sonyps4.ru

Прикладные математические пакеты. Современные интегрированные математические пакеты

В современных условиях невозможно представить себе квалифицированного ученого, инженера, конструктора, не использующего программ для автоматизации выполнения и высококачественного оформления проектов. К числу наиболее замечательных программ такого типа можно отнести всемирно известные программные продукты в области математики и физики Maple V, Matlab, Mathcad, Mathematica и другие программы.

Первая версия системы MATLAB была использована в конце 70-x г. XXв. в Университете Нью Мехико и Станфордском университете для преподавания курсов теории матриц, линейной алгебры и численного анализа.

Сейчас возможности системы значительно превосходят возможности первоначальной версии матричной лаборатории Matrix Laboratory. Нынешний MATLAB - это высокоэффективный язык инженерных и научных вычислений. Он поддерживает математические вычисления, визуализацию научной графики и программирование с использованием легко осваиваемого операционного окружения, когда задачи и их решения могут быть представлены в нотации, близкой к математической. Наиболее известные области применения системы MATLAB:

Математика и вычисления;

Разработка алгоритмов;

Вычислительный эксперимент, имитационное моделирование, макетирование;

Анализ данных, исследование и визуализация результатов;

Научная и инженерная графика;

Разработка приложений, включая графический интерфейс пользователя.

MATLAB - это интерактивная система, основным объектом которой является массив, для которого не требуется указывать размерность явно.

Матрицы, дифференциальные уравнения, массивы данных, графики - это общие объекты и конструкции, используемые как в прикладной математике, так и в системе MATLAB. Именно эта фундаментальная основа обеспечивает системе MATLAB непревзойденную мощь и доступность.

Система MATLAB - это одновременно и операционная среда и язык программирования. Одна из наиболее сильных сторон системы состоит в том, что на языке MATLAB могут быть написаны программы для многократного использования.

Пакеты прикладных программ, которые представляют собой коллекции М-файлов для решения определенной задачи или проблемы (MATLAB Application Toolboxes) и входят в состав семейства продуктов MATLAB.

Пакет Maple V - это среда для выполнения математических расчетов на компьютере, который может решать большое количество математических задач путем введения команд, без всякого предварительного программирования. Кроме того, Maple может оперировать не только приближенными числами, но и точными целыми и рациональными числами. Это позволяет получить ответ с высокой, в идеале с бесконечной, точностью.


Но, что самое важное, решение задач может быть получено аналитически, т. е. в виде формул, состоящих из математических символов. Вследствие этого Maple называют также пакетом символьной математики.

Программа разработана исследовательской группой (The Symbolic Computation Groop) отделения вычислительной техники университета Waterloo (Канада), которая была образована в декабре 1980 г. Кейтом Геддом (Keith Geddes) и Гастоном Гонэ (Gaston Gonnet).

Разработчики других известных математических пакетов, таких как MathCad и MatLab, используют символьный процессор Maple V в своих программах. Кроме того, математические редакторы Scientific Workplace (на основе Scientific Word) и MathOffice (на основе Microsoft Word) для выполнения расчетов также дополнены символьным процессором Maple .

Maple умеет выполнять сложные алгебраические преобразования и упрощения над полем комплексных чисел, находить конечные и бесконечные суммы, произведения, пределы и интегралы, решать в символьном виде и численно алгебраические (в том числе трансцендентные) системы уравнений и неравенств, находить все корни многочленов, решать аналитически и численно системы дифференциальных уравнений и некоторые классы уравнений в частных производных. В Maple включены пакеты подпрограмм для решения задач линейной и тензорной алгебры, евклидовой и аналитической геометрии, теории чисел, теории вероятностей и математической статистики, комбинаторики, теории групп, интегральных преобразований, численной аппроксимации и линейной оптимизации (симплекс-метод), а также задач финансовой математики и многих, многих других задач.

Maple V обладает также развитым языком программирования. Это дает возможность пользователю самостоятельно создавать команды и таким образом расширять возможности Maple V для решения специальных задач. Имеющиеся текстовый редактор и графические средства позволяют профессионально оформить выполненную работу.

тождественные преобразования выражений (в том числе упрощение), аналитическое решение уравнений и систем;

дифференцирование и интегрирование, аналитическое и численное;

решение дифференциальных уравнений;

проведение серий расчетов с разными значениями начальных условий и других параметров.

При этом спектр задач, решаемых подобными системами, очень широк:

  • проведение математических исследований, требующих вычислений и аналитических выкладок;
  • разработка и анализ алгоритмов;
  • математическое моделирование и компьютерный эксперимент;
  • анализ и обработка данных;
  • визуализация, научная и инженерная графика;
  • разработка графических и расчетных приложений.

Принципы построения математических моделей. Основные этапы моделирования.

Математическое моделирование –создание математического описания реального объекта и изучение этого описания.

Принципы построения математических моделей

Основные этапы моделирования

Весь процесс моделирования можно подразделить на следующие этапы:

постановка задачи моделирования;

построение схемы модели, выделение основных частей и процессов;

определение критерия оптимизации или значения, которое надо рассчитать;

выделение основных изменяемых параметров;

математическое описание основных частей и процессов;

построение решения, связывающего изменяемые параметры и критерий оптимизации или рассчитываемое значение;

исследование решения на экстремум или расчет искомого параметра.

Постановка задачи моделирования

Постановка задачи обычно формулируется в виде словесного описания. На этапе постановки должен быть описан объект моделирования, цели построения модели и критерии оптимизации.

Построение схемы модели, выделение основных частей и процессов

На этом этапе, на базе постановки задачи, объект моделирования делится на основные части и определяется перечень процессов взаимодействия этих частей.

Здесь пакеты общего назначения также ничем помочь не могут. Специализированные пакеты, обычно, уже содержат элементы деления модели на части для своей предметной области.

Должен быть сформулирован поддающийся количественной оценке критерий оптимизации или искомый количественный параметр.

Должен быть сформулирован перечень всех изменяемых параметров и их характерное количественное выражение.

Математическое описание основных частей и процессов

Взаимодействие частей модели должно быть выражено математическими формулами. Раздел математики, который будет использован для описания, выбирается из соображений удобства. Т.е. прежде всего, этот раздел должен иметь возможность количественного описания данного типа взаимодействий.

Результатом этого этапа является система уравнений или иных математических выражений формально описывающая взаимодействие частей и допускающая решение, т.е. получение зависимости: критерий оптимизации как функция изменяемых параметров.

В частности, желательна замкнутость системы уравнений и наличие формального доказательства существования решения.

Здесь пакетам общего назначения предоставляют только аппарат. Специализированные пакеты, обычно, имеют предопределенный математический аппарат и опираются на готовое математическое описание задачи.

Построение решения, связывающего изменяемые параметры и критерий оптимизации

Строится РЕШЕНИЕ, т.е. определяется явная функциональная связь: критерий оптимизации или расчетный параметр как функция изменяемых параметров.

