sonyps4.ru

Как кодируют сигнал. Кодирование сигналов

В этом разделе мы кратко опишем методы кодирования сигнала, согласно которым фильтруют выход источника в определённом числе частотных полос или подполос и раздельно кодируют сигнал в каждой подполосе. Кодирование сигнала может быть выполнено во временной области в каждой подполоске или в частотной области, в которой представлен временной сигнал каждой подполоски.

Кодирование подполосок. При кодировании подполосок (КПП) сигналов речи и изображения суммарный сигнал разделяется на небольшое число частотных подполосок, а в каждой из них сигнал кодируется раздельно. При кодировании речи, например, низкочастотные полосы сигнала содержат большую часть спектральной энергии. В дополнение к этому шум квантования более заметен на слух в низкочастотной области. Следовательно, для представления сигнала в низкочастотных полосах надо использовать больше бит, а в высокочастотных – меньше.

Расчёт фильтров особенно важен для достижения хорошей рабочей характеристики КПП. На практике обычно используются квадратурно-зеркальные фильтры (КЗФ), так как они имеют наилучшую характеристику, определённую их совершенными конструктивными свойствами (см. Вайданатен, 1993). Используя КЗФ для КПП, низкочастотную полосу сигнала неоднократно делят пополам, что создаёт октавно-полосных фильтров. Выход каждого КЗФ подвергается децимации с коэффициентом 2 для уменьшения частоты стробирования. Например, предположим, что полоса частот сигнала речи простирается до 3200 Гц. Первая пара КЗФ перекрывает спектр в нижней полосе (0...1600 Гц) и верхней полосе (1600...3200 Гц). Затем нижняя полоса снова расщепляется на нижнюю (0...800 Гц) и верхнюю (800...1600 Гц) полосы путём использования другой пары КЗФ. Третье деление другой парой КЗФ может расщепить полосу 0...800 Гц на низкую (0...400 Гц) и высокую (400...800Гц). Таким образом, тремя парами КЗФ мы получаем сигналы в частотных полосах 0...400, 400...800, 800...1600 и 1600...3200 Гц. Временной сигнал в каждой полосе может теперь кодироваться с различной точностью. На практике для кодирования сигнала в каждой подполоске используется адаптивная ИКМ.

Адаптивное преобразующее кодирование. При адаптивном преобразующем кодировании (АПК) сигнал источника стробируется и делится на группы из отсчётов. Данные каждой группы преобразуются в спектральную область для кодирования и передачи. В декодере источника каждая группа спектральных отсчётов преобразуется обратно во временную область и пропускается через цифро-аналоговый преобразователь. Для достижения эффективного кодирования предусматривают больше бит для более важных спектральных коэффициентов и меньше бит для менее важных спектральных коэффициентов. Дополнительно при проектировании адаптивного распределения общего числа битов для спектральных коэффициентов мы можем адаптироваться к возможной меняющейся статистике сигнала источника. Целью выбора преобразования из временной области в частотную область является получение некоррелированных спектральных отсчётов. В этом смысле преобразование Карунена-Лоэва (ПКЛ) является оптимальным, поскольку оно даёт некоррелированные спектральные значения. Но ПКЛ в общем случае трудно выполнить (см. Винц, 1973). Дискретное преобразование Фурье (ДПФ) и дискретное косинус-преобразование ДКП являются приемлемыми альтернативами, хотя они субоптимальны. Из них ДКП даёт хорошую рабочую характеристику, сравнимую с ПКЛ, и оно обычно используется на практике (см. Кампанелла и Робинсон, 1971; Зелинский и Ноль, 1977).

При кодировании речи "с использованием АПК возможно получить качественную передачу при скорости передачи около 9000 бит/с.

Кодирование на двух нижних каналах характеризует метод представления информации сигналами, которые распространяются по среде транспортировки. Кодирование можно рассматривать как двухступенчатое. И ясно, что на принимающей стороне реализуется симметричное декодирование.

Логическое кодирование данных изменяет поток бит созданного кадра МАС-уровня в последовательность символов, которые подлежат физическому кодированию для транспортировки по каналу связи. Для логического кодирования используют разные схемы:

  • 4B/5B — каждые 4 бита входного потока кодируются 5-битным символом (табл 1.1). Получается двукратная избыточность, так как 2 4 = 16 входных комбинаций показываются символами из 2 5 = 32. Расходы по количеству битовых интервалов составляют: (5-4)/4 = 1/4 (25%). Такая избыточность разрешает определить ряд служебных символов, которые служат для синхронизации. Применяется в 100BaseFX/TX, FDDI
  • 8B/10B — аналогичная схема (8 бит кодируются 10-битным символом) но уже избыточность равна 4 раза (256 входных в 1024 выходных).
  • 5B/6B — 5 бит входного потока кодируются 6-битными символами. Применяется в 100VG-AnyLAN
  • 8B/6T — 8 бит входного потока кодируются шестью троичными (T = ternary) цифрами (-,0,+). К примеру: 00h: +-00+-; 01h: 0+-+=0; Код имеет избыточность 3 6 /2 8 = 729/256 = 2,85. Скорость транспортировки символов в линию является ниже битовой скорости и их поступления на кодирования. Применяется в 100BaseT4.
  • Вставка бит — такая схема работает на исключение недопустимых последовательностей бит. Ее работу объясним на реализации в протоколе HDLC. Тут входной поток смотрится как непрерывная последовательность бит, для которой цепочка из более чем пяти смежных 1 анализируется как служебный сигнал (пример: 01111110 является флагом-разделителем кадра). Если в транслируемом потоке встречается непрерывная последовательность из 1 , то после каждой пятой в выходной поток передатчик вставляет 0 . Приемник анализирует входящую цепочку, и если после цепочки 011111 он видит 0 , то он его отбрасывает и последовательность 011111 присоединяет к остальному выходному потоку данных. Если принят бит 1 , то последовательность 011111 смотрится как служебный символ. Такая техника решает две задачи — исключать длинные монотонные последовательности, которые неудобные для самосинхронизации физического кодирования и разрешает опознание границ кадра и особых состояний в непрерывном битовом потоке.

