3-1600
DDR3-1333
DDR3-1600
DDR3-1333
DDR3-1600
DDR3-1333
DDR3-1600
DDR3-1333
DDR3-1600
DDR3-1333
DDR3-1600
DDR3-1333
DDR3-1600
DDR3-1333
DDR3-1600
DDR3-1333
DDR3-1600
DDR3-1333
DDR3-1600
Hyper-Threading + + + + - - - - - +
AES-NI + + + + + + + + + +
Intel vPro + + + + + + + + + +
TDP, Вт 84 65 45 35 84 65 45 84 65 35
Рекомендованная стоимость, $ 303/339* 303 303 303 213/242* 213 213 192 192 192
* — множитель разблокирован на повышение; для моделей К-серии.

Среди продуктов, отличающихся тактовыми частотами и TDP, пользователи без труда отыщут именно те модели, которые наилучшим образом соответствуют поставленным задачам. Любителей энергоэффективных и компактных системных блоков заинтересуют модификации с литерою «Т», обладающие наилучшей экономичностью. Пользователи, собирающие универсальный системный блок, скорее всего, обратят внимание на модели серии «S», предлагающие баланс между быстродействием и умеренным энергопотреблением, ну а для оверклокеров и профессионалов разгона есть процессоры серии «К» с разблокированным коэффициентом умножения. Особняком стоит энергоэффективная модель Core i5-4570T, в которой число вычислительных ядер сокращено до двух, а массив кэша L3 урезан до 4 МБ. Что касается розничных цен, то они почти не отличаются от равночастотных Ivy Bridge, впрочем, нет никаких сомнений, что в ближайшее время модельный ряд Haswell будет дополнен младшими моделями Core i3 и Pentium.

Для всестороннего тестирования в нашу лабораторию был доставлен старший из Haswell — Core i7-4770K. Этот процессор обладает разблокированным множителем, а значит, наилучшим образом подходит для экспериментов по разгону. Увы, опытный экземпляр попал к нам без какого-либо комплекта поставки, так что о конструкции системы охлаждения и дизайне розничной упаковки мы судить не сможем.

Внешний вид новинки почти не отличим от предшественников, идентифицировать Haswell можно по маркировке и отсутствию выреза в нижней части металлической крышки-теплораспределителя, которой накрыт полупроводниковый кристалл. C обратной стороны находятся металлические контакты и радиоэлектронные компоненты, причем, найти среди других процессоров модель в исполнении LGA1150 несложно, благодаря более темному оттенку текстолита подложки и меньшего количества вспомогательных элементов на «брюшке».

Intel Core i7-2600K (слева), Core i7-3770K, Core i7-4770K (справа)


Штатная частота вычислительных ядер новинки составляет 3500 МГц, но в таком режиме процессор работает при максимальной вычислительной нагрузке.


Большую часть времени процессор работает на повышенных частотах, которые благодаря технологии Intel Turbo Boost динамически меняются в зависимости от загрузки вычислительных ядер и общего уровня энергопотребления центрального процессора. Таким образом, в приложениях, оптимизированных для многопоточного вычисления, Core i7-4770K, как правило, функционирует на частотах 3600-3700 МГц.


Если же программный код неэффективно работает на многоядерных центральных процессорах, задействованные вычислительные блоки разгоняются до частот 3800-3900 МГц, пока тепловыделение остается в рамках TDP.


В моменты простоя тактовая частота вычислительных ядер уменьшается до 800 МГц, что самым положительным образом должно сказываться на уровне нагрева.


Что касается напряжения, то текущие версии программ мониторинга фиксируют значения в пределах 1,069-1,104 В, что очень похоже на правду, во всяком случае, 22-нм предшественники имели аналогичный порядок значений. Кстати, как вы помните, многие пользователи ругали Intel за использование в Ivy Bridge низкоэффективного термоинтерфейса между полупроводниковым кристаллом и крышкой теплораспределителя, вследствие чего 22-нм процессоры демонстрировали повышенные температуры в разгоне. Изменилась ли ситуация с выходом Haswell — мы с вами узнаем прямо сейчас, во время проверки разгонного потенциала Intel Core i7-4770K!

Разгонный потенциал

Прежде чем приступить к оценке запаса прочности Core i7-4770K рассмотрим схему формирования частот в процессорах Haswell, процедура разгона которых незначительно, но все же отличается от таковой для Ivy Bridge и Sandy Bridge. Прежде всего, максимальное значение коэффициента умножения для процессорных ядер теперь равняется x80, этот факт несомненно оценят профессиональные оверклокеры, работающие с криогенными системами охлаждения. Затем, появился отдельный множитель, управляющий частотой внутренней кольцевой шины. Его значение может быть меньшим или равным коэффициенту умножения вычислительных ядер. И, наконец, благодаря внедрению дополнительного множителя PEG/DMI появилась возможность увеличивать базовую частоту до 125 или 167 МГц, без ущерба для стабильности работы шин PCI Express и DMI.


Скорее всего, не все материнские платы и процессоры позволят установить базовую частоту на 167 МГц, тогда как увеличение BCLK до 125 МГц будет реальным и действенным способом разгона младших Haswell, у которых коэффициент умножения заблокирован на повышение. Наш Core i7-4770K обладает свободным множителем, поэтому, в экспериментах по разгону было использовано это преимущество. Из-за отсутствия статистики разгона Haswell мы воспользовались опытом, приобретенным при работе с процессорами Ivy Bridge. Питание на процессорных ядрах было увеличено до 1,24 В, напряжение внутренней шины Vring повышено на +0,1 В. Функция Internal PLL Overvoltage устанавливалась в значение Enable, базовая частота фиксировалась на уровне 100 МГц, а лимиты мощности технологии Turbo Boost были увеличены до 500 Вт. С такими настройками процессор проходил стресс-тест Linpack на частоте 4500 МГц, тогда как частота кольцевой шины составляла 4200 МГц.


Обращаем ваше внимание на показания температурных датчиков, согласно которым самое горячее ядро прогрелось до 97 °С, хотя для отвода тепла мы использовали один из лучших воздушных кулеров — Thermalright Silver Arrow . Невзирая на высокую температуру, процессор сохранял полную стабильность, но все дальнейшие эксперименты по разгону пришлось прекратить, так как малейшее увеличение напряжения приводило к перегреву, который вызывал BSOD. Будем надеяться, что нам просто попался неудачный экземпляр Core i7-4770K, тогда как в основной своей массе процессоры Intel в исполнении LGA1150 будут демонстрировать гораздо лучшие результаты разгона.