Именно этот этап и есть основное поле приложения сил прикладных пакетов математического моделирования. Это связано с тем, что аналитические решения для математического описания сложных объектов обычно невозможны. И построение решения сводится к построению «численного решателя», который по заданным значениям изменяемых параметров может вычислить значение критерия оптимизации.

В редких случаях существования аналитического решения модели, роль прикладных пакетов математического моделирования низводится до определения функции-решения.

Существуют особые подсистемы прикладных пакетов математического моделирования - системы аналитических (символьных) вычислений - эти подсистемы могут использоваться для максимизации аналитичности решения, т.е. замены численных методов на поиск функционального выражения решений. Аналитические решения практически всегда «лучше» численных, ибо позволяют выразить искомые закономерности через известные функции, что сильно ускоряет расчеты и повышает точность вычислений.

Исследование решения на экстремум

Сложность исследования решения на экстремум чаще всего связана с значительными затратами времени на вычисление критерия оптимизации по заданным значениям изменяемых параметров и/или многочисленностью допустимых сочетаний изменяемых параметров, приводящему к огромному количеству вычислений и, опять же, значительным затратам времени.

Этот этап - еще одно поле приложения сил пакетам. Методы исследования функций на экстремумы хорошо разработаны в математике и могут быть формально применены к любой заданной функции.

Parametric Surface Creator

Surfer

пакет Simulink

gnuplot ImageMagick

Parametric Surface Creator

Программа предназначена для наглядного представления геометрических объектов, описываемых параметрически задаваемыми поверхностями, таких как сфера, тор, лента Мёбиуса и прочие. Для описания объектов используется Паскаль-подобный язык с поддержкой всех стандартных математических функций языка Паскаль и нескольких дополнительных. Полученный объект отображается в векторной форме с использованием оригинального алгоритма растеризации векторов, позволяющим получить плавное и естественное изображение даже на низком разрешении монитора и не требующим никакой аппаратной поддержки. Возможен экспорт изображения в BMP файл.

Surfer - программа для создания трехмерных поверхностей. Коммерческие программы-симуляторы для задач с преобладанием "логических аспектов": AutoMod, Process Model, SIMFACTORY и др.

пакет Simulink , ориентированный именно на задачи имитационного моделирования.

gnuplot 1 – популярная программа для создания двух- и трёхмерных графиков. gnuplot имеет собственную систему команд, может работать интерактивно (в режиме командной строки) и выполнять скрипты, читаемые из файлов. Используется gnuplot в качестве системы вывода изображений в различных математических пакетах: GNU Octave, Maxima и многих других. ImageMagick – кроссплатформенный пакет программ для пакетной обработки графических файлов. Поддерживает огромное количество графических форматов. Может использоваться с языками Perl, C, C++, Python, Ruby, PHP, Pascal, Java, в скриптах командной оболочки или самостоятельно.

Использование компонентов

В документах-программах Mathcad есть возможность вставки модулей (component

) других приложений для расширения возможностей визуализации, анализа данных, выполнение специфических вычислений.

Для расширенной визуализации данных предназначен компонент Axum Graph. Для работы с табличными данными - Microsoft Excel .

Компоненты Data Acquisition, ODBC Input позволяют пользоваться внешними базами данных .

Предлагаются также бесплатные модули (add-in) для интеграции Mathcad с программами Excel, AutoCAD .

Для статистического анализа предназначен компонент Axum S-PLUS Script.

Значительное расширение возможностей пакета достигается при интеграции со сверхмощным приложением MATLAB.

Комплектации

Версии Mathcad могут отличатся комплектацией и лицензией пользователя. В разное время поставлялись версии Mathcad Professional , Mathcad Premium , Mathcad Enterprise Edition (отличаются комплектацией). Для академических пользователей предназначена версия Mathcad Academic Professor (обладает полной функциональностью, но отличается лицензией пользователя и имеет в несколько раз меньшую стоимость).

Некоторое время выпускались также упрощенные и заметно «урезанные» студенческие версии программы.

Однако пока математические возможности MathCad в области компьютерной алгебры намного уступают системам Maple, Mathematica, MatLab и даже малютке Derive. Однако по программе MathCad выпущено много книг и обучающих курсов, в том числе у нас в России. Сегодня эта система стала буквально международным стандартом для технических вычислений и даже многие школьники осваивают и используют MathCad. Для небольшого объема вычислений MathCad идеален - здесь все можно проделать очень быстро и эффективно, а затем оформить работу в привычном виде (MathCad предоставляет широкие возможности для оформления результатов, вплоть до публикации в Интернете). Пакет имеет удобные возможности импорта/экспорта данных. Например, можно работать с электронными таблицами Microsoft Excel прямо внутри MathCad-документа.

В общем, MathCad - это очень простая и удобная программа, которую можно рекомендовать широкому кругу пользователей, в том числе не очень сведущих в математике, а особенно тем, кто только постигает ее азы.

В качестве более дешевых, простых, но идеологически близких альтернатив программе MathCad можно отметить такие пакеты, как уже упомянутый YaCaS, коммерческую систему MuPAD (http://www.mupad.de/ ) и бесплатную программу KmPlot

Математический пакет Mupad

Что касается программы MuPAD (Рисунок 2.6), то она представляет собой современную интегрированную систему математических вычислений, при помощи которой можно производить численные и символьные преобразования, а также чертить двумерные и трехмерные графики геометрических объектов. Однако по своим возможностям MuPAD значительно уступает своим маститым конкурентам и является, скорее, системой начального уровня, предназначенной для обучения.

MuPAD Pro 3 – это сравнительно новая система компьютерной алгебры с обширным набором инструментов, включающая математические алгоритмы для символьных и численных расчётов, и инструментарий для визуализации, анимации и интерактивных манипуляций с двумерными и трёхмерными графиками и другими математическими объектами.

Ключевые возможности Matlab

· Платформонезависимый высокоуровневый язык программирования ориентированный на матричные вычисления и разработку алгоритмов

· Интерактивная среда для разработки кода, управления файлами и данными

· Функции линейной алгебры, статистики, анализ Фурье, решение дифференциальных уравнений и др.

· Богатые средства визуализации, 2-D и 3-D графика.

· Встроенные средства разработки пользовательского интерфейса для создания законченных приложений на MATLAB

· Средства интеграции с C/C++, наследование кода, ActiveX технологии

В базовый набор MatLab входят арифметические, алгебраические, тригонометрические и некоторые специальные функции, функции быстрого прямого и обратного преобразования Фурье и цифровой фильтрации, векторные и матричные функции. MatLab «умеет» выполнять операции с полиномами и комплексными числами, строить графики в декартовой и полярой системах координат, формировать изображения трехмерных поверхностей. MatLab имеет средства для расчета и проектирования аналоговых и цифровых фильтров, построения их частотных, импульсных и переходных характеристик и таких же характеристик для линейных электрических цепей, средства для спектрального анализа и синтеза.