Выходит, что Haswell унаследовал от своего предка Ivy Bridge такой же «горячий нрав», с которым в разгоне с трудом справляются даже лучшие из воздушных кулеров. К слову, предоставленный на тестирование Core i7-3770K в разгоне до 4700 МГц при напряжении 1,312 В демонстрировал аналогичный тепловой режим, легко разогреваясь до 91 С и выше.


Похоже, что в Core i7-4770K и Core i7-3770K между полупроводниковым кристаллом и крышкой теплорасределителя используется один и тот же не слишком эффективный термоинтерфейс, что вкупе с малой площадью процессорного ядра приводит в высоким температурам в процессе разгона.Тестовый стенд

Для всесторонней оценки быстродействия Intel Core i7-4770K в качестве соперников мы выбрали старшие модели процессоров Ivy Bridge и Sandy Bridge — Core i7-3770K и Core i7-2600K. Таким образом, мы сможем отследить увеличение скорости работы при смене поколений, а также оценить масштабируемость производительности при разгоне. Но прежде, ознакомимся с техническими характеристиками участников сегодняшнего тестирования.

Core i7-4770K Core i7-3770K Core i7-2600K
Ядро Haswell Ivy Bridge Sandy Bridge
Кол-во транзисторов, млн 1400 1400 995
Площадь кристалла, кв. мм 177 160 216
Количество ядер (потоков) 4 (8) 4(8) 4(8)
Техпроцесс, нм 22 22 32
Частота, МГц 3500 3500 3400
Максимальная частота в режиме Turbo Boost, МГц 3900 3900 3800
Множитель 39* 39* 38*
Kэш L1, КБ 4 x (32+32) 4 x (32+32) 4 x (32+32)
Kэш L2, КБ 4 x 256 4 x 256 4 x 256
Kэш L3, КБ 8192 8192 8192
Поддерживаемая память DDR3-1600 DDR3-1600 DDR3-1333
Интегрированная графика Intel HD Graphics 4600 Intel HD Graphics 4000 Intel HD Graphics 3000
Частота графического ядра, МГц 1250 1150 1350
TDP, Вт 84 77 95
* — частота Turbo Boost

Все три процессора располагают четырьмя вычислительными ядрами, поддерживают Hyper Threading, а также имеют одинаковую организацию кэш-памяти. Между тем, тактовые частоты Core i7-4770K и Core i7-3770K в точности совпадают, тогда как их 32-нм собрат отстает от обеих на 100 МГц как на штатной частоте, так и в режиме Turbo Boost. Словом, характеристики соперников очень близки, так что в номинальном режиме мы рассчитываем получить похожие результаты быстродействия.

В качестве основы для тестового стенда LGA1150 использовалась системная плата ASUS Sabertooth Z87 (UEFI 3009 от 24.05.2013), подробный обзор которой мы опубликуем в самое ближайшее время.


Для тестирования Ivy Bridge мы взяли материнскую плату MSI Z77 MPOWER (UEFI Setup 17.8 от 23.04.2013), а в экспериментах с процессором Intel Core i7-2600K была задействована ASRock Z77 Extreme6 (UEFI Setup 2.60 от 23.01.2013), отлично зарекомендовавшая себя в разгоне процессоров Sandy Bridge.

Общими для всех тестовых стендов были такие компоненты:

  • кулер: Thermalright Silver Arrow (вентилятор 140 мм, 1300 об/мин);
  • память: G.Skill TridentX F3-2400C10D-8GTX (2x4 ГБ, DDR3-2400, CL10-12-12-31);
  • видеокарта: ASUS HD7950-DC2T-3GD5 (Radeon HD 7950);
  • накопитель: Intel SSD 320 Series (300 ГБ, SATA 3Gb/s);
  • блок питания: Seasonic X-650 (650 Вт).
Оборудование работало под управлением ОС операционной системы MS Windows 7 Enterprise 64 bit (90-дневная ознакомительная версия), которая была обновлена до SP1 через службу Windows Update. Для видеокарты были установлен драйвер AMD Catalyst 13.5 от 24.04.2013, а для процессора и системой логики использовались Intel Management Engine 9.5.0.1345 от 27.03.2013 и Intel INF Update Utility 9.4.0.1017 от 18.03.2013 соответственно. Файл подкачки и UAC были отключены, никаких других оптимизаций не проводилось.

Каждый из процессоров тестировался в двух режимах: на штатной частоте и в максимальном разгоне, достижимом при использовании нашего воздушного кулера.

Core i7-4770K Core i7-4770K OC Core i7-3770K Core i7-3770K OC Core i7-2600K Core i7-2600K OC
Частота CPU, МГц 3900* 4500 3900* 4700 3800* 4800
Напряжение Vcore, В 1,106 1,243 1,048 1,312 1,184 1,46
Частота ОЗУ, МГц 1600 2400 1600 2400 1600 2133
Тайминги 9-9-9-24-1Т 10-12-13-31-1Т 9-9-9-24-1Т 10-12-13-31-1Т 9-9-9-24-1Т 10-12-13-31-1Т
* — частота Turbo Boost

Наибольший запас прочности продемонстрировал «старина» Sandy Bridge, чуть худшие результаты у 22-нм Core i7-3770K, тогда как достижения новичка оказались наиболее скромными.

Набор программного обеспечения, использованного в тестах, следующий:

  • AIDA64 2.80.2300 (Cache & Memory benchmark);
  • SuperPI XS 1.5;
  • wPrime Benchmark 2.06;
  • Futuremark PCMark 7(v1.4.0);
  • 7-Zip 9.20 x64 (встроенный тест);
  • Adobe Photoshop CS5 (Retouch Artist Benchmark);
  • Cinebench 11.5R (64bit);
  • TrueCrypt 7.1a (встроенный тест);
  • x264 HD Benchmark v5.0;
  • Futuremark 3DMark 11(v1.0.3);
  • Batman: Arkham City;
  • Hitman: Absolution
  • F1 2012;
  • Metro 2033.
Результаты тестирования

Синтетические приложения





В сравнении с предшественниками у Haswell наблюдается падение в скорости чтения данных, тогда как в операциях записи и копирования Core i7-4770K выступает лидером, кроме того, у новичка лучшая латентность.


В однопоточном тесте Super Pi после разгона Core i7-4770K держится на уровне соперников, тогда как в номинальном режиме показывает наименьшее время выполнения задачи.