Библиотека C Math (компилятор MatLab) является объектной и содержит свыше 300 процедур обработки данных на языке C. Внутри пакета можно использовать как процедуры самой MatLab, так и стандартные процедуры языка C, что делает этот инструмент мощнейшим подспорьем при разработке приложений (используя компилятор C Math, можно встраивать любые процедуры MatLab в готовые приложения).

Библиотека C Math позволяет пользоваться следующими категориями функций:

· операции с матрицами;.

· сравнение матриц;

· решение линейных уравнений;

· разложение операторов и поиск собственных значений;

· нахождение обратной матрицы;

· поиск определителя;

· вычисление матричного экспоненциала;

· элементарная математика;

· функции beta, gamma, erf и эллиптические функции;

· основы статистики и анализа данных;

· поиск корней полиномов;

· фильтрация, свертка;

· быстрое преобразование Фурье (FFT);

· интерполяция;

· операции со строками;

· операции ввода-вывода файлов и т.д.

При этом все библиотеки MatLab отличаются высокой скоростью численных вычислений. Однако матрицы широко применяются не только в таких математических расчетах, как решение задач линейной алгебры и математического моделирования, обсчета статических и динамических систем и объектов. Они являются основой автоматического составления и решения уравнений состояния динамических объектов и систем. Именно универсальность аппарата матричного исчисления значительно повышает интерес к системе MatLab, вобравшей в себя лучшие достижения в области быстрого решения матричных задач. Поэтому MatLab давно уже вышла за рамки специализированной матричной системы, превратившись в одну из наиболее мощных универсальных интегрированных систем компьютерной математики.

Математический пакет Maple.

Maple (http://www.maplesoft.com/ )

Процессор Pentium III 650 МГц;

400 Мбайт дискового пространства;

Операционные системы: Windows NT 4 (SP5)/98/ME/2000/2003 Server/XP Pro/XP Home.

Программа Maple (последняя версия 10.02) - своего рода патриарх в семействе систем символьной математики и до сих пор является одним из лидеров среди универсальных систем символьных вычислений. (Рисунок 2.15,2.16) Она предоставляет пользователю удобную интеллектуальную среду для математических исследований любого уровня и пользуется особой популярностью в научной среде.

Отметим, что символьный анализатор программы Maple является наиболее сильной частью этого ПО, поэтому именно он был позаимствован и включен в ряд других CAE-пакетов, таких как MathCad и MatLab, а также в состав пакетов для подготовки научных публикаций Scientific WorkPlace и Math Office for Word. Пакет Maple - совместная разработка Университета Ватерлоо (шт. Онтарио, Канада) и Высшей технической школы (ETHZ, Цюрих, Швейцария).

Для его продажи была создана специальная компания - Waterloo Maple, Inc., которая, к сожалению, больше прославилась математической проработкой своего проекта, чем уровнем его коммерческой реализации. В результате система Maple ранее была доступна преимущественно узкому кругу профессионалов. Сейчас эта компания работает совместно с более преуспевающей в коммерции и в проработке пользовательского интерфейса математических систем фирмой MathSoft, Inc. - создательницей весьма популярных и массовых систем для численных расчетов MathCad, ставших международным стандартом для технических вычислений.

Maple предоставляет удобную среду для компьютерных экспериментов, в ходе которых пробуются различные подходы к задаче, анализируются частные решения, а при необходимости программирования отбираются требующие особой скорости фрагменты.

Пакет позволяет создавать интегрированные среды с участием других систем и универсальных языков программирования высокого уровня. Когда расчеты произведены и требуется оформить результаты, то можно использовать средства этого пакета для визуализации данных и подготовки иллюстраций для публикации. Для завершения работы остается подготовить печатный материал (отчет, статью, книгу) прямо в среде Maple, а затем можно приступать к очередному исследованию. Работа проходит интерактивно - пользователь вводит команды и тут же видит на экране результат их выполнения. При этом пакет Maple совсем не похож на традиционную среду программирования, где требуется жесткая формализация всех переменных и действий с ними. Здесь же автоматически обеспечивается выбор подходящих типов переменных и проверяется корректность выполнения операций, так что в общем случае не требуется описания переменных и строгой формализации записи.

Пакет Maple состоит из ядра (процедур, написанных на языке С и хорошо оптимизированных), библиотеки, написанной на Maple-языке, и развитого внешнего интерфейса. Ядро выполняет большинство базовых операций, а библиотека содержит множество команд - процедур, выполняемых в режиме интерпретации.

Интерфейс Maple основан на концепции рабочего поля (worksheet) или документа, содержащего строки ввода-вывода и текст, а также графику (Рисунок 2.17).

Работа с пакетом происходит в режиме интерпретатора. В строке ввода пользователь задает команду, нажимает клавишу Enter и получает результат - строку (или строки) вывода либо сообщение об ошибочно введенной команде. Тут же выдается приглашение вводить новую команду и т.д.

Вычисления в Maple

Систему Maple можно использовать и на самом элементарном уровне ее возможностей - как очень мощный калькулятор для вычислений по заданным формулам, но главным ее достоинством является способность выполнять арифметические действия в символьном виде, то есть так, как это делает человек. При работе с дробями и корнями программа не приводит их в процессе вычислений к десятичному виду, а производит необходимые сокращения и преобразования в столбик, что позволяет избежать ошибок при округлении.

Для работы с десятичными эквивалентами в системе Maple имеется специальная команда, аппроксимирующая значение выражения в формате чисел с плавающей запятой. Система Maple вычисляет конечные и бесконечные суммы и произведения, выполняет вычислительные операции с комплексными числами, легко приводит комплексное число к числу в полярных координатах, вычисляет числовые значения элементарных функций, а также знает много специальных функций и математических констант (таких, например, как «е» и «пи»). Maple поддерживает сотни специальных функций и чисел, встречающихся во многих областях математики, науки и техники.

Программирование в Maple.

Система Maple использует процедурный язык 4-го поколения (4GL). Этот язык специально предназначен для быстрой разработки математических подпрограмм и пользовательских приложений. Синтаксис данного языка аналогичен синтаксису универсальных языков высокого уровня: C, Fortran, Basic и Pascal.

Maple может генерировать код, совместимый с такими языками программирования, как Fortran или C, и с языком набора текста LaTeX, который пользуется большой популярностью в научном мире и применяется для оформления публикаций. Одно из преимуществ этого свойства - способность обеспечивать доступ к специализированным числовым программам, максимально ускоряющим решение сложных задач. Например, используя систему Maple, можно разработать определенную математическую модель, а затем с ее помощью сгенерировать код на языке C, соответствующий этой модели. Язык 4GL, специально оптимизированный для разработки математических приложений, позволяет сократить процесс разработки, а настроить пользовательский интерфейс помогают элементы Maplets или документы Maple со встроенными графическими компонентами.

Одновременно в среде Maple можно подготовить и документацию к приложению, так как средства пакета позволяют создавать технические документы профессионального вида, содержащие текст, интерактивные математические вычисления, графики, рисунки и даже звук. Вы также можете создавать интерактивные документы и презентации, добавляя кнопки, бегунки и другие компоненты, и, наконец, публиковать документы в Интернете и развертывать интерактивные вычисления в Сети, используя сервер MapleNet.

Пакет Mathematica.

Mathematica (http://www.wolfram.com/ )

Минимальные требования к системе:

процессор Pentium II или выше;

400-550 Мбайт дискового пространства;

операционные системы: Windows 98/Me/ NT 4.0/2000/2003 Server/2003x64/XP/XP x64.

Компания Wolfram Reseach, Inc., разработавшая систему компьютерной математики Mathematica (Рисунок 2.27,2.28), по праву считается старейшим и наиболее солидным игроком в этой области. Пакет Mathematica (текущая версия 5.2) повсеместно применяется при расчетах в современных научных исследованиях и получил широкую известность в научной и образовательной среде. Можно даже сказать, что Mathematica обладает значительной функциональной избыточностью (там, в частности, есть даже возможность для синтеза звука).

Mathematica объединяет в единое целое числовое и символьное вычислительное ядро, графическую систему, язык программирования, систему документации и возможность взаимодействия с другими приложениями. Для всей среды Mathematica нет единственного конкурента. Вообще говоря, конкуренты делятся на следующие группы: численные пакеты, системы компьютерной алгебры, приложения дл набора текста и подготовки документации, графические и статистические системы, традиционные языки программирования (средства разработки интерфейсов) и электронные таблицы. С тех пор, как Mathematica впервые появилась, другие математические пакеты существенно расширили спектр собственных возможностей, первоначально они предназначались для решения задач, относящихся лишь к одной или двум вышеперечисленным категориям.
Однако вряд ли эта мощная математическая система, претендующая на мировое лидерство, нужна секретарше или даже директору небольшой коммерческой фирмы, не говоря уже о рядовых пользователях. Но, несомненно, любая серьезная научная лаборатория или кафедра вуза должна иметь подобную программу, если там всерьез заинтересованы в автоматизации выполнения математических расчетов любой степени сложности. Несмотря на свою направленность на серьезные математические вычисления, системы класса Mathematica просты в освоении и могут использоваться довольно широкой категорией пользователей - студентами и преподавателями вузов, инженерами, аспирантами, научными работниками и даже учащимся математических классов общеобразовательных и специальных школ. Все они найдут в подобной системе многочисленные полезные возможности для применения.

При этом широчайшие функции программы не перегружают ее интерфейс и не замедляют вычислений. Mathematica неизменно демонстрирует высокую скорость символьных преобразований и численных расчетов. Программа Mathematica из всех рассматриваемых систем наиболее полна и универсальна, однако у каждой программы есть как свои достоинства, так и недостатки. А главное - у них есть свои приверженцы, которых бесполезно убеждать в превосходстве другой системы. Но те, кто серьезно работает с системами компьютерной математики, должны пользоваться несколькими программами, ибо только это гарантирует высокий уровень надежности сложных вычислений.

Отметим, что в разработках различных версий системы Mathematica, наряду с головной фирмой Wolfram Research, Inc., принимали участие другие фирмы и сотни специалистов высокой квалификации, в том числе математики и программисты. Есть среди них и представители пользующейся уважением и спросом за рубежом математической школы России. Система Mathematica является одной из самых крупных программных систем и реализует наиболее эффективные алгоритмы вычислений. К их числу, например, относится механизм контекстов, исключающий появление в программах побочных эффектов.

Система Mathematica сегодня рассматривается как мировой лидер среди компьютерных систем символьной математики для ПК, обеспечивающих не только возможности выполнения сложных численных расчетов с выводом их результатов в самом изысканном графическом виде, но и проведение особо трудоемких аналитических преобразований и вычислений.

Mathematica имеет несколько основных особенностей и предназначена для решения широкого спектра задач. Вот некоторые классы задач, решаемых с помощью Mathematica:

1. Работа с символьными комплексными вычислениями, использующими сотни тысяч или миллионы членов.
агрузка, анализ и визуализация данных.

2. Решение обычных и дифференциальных уравнений, а также задач численной или символьной минимизации.

3. Численное моделирование и имитация, построение систем управления, начиная от простейших и заканчивая столкновениями галактик, финансовыми убытками, сложными биологическими системами, химическими реакциями, изучением влияния на окружающую среду и магнитными полями в ускорителях элементарных частиц.

4. Простая и быстрая разработка приложений (RAD) для технических компаний и финансовых учреждений.

5. Создание профессиональных, интерактивных, технических отчетов и документов для распространения в электронном виде или на бумаге.

6. Подробная техническая документация, например, для патентов США.

7. Проведение специальных презентаций и семинаров.

8. Иллюстрирование математических или научных концепций для учащихся, начиная от колледжа и заканчивая аспирантурой.

Версии системы под Windows имеют современный пользовательский интерфейс и позволяют готовить документы в форме Notebooks (записных книжек). Они объединяют исходные данные, описания алгоритмов решения задач, программ и результатов решения в самой разнообразной форме (математические формулы, числа, векторы, матрицы, таблицы и графики).

Mathematica была задумана как система, максимально автоматизирующая труд научных работников и математиков-аналитиков, поэтому она заслуживает изучения даже в качестве типичного представителя элитных и высокоинтеллектуальных программных продуктов высшей степени сложности. Однако куда больший интерес она представляет как мощный и гибкий математический инструментарий, который может оказать неоценимую помощь большинству научных работников, преподавателей университетов и вузов, студентов, инженеров и даже школьников.

С самого начала большое внимание уделялось графике, в том числе динамической, и даже возможностям мультимедиа - воспроизведению динамической анимации и синтезу звуков. Набор функций графики и изменяющих их действие опций очень широк. Графика всегда была сильной стороной различных версий системы Mathematica и обеспечивала им лидерство среди систем компьютерной математики.

В результате Mathematica быстро заняла ведущие позиции на рынке символьных математических систем. Особенно привлекательны обширные графические возможности системы и реализация интерфейса типа Notebook. При этом система обеспечивала динамическую связь между ячейками документов в стиле электронных таблиц даже при решении символьных задач, что принципиально и выгодно отличало ее от других подобных систем.

Кстати, центральное место в системах класса Mathematica занимает машинно-независимое ядро математических операций, которое позволяет переносить систему на различные компьютерные платформы. Для переноса системы на другую компьютерную платформу используется программный интерфейсный процессор Front End. Именно он определяет, какой вид имеет пользовательский интерфейс системы, то есть интерфейсные процессоры систем Mathematica для других платформ могут обладать своими нюансами. Ядро сделано достаточно компактным для того, чтобы можно было очень быстро вызвать из него любую функцию. Для расширения набора функций служат библиотека (Library) и набор пакетов расширения (Add-on Packages). Пакеты расширений готовятся на собственном языке программирования систем Mathematica и являются главным средством для развития возможностей системы и их адаптации к решению конкретных классов задач пользователя. Кроме того, системы имеют встроенную электронную справочную систему - Help, которая содержит электронные книги с реальными примерами.