Тестирование в бенчмарке wPrime показывает, что после форсирования быстродействия все три процессора справляются с задачей одинаково хорошо, тогда как на штатных частотах новичок приходит к финишу первым. Все-таки, небольшие улучшения в дизайне Haswell явно принесли пользу!


Во всех без исключения подтестах Haswell обогнал своего предшественника как в штатном режиме, так и после разгона, хотя тактовая частота Core i7-3770К выше на 200 МГц. Что касается Sandy Bridge, то на фоне своих потомков он смотрится неубедительно.


В общем зачете в игровом тестовом пакте Futuremark 3DMark 11 соперники показали очень близкие результаты, поскольку влияние процессора на итоговый результат минимально.



Однако, в подтестах, связанных с расчетом реалистичной физической модели, в номинальном режиме наблюдается примерный паритет Ivy Bridge и Haswell, тогда как 32-нм Core i7-2600K вновь заметно уступает конкурентам. После разгона побеждает Core i7-3770K, имеющий преимущество по частоте перед Core i7-4770K. Что касается Sandy Bridge, то ему не угнаться за новыми моделями, даже несмотря на впечатляющий разгонный потенциал.


В задачах построения трехмерных изображений в программе Cinebench 11.5R герой сегодняшнего обзора демонстрирует весомое преимущество, которое особенно ярко проявляется в тестах анимации в режиме реального времени при использовании API OpenGL, где Haswell оказывается почти на 20 % быстрее Intel Core i7-3770К.


Неожиданно, в популярном графическом редакторе Adobe Photoshop новичок уступает своим сородичам, причем, на штатных частотах отставание составляет почти 10%, тогда как после разгона Haswell держится на уровне Sandy Bridge. Очевидно, программный код Photoshop не слишком благосклонно относится к нововведениям, сделанным в микроархитектуре Haswell.


Зато, в операциях шифрования Core i7-4770K легко опережает своих предшественников, надо полагать, как раз благодаря улучшениям в работе блоков, которые обрабатывают векторные инструкции.



Скорость транскодирования видео высокой четкости заметно увеличивается от поколения к поколению примерно на 5-7 %, так что преимущество Haswell вполне ожидаемо.

Производительность в 3D-играх

Сравнивать быстродействие старших моделей процессоров в видеоиграх — занятие непростое, тем не менее, мы постарались найти такие приложения, который максимально требовательно относятся к быстродействию вычислительной части. Правда, с включением полноэкранного сглаживания «бутылочным горлышком» становилась продуктивность видеокарты, поэтому, антиалиасинг пришлось отключить.


В шутере Batman: Arkham City герой сегодняшнего тестирования показал наилучшие результаты, особенно заметно преимущество Haswell в режиме по умолчанию, тогда как в разгоне соперники показывают идентичны результаты.


На штатных частотах в игре Hitman: Absolution наблюдается небольшое преимущество Ivy Bridge, в то время как Core i7-4770K демонстрирует чуть меньшую частоту смены кадров. После разгона все три процессора показывают одинаковую скорость, несмотря на разный уровень тактовых частот.


В гоночном симуляторе F1 2012 производительность Haswell находится на уровне конкурентов, но только в штатном режиме. После разгона в лидеры выходит Ivy Bridge, за ним следует Core i7-2600K, а быстродействие новичка несколько уступает соперникам. Очевидно сказывается наименьшая тактовая частота Core i7-4770K.


В шутере Metro 2033 процессоры Ivy Bridge и Haswell демонстрируют идентичные частоты смены кадров, как в разгоне, так и на штатной частоте. Core i7-2600K немного проигрывает лидерам, но отставание не настолько заметно, чтобы говорить о снижении комфортности геймплея.

Энергопотребление

Для оценки энергоэффективности процессоров мы использовали устройство Basetech Cost Control 3000, с помощью которого оценивалось среднее энергопотребления тестовых стендов «от розетки» во время простоя системы, а также пиковое значение потребляемой мощности при прохождении стресс-теста LinX.


В штатном режиме Core i7-4770K демонстрирует наилучшую энергоэффективность, опережая 22-нм процессор предыдущего поколения на 12% в простое и почти на 5% при максимальной нагрузке, а самым «прожорливым» ожидаемо оказался Core i7-2600K. После разгона ситуация меняется, и наименьшее энергопотребление показывает Core i7-3770К, тогда как энергоэффективность Haswell снижается. Скорее всего, это связанно с особенностями работы подсистемы питания платформы LGA1150, или в недоработке управляющего микрокода в ранней версии прошивки материнской платы.

Выводы

Прежде чем делать выводы, давайте попробуем разобраться: соответствует ли появление микроархитектуры Haswell стратегии Тик-Так, ибо ответ на этот вопрос совсем не однозначный. С одной стороны, вычислительная часть новым процессорам досталась от Ivy Bridge практически без изменений, что косвенно подтверждают результаты тестирования, и это вроде бы не отвечает итерации «Так». Во всяком случае, того прорыва, который наблюдался с появлением Sandy Bridge, не наблюдается, с точки зрения производительности новейшие процессоры Intel Haswell оказались лишь чуть-чуть быстрее представителей прошлого поколения. Но с другой стороны, реорганизация подсистемы питания и перенос регулятора напряжения на полупроводниковый кристалл является уникальным решением, кардинально отличающим Haswell от всех процессоров Intel предыдущих поколений. Причины такого развития событий понятны, по вычислительной мощности центральные процессоры Intel существенно превосходят продукты конкурента, а значит, чипмейкеру можно сосредоточиться на повышении энергоэффективности и оптимизации производственных затрат. Этим достигается унификация модельного ряда центральных процессоров, что позволяет использовать Haswell в самых различных устройствах: от моноблоков и классических «десктопов» до планшетов и тонких ноутбуков.

Что касается героя сегодняшнего обзора — процессора Intel Core i7-4770K, то на фоне моделей предыдущего поколения он продемонстрировал устойчивый прирост быстродействия. Впрочем, зачастую преимущество исчисляется несколькими процентами, так что существенную разницу при переходе с Ivy Bridge на Haswell пользователи вряд ли заметят. Другое дело, если стоит вопрос выбора основы для нового ПК, здесь однозначно есть повод задуматься о приобретении платформы LGA1150, как самой современной и перспективной. Немаловажным преимуществом Lynx Point, помимо расширения функциональности, является улучшение возможностей для разгона, что делает возможным оверклокинг даже младших моделей Haswell. Сам же потенциал Core i7-4770K не слишком впечатлил, процессор оказался чрезвычайно горячим, что негативным образом отразилось на результатах разгона, тогда как прирост производительности от повышения частоты нас приятно удивил. В целом, новые процессоры Intel однозначно удались, хотя, выбор остается за вами, дорогие читатели!