Таким образом, Mathematica - это, с одной стороны, типичная система программирования на базе одного из самых мощных проблемноориентированных языков функционального программирования высокого уровня, предназначенная для решения различных задач (в том числе и математических), а с другой - интерактивная система для решения большинства математических задач в диалоговом режиме без традиционного программирования. Таким образом, Mathematica как система программирования имеет все возможности для разработки и создания практически любых управляющих структур, организации ввода-вывода, работы с системными функциями и обслуживания любых периферийных устройств, а с помощью пакетов расширения (Add-ons) появляется возможность подстраиваться под запросы любого пользователя, (хотя рядовому пользователю эти средства программирования могут и не понадобиться - он вполне обойдется встроенными математическими функциями системы, поражающими своим обилием и многообразием даже опытных математиков).

К недостаткам системы Mathematica следует отнести разве что весьма необычный язык программирования, обращение к которому, впрочем, облегчает подробная система помощи.

FlatGraph - программа для построения графиков функций (обычных и параметрических) с расширенными возможностями (Рисунок 2.33). Дифференцирование любого порядка (с упрощением). Построение касательных к графику. Программа рассчитана как на неопытного, так и на профессионального пользователя, т.к она совмещает в себе интуитивный интерфейс с профессиональными функциями.

FlatGraph позволяет:

Вводить одно или несколько функциональных выражений любой сложности для отображения и (или) их дифференцирования;

Выполнять символьное дифференцирование для указанного порядка производной, а также выполнять упрощение полученной производной;

Исследовать "живое" изменение различных параметров функций с одновременным отображением новых графиков, что позволяет определить влияние параметров функций на их вид;

Использовать автоматическое или ручное масштабирование графиков функций для линейных шкал;

Задавать и выводить графически параметрические функции, отображающие, например, эллипсоиды, кардиоиды, лемнискаты Бернулли и другие подобные графики (где абсцисса и ордината зависят от одного параметра "t");

Решать уравнений, системы уравнений и неравенств графическим способом;

Получать и отображать касательную к графику функции в точке x0(задается пользователем).

FlatGraph имеет простой и понятный интерфейс, снабжен подробнейшей документацией по использованию и примерами работы.

Математические пакеты. Моделирование. Перечислить возможности и основные задачи, решаемые пакетами.

Математические пакеты являются составной частью мира CAE-систем.(Computer Aided Engeneering) В настоящее время в математических пакетах применяется принцип конструирования модели, а не традиционное «искусство программирования». То есть пользователь ставит задачу, а методы и алгоритмы решения система находит сама. Современные математические пакеты можно использовать и как обычный калькулятор, и как средства для упрощения выражений при решении каких-либо задач, а также как генератор графики или даже звука! В настоящее время практически все современные математические имеют встроенные функции символьных вычислений. Однако наиболее известными и приспособленными для математических символьных вычислений считаются Maple, MathCad, Mathematica и MatLab. Математическое моделирование – создание математического описания реального объекта и изучение этого описания.

Первоначально любые расчеты по моделям производились вручную. По мере развития вычислительных устройств, эти устройства применялись для ускорения расчетов.

Компьютер позволяет использовать его как средство автоматизации научной работы и для решения сложных расчетных задач используют различные специализированные программы.

В то же время, в научной работе встречается широкий спектр несложных математических задач, для решения которых можно использовать универсальные профессиональные средства.

К таким несложным задачам относятся, например, следующие:

подготовка научно-технических документов, содержащих текст и формулы, записанные в привычной для специалистов форме;

вычисление результатов математических операций, в которых участвуют числовые константы, переменные и размерные физические величины;

операции с векторами и матрицами;

решение уравнений и систем уравнений (неравенств);

статистические расчеты и анализ данных;

построение двумерных и трехмерных графиков;

тождественные преобразования выражений (в том числе упрощение), аналитическо

Прежде чем выбрать нужный вам пакет необходимо оценить его возможности с точки зрения эффективности решаемой задачи. Ниже приводится краткая характеристика наиболее известных математических пакетов:

Derive . Этот математический пакет интересен, поскольку в нем имеется возможность использования символьной математики и двух режимов работы с графикой. Наличие графического курсора позволяет определять координаты характерных точек кривых (экстремумы, корни, точки пересечения с другими кривыми). Пакет Derive и поныне привлекателен своими невзыскательными требованиями к аппаратным ресурсам. Это единственный пакет, который работает даже на ЭВМ класса IBM PC XT без жесткого диска. Более того, при решении задач умеренной сложности он показала более высокое быстродействие и большую надежность решения.

Mathematica . Современный математический пакет Mathematica является мощным средством выполнения и оформления математических исследований как в символьной, так и в численной форме. Имеет встроенный язык программирования и мощные графические возможности. Выходной документ может быть подготовлен совместно с MS Word, MS Excel и т.д. По богатству и разнообразию средств высокого уровня и выполнения символьных вычислений этот пакет уникален. Возможность проводить аналитические расчеты – одно из важных достоинств программы. Mathematica умеет преобразовывать и упрощать алгебраические выражения, дифференцировать и вычислять определенные и неопределенные интегралы, разлагать функции в ряды и находить пределы и пр. Mathematica содержит большое количество эффективных алгоритмов для проведения численных расчетов. Программа решает численными методами множество задач, не поддающихся аналитическому решению. Внутренние алгоритмы, используемые программой для операций над математическими функциями, выбраны так, чтобы достичь возможно наибольшую точность. При всех его богатейших возможностях пакет имеет нестандартную входную и неудобную выходную математическую символику, неадекватное представление результатов многих операций, слабую диагностику ошибок и требует серьезных трудозатрат на освоение.

Серьезным недостатком справочной системы пакета, например, в сравнении с другими математическими пакетами, следует считать малое число описанных в ней практических примеров применения того или иного оператора или функции, а без этого работать с математическими пакетами очень трудно. Отсутствует очень полезная возможность – перенос примеров из базы данных помощи прямо в окно редактирование с возможностью их немедленного исполнения.

MapleV. Диапазон функциональных возможностей MapleV очень широк – охвачены следующие разделы: дифференциального и интегрального исчислений, линейной алгебры, дифференциальных уравнений, геометрии, статистики, теории чисел, теории групп, оптимизации, численных вычислений, финансовые функции, комбинаторика, теория графов и многие другие области математики. Двух- и трехмерная графика MapleV обеспечивает мощную научную визуализацию. Пакет MapleV имеет более 20 типов специальных графиков, а также большое количество доступных опций для настройки способов вывода на экран каждого графика. Кроме того, возможно оживление графиков – мультипликация. Пакет понимает многие специальные функции такие как: Дельта-функции, функции Дирака и др. MapleV имеет мощную справочную систему, которая включает файлы помощи для каждой команды, типа данных, конструкции языка и библиотеки. Ещё одним достоинством системы является огромное число описанных в ней практических примеров и перенос примеров из базы данных помощи прямо в окно редактирование с возможностью их немедленного исполнения. Кроме того, данное программное средство может использоваться для того, чтобы сгенерировать коды на языках типа C, LaTEX и др.