Оборудование для тестирования было предоставлено следующими компаниями:

  • ASRock — материнская плата ASRock Z77 Extreme6;
  • ASUS — материнская плата ASUS Sabertooth Z87 и видеокарта HD7950-DC2T-3GD5;
  • G.Skill — комплект памяти G.Skill TridentX F3-2400C10D-8GTX;
  • Intel — процессоры Intel Core i7-4770K, Core i7-3770 и Core i7-2600K, накопитель Intel SSD 320 Series 300GB;
  • MSI — материнская плата MSI Z77 MPOWER и процессор Intel Core i7-3770K;
  • Syntex — блок питания Seasonic X-650;
  • Thermalright — кулер Thermalright Silver Arrow.

«Увлекающиеся практикой без науки - словно кормчий, ступающий на корабль без руля или компаса; он никогда не уверен, куда плывет. Всегда практика должна быть воздвигнута на хорошей теории…» (Леонардо да Винчи)

Статьи, посвящённые микроархитектуре принципиально новых процессоров Intel , обычно начинаются с отсылки к принятой в компании с 2007 года модели разработки «тик-так». Суть ее заключается в том, что разработка новых процессорных дизайнов и перевод производства на более совершенные технологические нормы чередуются друг с другом. Прошлая микроархитектура, Ivy Bridge, в этой классификации была «тиком», новая же, Haswell, - это «так». То есть в лице Haswell , по идее, мы должны увидеть кардинально обновлённый изнутри процессор, но выпускаемый по уже привычной 22-нм технологии с трёхмерными транзисторами.

Именно поэтому с предстоящим выходом Haswell связаны такие большие ожидания. Рынок персональных компьютеров находится в застое. Конкуренция между производителями x86-процессоров в высокопроизводительном сегменте сошла на нет, а сами настольные компьютеры потихоньку сдают свои позиции под натиском мобильных устройств. Не исправило этой ситуации даже появление операционной системы Windows 8 - ей не только не удалось вернуть былой интерес к персональным компьютерам, более того, у многих адептов традиционных форм-факторов она вызвала стойкую неприязнь. И теперь все энтузиасты ждут революции от Intel, надеясь на качественный скачок, который бы несмотря ни на что пробудил интерес к потерявшей былую динамику платформе x86. Кто-то верит, что классические десктопы и ноутбуки могут вновь сделаться модной тенденцией, а кто-то ожидает, что появление новой линейки процессоров хотя бы подтолкнёт владельцев уже имеющихся систем к их модернизации. Иными словами, Haswell в глазах энтузиастов производительных персональных компьютеров - это чуть ли не последняя надежда на оживление близкого сердцу сегмента рынка.

Однако у Intel на этот счёт, похоже, мнение совсем иное. Остывание интереса к производительным персональным компьютерам чувствуют и в компании, но, с учетом сложившейся конъюнктуры, планируется не пытаться разогревать старые рынки, а взяться за завоевание новых. Корректировке подвергается вся генеральная линия. Intel не намерена продолжать активно бороться за честь традиционных и привычных многим систем, а вместо этого она хочет заниматься внесением изменений в архитектуру x86 и имеющиеся продукты с тем, чтобы приспособить их для тех классов мобильных устройств, которые находятся сейчас на пике популярности. Отчасти этой цели служат начавшиеся коренные преобразования в хозяйстве Atom: активное продвижение процессоров этого класса в смартфоны и планшеты, а также подготовка новой микроархитектуры Silvermont. Но параллельно метаморфозы будут происходить и с процессорной линейкой Core, которая по замыслу разработчиков должна стать ещё более мобильной. И Haswell - хотя уже не первая, но, наверное, самая заметная веха на этом пути.


Все презентации и материалы для прессы, посвящённые перспективным процессорам, на первых же страницах рассказывают нам о том, что Haswell в первую очередь нацеливается на ультрабуки и ультрапортативные ноутбуки-трансформеры, которые легким движением руки превращаются в планшеты. И это как нельзя лучше отражает ту цель, которая стояла перед разработчиками новой микроархитектуры. Если на этапе создания микроархитектур Sandy Bridge и Ivy Bridge инженеры работали над дизайном процессоров с целевым энергопотреблением 35–45 Вт, в то время как остальные варианты получались путём варьирования числа ядер, частоты и напряжения, то с Haswell требования по потреблению были ещё более ужесточены. Теперь Intel считает наиболее привлекательным диапазон от 15 до 20 Вт. Таким образом, Haswell - ярко выраженная ультрамобильная микроархитектура, стоящая по уровню производительности на ступень выше Atom. Что же до десктопных модификаций Haswell, то это для Intel - побочный продукт. Конечно, получить из экономичного процессора обычный гораздо проще, чем выполнить это преобразование в обратную сторону. Но снятие ограничений по энергопотреблению и тепловыделению отнюдь не означает беспрепятственное масштабирование производительности. Так что насколько оправдает ожидания Haswell в своей десктопной ипостаси - вопрос не столь очевидный.

И здесь уместным будет вспомнить предыдущий цикл «так», процессоры с микроархитектурой Sandy Bridge. Они по сравнению со своими предшественниками поколения Westmere смогли обеспечить лишь примерно 15-процентный прирост производительности в десктопной среде именно потому, что разработчики стали смещать свои акценты на соотношение производительности и энергопотребления. Сейчас же разговор ведется и вовсе на другом языке: главные сильные стороны Haswell, по мнению производителя, - это превосходная экономичность и принципиально новый уровень графического быстродействия. Что же касается вычислительной производительности, то Intel почему-то не акцентирует на ней внимание, что вызывает всякие нехорошие подозрения. Только усугубляющиеся, если посмотреть на предварительные данные о быстродействии десктопных Haswell, которые к настоящему времени уже просочились в прессу.

Ждать выхода процессоров, построенных на микроархитектуре Haswell, осталось совсем недолго. И через несколько дней мы сможем дать развёрнутые ответы на любые вопросы. Однако перед этим уместно будет ознакомиться с теорией - она должна стать хоть и неприятным, но необходимым противоядием от слишком радужных иллюзий, которые вполне могли сформироваться в тягостном ожидании чего-то новенького.