MathCad. Пакет MathCad создавался как мощный калькулятор, позволяющий легко справляться с рутинными задачами инженерной практики, такими как решение алгебраических и дифференциальных уравнений с постоянными и переменными параметрами, анализ функций, поиск их экстремумов, численное и аналитическое дифференцирование и интегрирование, вывод таблиц и графиков при анализе найденных решений.

Главным достоинством пакета являются:

Запись сложных математических выражений в том вид, в котором они обычно записываются на листе бумаги;

Простота в использовании;

Проведение численных и аналитических математических расчетов;

Возможность создания встроенными средствами высококачественных технических отчетов с таблицами, графиками, текстом в виде печатных документов; подготовка Web-страниц и публикация результатов в Интернете;

Ввод исходных данных и вывод результатов в текстовые файлы или файлы с базами данных в других форматах;

Легкость и наглядность программирования задач; возможность составлять собственные программы-функции с помощью конструкций подобных тем, что используются языками программирования (Pascal, Fortran) и использовать принципы модульного программирования для реализации вычислительных алгоритмов пользователя;

Получение различной справочной информации из области математики и многое другое.

MathCad не предназначен для профессиональных математиков и для программирования сложных задач.

MatLab. Пакет MatLab был создан компанией MathWorks более десяти лет назад. Его возможности постоянно расширяются, а заложенные в нем алгоритмы совершенствуются.

Спектр проблем, исследование которых может быть осуществлено при помощи MatLab, охватывает: матричный анализ, обработку сигналов и изображений, задачи математической физики, оптимизационные задачи, обработку и визуализацию данных, работу с картографическими изображениями, нейронные сети, нечеткую логику и многие другие. Специализированные средства собраны в пакеты, называемые ToolBox.

Так, например, пакет (ToolBox) Simulink предназначен для интерактивного моделирования нелинейных динамических систем, состоящих из стандартных блоков.

В MatLab реализованы классические численные алгоритмы решения уравнений, задач линейной алгебры, нахождения значений определенных интегралов, интерполяции, решения дифференциальных уравнений и систем.

MatLab обладает хорошо развитыми возможностями визуализации двумерных и трехмерных данных.

Простой встроенный язык программирования позволяет легко создавать собственные алгоритмы. Простота языка компенсируется огромным множеством функций MatLab и ToolBox.

Визуальная среда GUIDE предназначена для написания приложений с графическим интерфейсом пользователя.

Методы и формы применения компьютерных технологий в учебном процессе - актуальная методическая и организационная задача каждого преподавателя, каждого администратора школы, вуза.

При организации компьютерной поддержки образования можно выделить два направления:

  • · разработка компьютерных программ учебного назначения, программ, специально предназначенных для изучения определенной дисциплины;
  • · использование программного обеспечения, разработанного для профессиональной деятельности в соответствующей области знания; для большинства естественно научных дисциплин - это профессиональные математические пакеты.

Математическими пакетами здесь называются системы, среды, языки типа Mathematica, Maple V, MatLAB, Derive, Mathcad, а также семейство систем статистического анализа данных - таких как SPSS, Statistica, Statgraphics, Stadia и др. Современные математические пакеты - это программы (пакеты программ), обладающие средствами выполнения различных численных и аналитических (символьных) математических расчетов, от простых арифметических вычислений, до решения уравнений с частными производными, решения задач оптимизации, проверки статистических гипотез, средствами конструирования математических моделей и другими инструментами, необходимыми для проведения разнообразных технических расчетов. Все они имеют развитые средства научной графики, удобную справочную систему, а также средства оформления отчетов. Название "профессиональный" или "универсальный" используется как альтернатива названию "учебный пакет".

Многие годы преподаватели математики, довольно четко разделялись на приверженцев использования компьютерных программ учебного назначения ("учебных пакетов", обучающих программ) и тех, кто предпочитал использовать универсальные пакеты.

Можно выделить несколько ключевых моментов, определивших коренное изменение отношения преподавателей и студентов к использованию универсальных математических пакетов.

Компьютер стал элементом "бытовой техники". Современное представление о качественном образовании включает в качестве необходимого элемента свободное владение компьютерными технологиями и, как следствие, компьютер воспринимается как предмет если не первой, то уж второй необходимости. Большинство родителей не мыслят себе воспитание собственных детей-школьников без компьютера. Все большее число студентов имеют компьютеры дома и все чаще именно студенты выступают инициаторами использования компьютерных технологий в учебном процессе. Ими движет не "игровой" интерес, как мы говорили и видели раньше, а стремление "облегчить себе жизнь", желание приобрести полезные для будущей карьеры профессиональные навыки, готовность учиться работе на компьютере не только на специальных занятиях по информатике. Можно смело утверждать, что "домашний компьютер" - самый мощный фактор, изменивший отношение преподавателей к использованию компьютера в профессиональной деятельности. Их позиция меняется под влиянием общественного мнения, под влиянием позиции студентов, а также потому, что у многих преподавателей тоже появились дома компьютеры. Отсюда понятен интерес к универсальным пакетам - научиться работать с готовым программным обеспечением значительно проще, чем самому писать программы.

В современном мире сформировались и закрепились стандарты в организации интерфейса компьютерных программ. Одна из проблем, возникающих при использовании универсальных пакетов, - затраты учебного времени на изучение правил работы с программой (на изучение интерфейса). Однако, поскольку разработчики научного математического обеспечения и разработчики пакетов "массового потребления" придерживаются одних стандартов. Благодаря этому время на изучение интерфейса конкретного научного пакета сокращается за счет использования навыков работы с программами конторского назначения.

Борьба за потребителя, стремление расширить круг пользователей, привели к тому, что сохраняя индивидуальные особенности, пакеты сближаются, становятся настолько похожими, что навыки работы с одним из них, позволяют очень быстро освоиться с работой в любом другом. Разработчики математических пакетов очень быстро оснащают свои программы всеми технологическими новшествами, быстро выпускают версии для новых платформ и операционных систем, совершенствуют командные языки, включая в них последние достижения алгоритмических языков, и т.п. Развиваются интеллектуальные возможности пакетов: добавляются новые библиотеки, модули, круг доступных исследованию задач расширяется в соответствии с модой, с появлением новых приложений, новых методов исследования и пр.

Internet - новая реалия жизни современного студента и специалиста. Благодаря глобальным компьютерным сетям, пользователь любого распространенного программного продукта получает возможность включиться в мировое сообщество потребителей этого же продукта. Он найдет в сети информацию о новинках, последние версии программы, сообщения об обнаруженных ошибках, получит консультацию специалиста, расскажет о своих находках и познакомится с хитростями других, узнает о литературе, о круге решаемых задач, часто просто найдет решение сходной задачи, и т.п.