Микроархитектура Haswell: тик или так

Честно говоря, вводная часть чрезмерно сгущает краски. Да, микроархитектура Haswell во многом действительно может считаться высокоэнергоэффективной, и разрабатывалась она в первую очередь с прицелом на мобильные применения. Однако Intel всё-таки не забывает о том, что принятая в компании бизнес-модель предполагает использование единого дизайна в обширной линейке продукции, включающей мобильные, десктопные и серверные компоненты. Это значит, что под модным фасадом низкого энергопотребления скрывается прочный фундамент, позволяющий направить Haswell в разные рыночные ниши. Иными словами, новая микроархитектура не потеряла своей универсальности. Путём манипулирования числом ядер, версиями графического движка, целевым уровнем энергопотребления, размером кеш-памяти и добавлением того или иного набора внешних интерфейсов из Haswell могут получаться разные по своей сути процессоры.


Впрочем, если касаться собственно микроархитектуры, то да, в ней на первом месте стоят нововведения, направленные на оптимизацию тепловых и энергетических режимов. Изменений же, способных поднять производительность, не так много, и на цикл разработки «так» они если и тянут, то с большим трудом. Действительно, когда Intel выпускала Nehalem или Sandy Bridge, перестройка затрагивала не только внутренние блоки вычислительных ядер, но и базовую концепцию процессорного дизайна. Каждый «так» казался чем-то действительно принципиально другим, а от степени новаторства захватывало дух. Но если посмотреть на обобщённую схему Haswell, то её легко перепутать с предшественником - Ivy Bridge.


Все функциональные блоки и принципы их объединения в процессоре остались теми же. Haswell наследует из прошлого все удачные технологии: турборежим, Hyper-Threading, кольцевую шину, но ничего нового к этому багажу не добавляет. Изменения есть лишь в недрах отдельных узлов. Причём инженерное вмешательство в глубинные слои микроархитектуры не слишком значительно. Исполнительный конвейер изменился не слишком сильно, его протяженность составляет те же 14–19 стадий, что и раньше. Фронтальная часть получила лишь отдельные косметические усовершенствования, а все сколько-нибудь значимые перемены касаются лишь механизма исполнения инструкций и поддержки новых наборов команд. Говоря о том, является ли Haswell более производительной микроархитектурой, нежели Ivy Bridge, Intel ссылается на улучшение быстродействия до 20–30 процентов, но следует иметь в виду, что эта оценка включает и выигрыш от использования новых команд AVX2, для которых длительный и непростой этап внедрения ещё впереди.

Экономичность: всё ради неё

Зато шагов, сделанных для улучшения экономичности процессорного дизайна, - хоть отбавляй. Львиная доля усилий разработчиков была потрачена на снижение энергопотребления, и, надо сказать, с точки зрения мобильных систем усилия эти прошли далеко не впустую. Ожидается, что системы на базе Haswell смогут работать от батареи примерно на 50 процентов дольше, чем аналогичные конфигурации на базе Ivy Bridge. В простое выигрыш Haswell по сравнению с процессорами предыдущего поколения составляет порядка 2–3 раз! А в состоянии готовности к работе при сохранении сетевых соединений (connected standby) общее потребление платформы по сравнению с системами на базе Sandy Bridge снизилось примерно в 20 раз.

Столь впечатляющий прогресс своими корнями уходит не в простое совершенствование технологического процесса, который на самом деле имеет лишь эволюционные отличия от 22-нм техпроцесса с трёхмерными транзисторами, используемого для производства Ivy Bridge. И уж тем более дело не в банальном увеличении количества зон процессорного кристалла, которые при отсутствии активности могут независимо друг от друга отключаться от питающей шины. Конечно, всё это вносит определённый вклад в экономичность Haswell, но подобные изменения происходят с каждым новым поколением интеловских процессоров, а качественный скачок случился только сейчас. Так что секрет успеха - в другом.

Вкратце: новые рубежи экономичности были достигнуты благодаря комплексу мероприятий, проведённых не столько с самим процессором, сколько с платформой и инфраструктурой в целом.

Во-первых, важную роль сыграла общая интеграция компонентов платформы: в процессорный кристалл перекочевала значительная часть схемы преобразователя питания, а для ультрамобильных применений был спроектирован специализированный SoC-вариант процессора, содержащий на той же подложке второй кристалл - набор системной логики.


Во-вторых, Intel провела значительную работу с основными производителями контроллеров, указав им на необходимость качественной поддержки состояний сна и глубокого сна. Попутно разработчики рассчитывают, наконец, добиться от производителей дисплейных матриц поддержки функции Panel Self Refresh, позволяющей сохранять изображение на экране без его постоянного обновления со стороны графического ядра.

В-третьих, на руку сыграла и операционная система Windows 8, ядро которой гораздо рачительнее относится к обработке прерываний, по возможности стараясь избегать разрозненных транзакций, пробуждающих процессор или устройства.

И наконец, в-четвёртых, в Haswell появился новый набор ACPI-состояний сна S0ix, похожих по уровню энергопотребления на S3/S4 (когда в пассив отправляются все составляющие платформы за исключением системной памяти), но со временем перевода системы в полностью рабочее состояние на уровне нескольких миллисекунд. Кроме того, добавились также и новые состояния простоя процессора C7 и далее, достигаемые при видимой работоспособности системы, но при которых с основной части CPU может быть полностью снято питающее напряжение.


Однако всё перечисленное в первую очередь касается мобильных платформ и длительности их работы от батареи. В настольных системах большинство из этих нововведений также имеет место, но для конечных пользователей они практически безразличны. Что же их затрагивает самым непосредственным образом, так это появление в процессоре Haswell новых зон, работающих на различных частотах. В Ivy Bridge таких зон было две: вычислительные ядра (вместе с кешем и системным агентом) и графическое ядро. Но это оказалось не лучшим решением с точки зрения экономичности, так как обращения графики к данным в L3-кеше приводили к выходу из энергосберегающих состояний всего процессора. Поэтому в Haswell Uncore-часть, объединяющая системный агент и кеш третьего уровня, получила свою собственную независимую частоту.

И это - отнюдь не позитивное изменение, а яркая иллюстрация тех приоритетов, которых придерживались инженеры Intel при разработке их нового дизайна. Асинхронная работа Uncore и вычислительных ядер приводит к тому, что кеш третьего уровня в Haswell имеет большую латентность, нежели у процессоров предыдущего поколения. Иными словами, ради улучшения экономичности Intel готова даже откатывать сделанные ранее для увеличения производительности шаги.

Но зато все меры, предпринятые Intel для снижения энергопотребления, позволяют компании значительно расширить спектр предлагаемых энергоэффективных процессоров Core. В мобильном сегменте ожидается появление обширной и включающей порядка двух десятков наименований U-серии, с характерным расчётным тепловыделением порядка 15 Вт. Кроме того, нас ожидает и Y-серия с тепловыделением на уровне 6–7 Вт. Эти цифры кажутся особенно впечатляющими, если принять во внимание, что речь идёт о тепловыделении сборки, включающей помимо процессорного ядра и кристалл набора логики.

Для тех, кто хотел побыстрее

Но всё-таки, увлёкшись идеями по переориентации процессоров Core на ультрамобильные ноутбуки-трансформеры и производительные планшеты, Intel не забыла о том, чтобы немного подрихтовать самое сердце своих процессоров. Хотя вычислительные ядра Haswell очень похожи на ядра Ivy Bridge, в них всё-таки можно обнаружить некоторое количество улучшений. Правда, сделаны эти улучшения совсем не из стремления поднять чистую производительность - количество обрабатываемых за такт инструкций. Причина их появления - внедрение в обиход новых инструкций AVX2 и желание увеличить эффективность работы технологии Hyper-Threading, которая должна будет компенсировать невозможность использования четырёх полноценных ядер в низковаттных процессорах. Но, к счастью, у сделанных нововведений есть и положительные побочные эффекты.

Передняя часть исполнительного конвейера Haswell осталась практически нетронутой. Новая микроархитектура, так же как и её предшественники, заточена под обработку четырёх инструкций за такт. Блок выборки инструкций и декодер имеют именно такую ширину. Остался без изменений и кеш инструкций первого уровня объёмом 32 Кбайт, а также введённый ещё в Ivy Bridge кеш для декодированных инструкций на полторы тысячи микроопераций. Преимуществ на этом этапе у Haswell перед прошлым дизайном есть только два. Во-первых, благодаря происходящему при каждом релизе нового процессорного дизайна увеличению размера всех внутренних буферов возросла точность работы блока предсказания переходов. Во-вторых, очередь уже декодированных инструкций получила явную оптимизацию под Hyper-Threading: её деление на два потока стало происходить динамически.


Собственно, отсутствие изменений в базовых алгоритмах выборки и декодирования инструкций и является явным указанием на то, что рассчитывать на увеличение темпа обработки инструкций в Haswell особенно не стоит. Более четырёх (или пяти в случае успешного срабатывания технологии macro-ops fusion) x86-команд эта архитектура переварить не может. И если ранее на цикле разработки «так» Intel делала нововведения, способные увеличить эффективность работы имеющихся декодеров, то теперь этого нет.

Заметные же изменения в микроархитектуре Haswell обнаруживаются, если двигаться по конвейеру глубже. Так, увеличение всех основных буферов коснулось не только предсказания переходов. Немаловажно, что при этом было увеличено окно внеочередного исполнения команд. Этим достигается некоторое улучшение возможностей по параллельной обработке инструкций одного потока, что в конечном итоге позволяет более плотно загружать работой исполнительные устройства (коих в Haswell стало не просто больше, а заметно больше).


Собственно, на фоне всех остальных достаточно жалких улучшений в потрохах микроархитектуры это, пожалуй, - главное достоинство нового микропроцессорного дизайна. Если в Ivy Bridge было предусмотрено всего шесть исполнительных портов, то в Haswell их стало восемь.


Таким образом, в теории Haswell может обрабатывать до восьми микроопераций за такт. Однако надо заметить, что три порта отведены на операции работы с памятью, то есть предназначаются для обслуживания вспомогательных микроопераций, возникающих при разборке x86-инструкций.

Поэтому первостепенное значение имеет появление отдельного порта для целочисленных операций и обработки ветвлений. Очевидно, предполагается, что со временем число используемых в программах 256-битных инструкций будет расти, и, чтобы они не блокировали работу самого обычного кода, его исполнение теперь может быть выделено на независимый порт. Такое «развязывание» портов по типам операций должно дать особенно сильный положительный эффект при одновременном исполнении одним ядром двух разнородных потоков с участием технологии Hyper-Threading. То есть мы вновь сталкиваемся с ростом её эффективности в Haswell.

Также в распоряжении процессора теперь оказалось суммарно четыре порта, способных работать с целочисленными инструкциями. А это значит, что самый ординарный целочисленный код может проходить через этап исполнения с тем же темпом, что и через декодер.

Впрочем, судя по общему подходу к проектированию новой микроархитектуры, Intel задумывалась о росте количества обрабатываемых за такт инструкций в последнюю очередь. Что же наверняка волновало разработчиков гораздо сильнее, так это работа с новыми командами из набора AVX2. В это множество инструкций входят 256-битные SIMD-команды для обработки целых чисел, разреженные операции с памятью и различные перестановки и сдвиги компонентов векторов. Но львиная и самая важная доля нового набора команд - принципиально новые вещественночисленные FMA-инструкции (Fused Multiply-Add), которые фактически одновременно включают в себя пару операций - умножение и сложение. Естественно, их выполнение старыми средствами вызвало бы значительные простои процессора, поэтому для них теперь сделано два отдельных порта и выделенные исполнительные устройства. В результате Haswell может выполнять по две сдвоенные FMA-инструкции за такт.


Таким образом, теоретически Haswell на AVX2-коде может показывать вдвое более высокую пиковую вещественночисленную производительность, нежели процессоры прошлых поколений. Хотя, на самом деле, если сопоставить скорость выполнения одной FMA-инструкции и раздельных инструкций умножения и сложения, то реальная величина ускорения окажется на уровне 60 процентов, что, конечно же, тоже очень неплохо.

В какой-то мере внедрение быстрого исполнения FMA-команд является ответом Intel на растущую популярность вычислений на графических процессорах. Набор AVX2 и имеющиеся аппаратные средства для его обработки делают Haswell отличной числодробилкой, а сами эти инструкции прекрасно вписываются в популярные вычислительные алгоритмы, используемые как в научных областях, так и при обработке различного мультимедийного контента.

Следовательно, процессоры Haswell всё-таки могут быть существенно производительнее своих предшественников. Но не за счёт более быстрого исполнения старого кода, а за счёт предоставления инструментов для лучшей реализации старых алгоритмов через новую систему инструкций. Это, естественно, требует определённых усилий от программистского сообщества, но зато не приводит к дополнительным затратам процессором электроэнергии, что отлично вписывается в ту генеральную линию, которой теперь придерживается Intel.