Отдельное место занимают статистические пакеты. Сегодня математическая статистика - безусловно самый востребованный математический курс. Изученные здесь методы анализа данных широко используются в практике. Следовательно, владение приемами работы в среде универсального статистического пакета - это востребованный на рынке труда элемент качественного профессионального образования.

Математические пакеты - инструмент учебной деятельности. Студент вуза трудится, его труд - учеба. Чем совершеннее орудия труда, которые использует учащийся, тем более высоких результатов он добивается. Использование математических пакетов упрощает подготовку отчетов по лабораторным работам, помогает преодолеть технические математические трудности при решении инженерных задач, расширяет круг доступных для решения задач, помогает представить результаты вычислений в наглядной графической форме. Если уже на младших курсах, при изучении математики, физики, биологии, студент освоит приемы работы с достаточно мощным профессиональным пакетом, то он оказывается значительно лучше подготовлен к решению математических задач в различных приложениях. Он не будет бояться громоздких расчетов, будет готов решать сложные задачи, компенсируя недостаток собственных знаний использованием интеллектуальных возможностей пакета, владеет навыками представления результатов исследований в наглядной графической форме, умеет оформлять результаты исследований в форме аккуратных содержательных отчетов.

Доступность универсальных математических пакетов и их на рынке профессионального программного обеспечения. Существенным обстоятельством, которое до недавнего времени препятствовало широкому использованию профессиональных пакетов в стенах вузов, является дороговизна профессионального научного математического обеспечения. Однако в последнее время многие фирмы, разрабатывающие и распространяющие программы для науки, представляют для свободного использования (в том числе и через глобальные сети) предыдущие версии своих программ, широко используют систему скидок для учебных заведений, бесплатно распространяют демонстрационные или короткоживущие версии. Общедоступные, свободно распространяемые, версии пакетов содержат основные вычислительные и графические инструменты и, следовательно, вполне пригодны для использования в учебном процессе (модернизация математических пакетов производится, в основном, в направлении расширения круга задач, доступных для профессионального исследования, за счет добавления все более тонких вычислительных методов, расширения возможностей командных языков и адаптации к новейшим достижениям информационных технологий). С другой стороны, использование качественного программного обеспечения способствует активизации исследовательской деятельности, позволяет шире привлекать учащихся к научной работе, что, как известно, улучшает шансы научных групп при распределении грантов, и, следовательно, позволяет в последствии находить средства для приобретения более современного лицензионного программного обеспечения.

Доступность документации и справочной литературы по математическим пакетам. Если еще сравнительно недавно литературы по пакетам на русском языке практически не было, то сейчас новые версии, новые пакеты и различные руководства для пользователей по ним появляются почти одновременно. Трудно найти пакет, по которому бы не вышло на русском языке по две-три книги.

Следует заметить, что разработчики охотно предоставляют авторам для работы фирменную документацию и последние версии пакетов. Кроме того, практически все разработчики поддерживают серверы, на которых размещают описания последних новинок, информацию об обнаруженных ошибках, расширенные справочники по работе с пакетом, описания примеров решения типичных задач, и, практически всегда, информацию о пользователях в академической среде с адресами, описанием опыта и примерами использования в образовании. Можно констатировать, что сегодня справочная литература по математическим пакетам общедоступна - любой пользователь, желающий познакомиться с тем или иным пакетом и научиться работать с ним, имеет возможность получить помощь, соответствующую его личным запросам и квалификации.

Современные математические пакеты можно использовать и как обычный калькулятор, и как средства для упрощения выражений при решении каких-либо задач, и как генератор графики или даже звука. Стандартными стали также средства взаимодействия с Интернетом, и генерация HTML-страниц выполняется теперь прямо в процессе вычислений. Теперь можно решать задачу и одновременно публиковать для коллег ход ее решения на своей домашней странице.

Рассказывать о программах математического моделирования и возможных областях их применения можно очень долго, но мы ограничимся лишь кратким обзором ведущих программ, укажем их общие черты и различия. В настоящее время практически все современные CAE-программы (Computer Aided Engineering, пакеты математического моделирования) имеют встроенные функции символьных вычислений.

Так что же делают эти программы и как они помогают математикам? С помощью описываемого ПО можно сэкономить массу времени и избежать многих ошибок при вычислениях. Отметим, что спектр задач, решаемых подобными системами, очень широк :

Проведение математических исследований, требующих вычислений и аналитических выкладок;

Разработка и анализ алгоритмов;

Математическое моделирование и компьютерный эксперимент;

Анализ и обработка данных;

Визуализация, научная и инженерная графика;

Разработка графических и расчетных приложений.

Наиболее известными и приспособленными для математических символьных вычислений считаются следующие математические пакеты:

Пакет Mathematica, представленный на рисунке 1, повсеместно применяется при расчетах в современных научных исследованиях и получил широкую известность в научной и образовательной среде.

Несмотря на свою направленность на серьезные математические вычисления, системы класса Mathematica просты в освоении и могут использоваться довольно широкой категорией пользователей -- студентами и преподавателями вузов, инженерами, аспирантами, научными работниками и даже учащимся математических классов общеобразовательных и специальных школ. При этом широчайшие функции программы не перегружают ее интерфейс и не замедляют вычислений. Mathematica неизменно демонстрирует высокую скорость символьных преобразований и численных расчетов . Программа Mathematica из всех рассматриваемых систем наиболее полна и универсальна, однако у каждой программы есть как свои достоинства, так и недостатки.

Рисунок 1. Mathematica

Таким образом, Mathematica -- это, с одной стороны, типичная система программирования на базе одного из самых мощных проблемно-ориентированных языков функционального программирования высокого уровня, предназначенная для решения различных задач (в том числе и математических), а с другой -- интерактивная система для решения большинства математических задач в диалоговом режиме без традиционного программирования. Mathematica, как система программирования, имеет все возможности для разработки и создания практически любых управляющих структур, организации ввода-вывода, работы с системными функциями и обслуживания любых периферийных устройств, а с помощью пакетов расширения появляется возможность подстраиваться под запросы любого пользователя.

К недостаткам системы Mathematica следует отнести разве что весьма необычный язык программирования, обращение к которому, впрочем, облегчает подробная система помощи.

Программа Maple -- своего рода патриарх в семействе систем символьной математики и до сих пор является одним из лидеров среди универсальных систем символьных вычислений. Она предоставляет пользователю удобную интеллектуальную среду для математических исследований любого уровня и пользуется особой популярностью в научной среде. Отметим, что символьный анализатор программы Maple является наиболее сильной частью этого ПО, поэтому именно он был позаимствован и включен в ряд других CAE-пакетов, таких как MathCad и MATLAB, а также в состав пакетов для подготовки научных публикаций Scientific WorkPlace и Math Office for Word .