Желание сделать работу процессора с AVX2-инструкциями максимально гладкой заставило разработчиков Haswell задуматься об увеличении скорости работы кеш-памяти. Новые команды предполагают вдвое более быструю, чем ранее, обработку данных. Поэтому для поддержания баланса в новой микроархитектуре симметрично увеличена пропускная способность кеш-памяти первого и второго уровней. Подчеркнём, речь идёт именно о расширении полосы пропускания L1- и L2-кеша, латентность же кеш-памяти остаётся на том же уровне, что и раньше.


В результате кеш первого уровня стал способен отрабатывать два 32-байтных чтения и одну 32-байтную запись за такт. Кеш же второго уровня может принимать и отдавать за такт по 64 байта данных. И в том и в другом случае имеет место двукратное увеличение пропускной способности по сравнению с процессорными микроархитектурами прошлых поколений. Плюс к этому в Haswell, наконец, удалось ликвидировать все добавочные задержки, связанные с обращениями к невыровненным данным в L1-кеше.

К сожалению, при этом улучшения обошли кеш третьего уровня, который теперь работает на собственной частоте асинхронно с вычислительными ядрами. И хотя его частота близка к частоте основной части процессора, асинхронность вызывает увеличение латентности. Никакой же компенсации в виде роста пропускной способности не последовало. Внутрипроцессорная кольцевая шина в Haswell перенесена из Ivy Bridge без каких-либо изменений, так что вытянуть из L3-кеша более 32 байт данных за такт невозможно при всём желании.

Резюмируя, отметим, что хотя Haswell по микроархитектуре вычислительных ядер и похож на Ivy Bridge, улучшения, способные увеличить его скорость работы на обычном коде, всё-таки есть. Фактически между всеми этапами конвейера проведён серьёзный ребаланс, приведший к тому, что, хотя скорость выборки и декодирования инструкций и осталась практически той же, исполнение этих инструкций теперь может происходить ощутимо быстрее и с большей степенью параллелизма. Но отразится ли это на реальной производительности Haswell, зависит от того, действительно ли именно исполнение, а не декодирование было бутылочным горлышком в прошлых версиях микроархитектуры Core.

Интегрированная графика: выходим на уровень GeForce GT 650M

Тем не менее, для того, чтобы ощутить возросшую мощь Haswell с 100-процентной вероятностью, совершенно не обязательно переписывать под AVX2 имеющиеся программы. Дело в том, что в этом процессоре есть важная часть, занимающая примерно 30 процентов площади кристалла, над которой инженеры Intel поработали очень усердно. Это - интегрированное графическое ядро. Учитывая первостепенность мобильных применений своих процессоров, Intel в последние несколько лет проводит последовательные улучшения встраиваемой в них графики и стремится к тому, чтобы её собственный ускоритель смотрелся не хуже решений других разработчиков, включая и тех, которые графическими решениями занимаются целенаправленно. В Ivy Bridge мы уже видели почти двукратный рост графической производительности по сравнению с процессорами предыдущего поколения, произошедший одновременно с внедрением поддержки всех современных версий программных интерфейсов. Микроархитектура Haswell обещает поднять скорость работы графического ядра ещё примерно вдвое.


Планы у разработчиков, как видим, были грандиозные, но при этом, как и в вычислительных ядрах, в данном случае Intel смогла обойтись без внесения глубоких архитектурных изменений. Структура графического ядра осталось старой, а рост производительности обеспечивается в чистом виде экстенсивными методами. Новую же архитектуру видеоускорителя Intel обещает лишь в 2014 году - в следующем поколении процессоров с кодовым именем Broadwell. В результате, как и вычислительные ядра, графическое ядро Haswell навевает мысли о том, что «так» и из нового процессора получился не слишком правдоподобный. Впрочем, это не умаляет достигнутого роста быстродействия, который, безусловно, заслуживает того, чтобы познакомиться с его источниками несколько подробнее. Тем более что в новом поколении Intel HD Graphics место нашли весьма занимательные инженерные решения.


Если не считать отдельных оптимизаций графического конвейера, направленных на перенесение части нагрузки с драйвера на аппаратные блоки и на увеличение производительности большинства специализированных функциональных блоков, выполняющих в конвейере 3D-рендеринга подготовительные операции, новое графическое ядро сильно похоже на ядро из процессоров предыдущего поколения с добавленной поддержкой DirectX 11.1. Главное же преимущество нового дизайна - наличие существенно большего количества универсальных исполнительных устройств. Если максимальная версия графики Ivy Bridge располагала 16 исполнительными устройствами (включающими по 4 ALU каждое), то количество исполнительных устройств в графическом ядре Haswell может доходить до 40 штук.

Однако при этом Intel решила провести более явную сегментацию и на основе единого дизайна сделать несколько вариантов графики: GT1, GT2, GT3 и GT3e. Базовая версия - это GT2 с 20 исполнительными устройствами. Она предназначается для большинства десктопных моделей процессоров и предлагает на 4 устройства больше, чем старшая графика процессоров поколения Ivy Bridge. Однако её урезанная версия, GT1, имеет лишь 6 исполнительных устройств и мало отличается от графики, уже присутствующей в существующих процессорах Pentium и Celeron. Максимальный же вариант, GT3, который располагает 40 исполнительными устройствами, представляет собой GT2 с удвоенным исполнительным кластером. Такая прокачанная версия видеоускорителя нацеливается на большинство мобильных вариантов Haswell, включая в первую очередь процессоры для ультрабуков. Двух с половиной кратное увеличение количества исполнительных устройств и должно, по замыслу разработчиков, обеспечить двукратный рост производительности графики. Однако такая производительная версия видеодвижка, GT3, в настольные компьютеры не попадёт. А это значит, что у десктопной интегрированной графики Intel прирост производительности будет не кратный, а лишь примерно 30-процентный.


Любопытно, что на самом деле полупроводниковый кристалл Haswell будет иметь на одно или два исполнительных устройства больше, чем предусмотрено дизайном. Дополнительные устройства играют роль запасных, они нужны для подмены нерабочих блоков и для снижения количества бракованных процессоров.

Увеличение мощности исполнительного кластера графического ядра заставило разработчиков дизайна задуматься и о том, чтобы узким местом не стал этап наложения текстур. Поэтому скорость работы текстурного блока в Haswell была симметрично увеличена. Intel обещает четырёхкратный рост скорости текстурирования по сравнению с графикой Ivy Bridge, и это - вполне достаточное усиление, если учесть рост мощности остальной части движка.

Впрочем, несмотря на все принятые меры, даже производительность GT3 показалась Intel недостаточной, чтобы привлечь на сторону собственных интегрированных ядер самых требовательных пользователей. Поэтому для производительных игровых мобильных систем Intel создала специализированную заряженную модификацию GT3e. В процессорах с таким ядром, которые будут образовывать отдельную мобильную H-серию, встроенное графическое ядро GT3 будет дополняться быстрой eDRAM-памятью объёмом 128 Мбайт и 512-битной шиной. Идея состоит в том, что существенные ограничения на скорость встраиваемых видеоядер накладывает недостаточная пропускная способность системной памяти, которая в таких случаях играет также и роль видеопамяти. eDRAM же будет устанавливаться на одну подложку с процессорным ядром и выполнять роль L4-кеша, обеспечивая пропускную способность порядка 64 Гбайт/с. Однако никакого специализированного интерфейса между графическим ядром и eDRAM не предусматривается, так что такой L4-кеш будет буферизировать все обращения в память, а не только инициированные графическим ядром. Тем не менее Intel ожидает, что именно эта добавка сможет вывести Haswell по графической производительности на один уровень с NVIDIA GeForce GT 650M.


Но следует понимать, что добавление к процессорному кристаллу дополнительного кристалла eDRAM заметно увеличивает энергопотребление и стоимость процессора, поэтому CPU с GT3e предполагается использовать исключительно в высокопроизводительных геймерских ноутбуках, где речь об экономичности, компактности и бюджетности не идёт. А значит, компания AMD со своими APU поколения Richland пока что не будет ощущать особого давления со стороны конкурента. И особенно это касается десктопной среды: предлагать широкий ассортимент процессоров с производительными графическими ядрами для этого рыночного сегмента Intel не считает необходимым.

Впрочем, даже пользователи настольных систем смогут оценить прочие преимущества графического ядра нового поколения, например расширенные возможности по подключению мониторов. В Haswell поддерживается работа до трёх независимых дисплеев, причем все три подключения могут быть цифровыми. Благодаря же внедрению совместимости с последними версиями интерфейсов HDMI и DisplayPort, максимальные поддерживаемые разрешения достигли величин 4Kx2K.

Без улучшений не осталось и одно из любимых детищ Intel - встроенный в графическое ядро аппаратный видеокодер Quick Sync. Разработчики рассматривают его как один из путей снижения энергопотребления процессоров, так как Quick Sync позволяет высвобождать вычислительные ядра от энергоёмких и весьма распространённых задач кодирования и декодирования видео, перенося их выполнение на специализированный и экономичный узел. Поэтому в каждой новой версии процессорного дизайна производительность Quick Sync поднимается, а число поддерживаемых этой технологией форматов растёт. Так, Haswell в дополнение к уже освоенным форматам будет способен на аппаратном уровне работать с SVC (Scalable Video Coding - производная AVC H.264), декодировать MJPEG (motion JPEG) и кодировать видео в формате MPEG2. При этом будет обеспечена полноценная совместимость при кодировании и декодировании с видео в разрешении 4K (4096x2304, 4096x2160 и 3840x2160), которое в настоящее время приобретает всё большую популярность.

Возросла и чистая производительность кодера Quick Sync. Причём теперь ему присуща не только высокая пропускная способность, но и низкая латентность, открывающая аппаратному кодированию путь в телеконференции. Скорость же кодирования в Haswell заметно выше, чем у Ivy Bridge, однако в разных версиях графического ядра она различается, причём в разы. Зато качество получаемого при аппаратном кодировании видео улучшилось в любых модификациях графики. Обновлённая технология Quick Sync должна давать лучшее качество кодированного изображения, чем Ivy Bridge, даже при одинаковом битрейте.

Заключение

Очевидно, новая микроархитектура Haswell может вселять как надежды на светлое будущее, так и разочарование уровнем достигнутого прогресса. Всё зависит от того, на что вы рассчитываете. К сожалению, интеловская схема «тик-так» незримо подталкивает к завышению ожиданий, ведь Haswell относится к циклу разработки «так», то есть должен восприниматься как новое поколение микроархитектуры. Но принципиальных и революционных улучшений в нём сделано не так много. Речь идёт не о кардинальной переработке процессорного дизайна, а лишь о некотором наборе улучшений и усовершенствований. Конечно, улучшений этих немало, и можно даже говорить о переходе количества в качество. Но, как бы то ни было, Intel фактически форсировала имеющуюся микроархитектуру Ivy Bridge, а не предложила что-то принципиально новое. Причём основной упор при выполненной переработке делался не на поиски путей увеличения вычислительной производительности, а на улучшение энергоэффективности и развитие графических возможностей.

С точки же зрения традиционно процессорной парадигмы микроархитектура Haswell предлагает лишь поддержку нового набора инструкций AVX2, лучший параллелизм на уровне исполнения инструкций и возросшую пропускную способность кеш-памяти первого и второго уровней. Достаточно ли таких изменений для того, чтобы соответствовать ожиданиям приверженцев классических персональных компьютеров? Вряд ли. Поэтому большинство энтузиастов, увидев лишь незначительный прирост вычислительного быстродействия, лежащий предположительно в рамках 5-15 процентов, скорее всего, новыми процессорами будут недовольны. И это означает, что никакого всплеска интереса к привычным десктопам и ноутбукам не предвидится и с выходом нового семейства процессоров.

Но Intel, несмотря на всё это, может гордиться выполненной работой. Поставленную перед собой задачу компания решила. Дизайн Haswell получился настолько энергоэффективным и сбалансированным, что эти процессоры, вне всяких сомнений, смогут занять достойное место в лакомом для производителя подвиде мобильных устройств - производительных планшетах и ноутбуках-трансформерах. Намечающийся на этом рынке бум компания теперь точно не прозевает: в ответ на поползновения когорты приверженцев архитектуры ARM, а также на новые APU компании AMD у Intel теперь имеется хорошая домашняя заготовка. Ведь микроархитектура Haswell позволяет создавать модификации дизайна, которые обладают показателями энергопотребления, выражающимися в однозначных числах, и представляют при этом SoC-сборки, включающие не только процессор, но и набор системной логики.

На этом мы пока не ставим финальную точку. Данный материал лишь открывает цикл статей о процессорах с новой микроархитектурой. В самое ближайшее время мы сможем более подробно и с реальными процессорами в руках познакомиться как с десктопными, так и с мобильными воплощениями микроархитектуры Haswell. И тогда , быть может, наши выводы, сделанные лишь на основе знакомства с документацией, несколько изменятся. И в это действительно хочется верить…



Загрузка...