Maple предоставляет удобную среду для компьютерных экспериментов, в ходе которых пробуются различные подходы к задаче, анализируются частные решения, а при необходимости программирования отбираются требующие особой скорости фрагменты. Пакет позволяет создавать интегрированные среды с участием других систем и универсальных языков программирования высокого уровня. Когда расчеты произведены и требуется оформить результаты, то можно использовать средства этого пакета для визуализации данных и подготовки иллюстраций для публикации. Для завершения работы остается подготовить печатный материал в среде Maple, а затем можно приступать к очередному исследованию. Работа проходит интерактивно -- пользователь вводит команды и тут же видит на экране результат их выполнения (рисунок 2). При этом пакет Maple совсем не похож на традиционную среду программирования, где требуется жесткая формализация всех переменных и действий с ними. Здесь же автоматически обеспечивается выбор подходящих типов переменных и проверяется корректность выполнения операций, так что в общем случае не требуется описания переменных и строгой формализации записи.

Рисунок 2. Maple

Maple -- это удачно сбалансированная система и бесспорный лидер по возможностям символьных вычислений для математики. При этом оригинальный символьный движок сочетается здесь с легко запоминающимся структурным языком программирования, так что Maple может быть использована как для небольших задач, так и для серьезных проектов.

К недостаткам системы Maple можно отнести лишь ее некоторую «задумчивость», причем не всегда обоснованную, а также очень высокую стоимость этой программы.

Система MATLAB, представленная на рисунке 3, относится к среднему уровню продуктов, предназначенных для символьной математики, но рассчитана на широкое применение в сфере CAE.

MATLAB -- одна из старейших, тщательно проработанных и проверенных временем систем автоматизации математических расчетов, построенная на расширенном представлении и применении матричных операций. Это нашло отражение и в самом названии системы -- MATrix LABoratory, то есть матричная лаборатория. Однако синтаксис языка программирования системы продуман настолько тщательно, что данная ориентация почти не ощущается теми пользователями, которых не интересуют непосредственно матричные вычисления.

Библиотеки MATLAB отличаются высокой скоростью численных вычислений. Однако матрицы широко применяются не только в таких математических расчетах, как решение задач линейной алгебры и математического моделирования, обсчета статических и динамических систем и объектов. Они являются основой автоматического составления и решения уравнений состояния динамических объектов и систем. Именно универсальность аппарата матричного исчисления значительно повышает интерес к системе MATLAB, вобравшей в себя лучшие достижения в области быстрого решения матричных задач. Поэтому MATLAB давно уже вышла за рамки специализированной матричной системы, превратившись в одну из наиболее мощных универсальных интегрированных систем компьютерной математики.

Рисунок 3. MATLAB

Из недостатков системы MATLAB можно отметить невысокую интегрированность среды (очень много окон, с которыми лучше работать на двух мониторах), не очень внятную справочную систему (объем фирменной документации достигает почти 5 тыс. страниц, что делает ее трудно обозримой) и специфический редактор кода MATLAB-программ (рисунок 4). Сегодня система MATLAB широко используется в технике, науке и образовании, но все-таки она больше подходит для анализа данных и организации вычислений, нежели для чисто математических выкладок.

В отличие от мощного и ориентированного на высокоэффективные вычисления при анализе данных пакета MATLAB, программа MathCad -- это, скорее, простой, но продвинутый редактор математических текстов с широкими возможностями символьных вычислений и прекрасным интерфейсом. MathCad не имеет языка программирования как такового, а движок символьных вычислений заимствован из пакета Maple. Зато интерфейс программы MathCad очень простой, а возможности визуализации богатые. Все вычисления здесь осуществляются на уровне визуальной записи выражений в общеупотребительной математической форме. Пакет имеет хорошие подсказки, подробную документацию, функцию обучения использованию, целый ряд дополнительных модулей и приличную техническую поддержку производителя. Однако пока математические возможности MathCad в области компьютерной алгебры намного уступают системам Maple, Mathematica, MATLAB. Однако по программе MathCad выпущено много книг и обучающих курсов. Сегодня эта система стала международным стандартом для технических вычислений, и даже многие школьники осваивают и используют MathCad.

Рисунок 4. MathCad

Для небольшого объема вычислений MathCad идеален -- здесь все можно проделать очень быстро и эффективно, а затем оформить работу в привычном виде (MathCad предоставляет широкие возможности для оформления результатов, вплоть до публикации в Интернете). Пакет имеет удобные возможности импорта/экспорта данных. Например, можно работать с электронными таблицами Microsoft MS Excel прямо внутри MathCad-документа .

В общем, MathCad -- это очень простая и удобная программа, которую можно рекомендовать широкому кругу пользователей, в том числе не очень сведущих в математике, а особенно тем, кто только постигает ее азы.

В качестве более дешевых, простых, можно отметить такие пакеты, как UMS, Microsoft MS Excel.

Когда-то системы символьной математики были ориентированы исключительно на узкий круг профессионалов и работали на больших компьютерах. Но с появлением ПК эти системы были переработаны под них и доведены до уровня массовых серийных программных систем. Сейчас на рынке сосуществуют системы символьной математики самого разного калибра -- от рассчитанной на широкий круг потребителей системы MathCad до компьютерных монстров Mathematica, MATLAB и Maple, имеющих тысячи встроенных и библиотечных функций, широкие возможности графической визуализации вычислений и развитые средства для подготовки документации.

Отметим, что практически все эти системы работают не только на персональных компьютерах, оснащенных популярными операционными системами Windows, но и под управлением операционных системы Linux, UNIX, Mac OS, а также на КПК .

Перейдем к пакетам наиболее часто используемых в школах при проведении уроков математики в старших классах. К ним относятся: Universal Math Solver (UMS), Microsoft MS Excel.

Программа UMS - "Универсальный математический решатель" позволяет решать задания из многих разделов алгебры и анализа. Знания "Универсального решателя" охватывают почти весь курс по алгебре и анализу средней школы и первых курсов вузов .

В отличие от ряда мощных математических пакетов, UMS доступен для быстрого изучения благодаря простому интерфейсу и расправляется с предложенными задачами исключительно "школьными" методами, оформляя все этапы решения так, как это бы сделал учитель (рисунок 5).

Если смотреть на практическую ценность Universal Math Solver шире, то приложение с успехом сослужит службу родителям, привыкшим контролировать выполнение домашних заданий ребёнком, и учителям математики. Последние могут использовать интерактивные возможности программы в учебном процессе, возлагая объяснение решений задач на "плечи" электронного педагога.

Universal Math Solver поставляется в двух редакциях - стационарной и сетевой. Стоимость годичной лицензии за одну инсталляцию первой версии составляет 3000 тенге, цена сетевой редакции - в три раза выше .

Рисунок 5. Universal Math Solve

К сожалению, в школьной практике нет возможности использовать такие мощные математические пакеты, как Mathematica, Mathcad, MathLab, Maple из-за дороговизны их лицензионных копий. Однако офисные приложения MS Office есть в каждой школе. Применение математической оболочки офисного табличного процессора MS Excel позволяет решать математические задачи высокой сложности.



Загрузка...