Таблица 1 — Кодирование 4В/5В

Входной символ Выходной символ
0000 (0) 11110
0001 (1) 01001
0010 (2) 10100
0011 (3) 10101
0100 (4) 01010
0101 (5) 01011
0110 (6) 01110
0111 (7) 01111
1000 (8) 10010
1001 (9) 10011
1010 (A) 10110
1011 (B) 10111
1100 (C) 11010
1101 (D) 11011
1110 (E) 11100
1111 (F) 11101

Избыточность логического кодирования разрешает облегчить задачи физического кодирования — исключить неудобные битовые последовательности, улучшить спектральные характеристики физического сигнала и др. Физическое/сигнальное кодирование пишет правила представления дискретных символов, результат логического кодирования в результат физические сигналы линии. Физические сигналы могут иметь непрерывную (аналоговую) форму — бесконечное число значений, из которого выбирают допустимое распознаваемое множество. На уровне физических сигналов вместо битовой скорости (бит/с) используют понятие скорость изменения сигнала в линии которая измеряется в бодах (baud). Под таким определением определяют число изменений различных состояний линии за единицу времени. На физическом уровне проходит синхронизация приемника и передатчика. Внешнюю синхронизацию не используют из-за дороговизны реализации еще одного канала. Много схем физического кодирования являются самосинхронизирующимися — они разрешают выделить синхросигнал из принимаемой последовательности состояний канала.

Скремблирование на физическом уровне разрешает подавить очень сильные спектральные характеристики сигнала, размазывая их по некоторой полосе спектра. Очень сильные помеха искажают соседние каналы передачи. При разговоре о физическом кодирировании, возможное использование следующие термины:

  • Транзитное кодирование — информативным есть переход из одного состояния в другое
  • Потенциальное кодирование — информативным есть уровень сигнала в конкретные моменты времени
  • Полярное — сигнал одной полярности реализуется для представления одного значения, сигнал другой полярности для — другого. При оптоволоконное транспортировке вместо полярности используют амплитуды импульса
  • Униполярное — сигнал одной полярности реализуется для представления одного значения, нулевой сигнал — для другого
  • Биполярное — используется отрицательное, положительное и нулевое значения для представления трех состояний
  • Двухфазное — в каждом битовом интервале присутствует переход из одного состояния в другое, что используется для выделения синхросигнала.

Популярные схемы кодирования, которые применяются в локальных сетях

AMI/ABP

AMI — Alternate Mark Inversion или же ABP — Alternate bipolare, биполярная схема, которая использует значения +V, 0V и -V. Все нулевые биты имеют значения 0V, единичные — чередующимися значениями +V, -V (рис.1). Применяется в DSx (DS1 — DS4), ISDN. Такая схема не есть полностью самосинхронизирующейся — длинная цепочка нулей приведет к потере синхронизации.

Рисунок — 1

MAMI — Modified Alternate Mark Inversion, или же ASI — модифицированная схема AMI, импульсами чередующейся полярности кодируется 0, а 1 — нулевым потенциалом. Применяется в ISDN (S/T — интерфейсы).

B8ZS — Bipolar with 8 Zero Substitution, схема аналогичная AMI, но для синхронизации исключает цепочки 8 и более нулей (за счет вставки бит).

HDB3 — High Density Bipolar 3, схема аналогичная AMI, но не допускает передачи цепочки более трех нулей. Вместо последовательности из четырех нулей вставляется один из четырех биполярных кодов. (Рис.2)

Рисунок — 2

Манчестерское кодирование

Manchester encoding — двухфазное полярное/униполярное самосинхронизирующееся кодирование. Текущий бит узнается по направлению смены состояния в середине битового интервала: от -V к +V: 1. От +V к -V: 0. Переход в начале интервала может и не быть. Применяется в Ethernet. (В начальных версиях — униполярное). (рис.3)

Рисунок — 3

Differential manchester encoding — двухфазное полярное/униполярное самосинхронизирующиеся код. Текущий бит узнается по наличию перехода в начале битового интервала (рис. 4.1), например 0 — есть переход (Вертикальный фрагмент), 1 — нет перехода (горизонтальный фрагмент). Можно и наоборот определять 0 и 1.В середине битового интервала переход есть всегда. Он нужен для синхронизации. В Token Ring применяется измененная версия такой схемы, где кроме бит 0 и 1 определенны также два бита j и k (Рис. 4.2). Здесь нет переходов в середине интервала. Бит К имеет переход в начале интервала, а j — нет.

Рисунок — 4.1 и 4.2

Трехуровневое кодирование со скремблированием который не самосинхронизуется. Используются уровни (+V, 0, -V) постоянные в линии каждого битового интервала. При передаче 0 значения не меняются, при передаче 1 — меняются на соседние по цепочке +V, 0, -V, 0, +V и тд. (рис. 5). Такая схема является усложнонным вариантом NRZI. Применяется в FDDI и 100BaseTX.

Рисунок — 5

NRZ и NRZI

NRZ — Non-return to zero (без возврата к нулю), биполярная нетранзиктивная схема (состояния меняются на границе), которая имеет 2 варианта. Первый вариант это недифференциальное NRZ (используется в RS-232) состояние напрямую отражает значение бита (рис. 6.а). В другом варианте — дифференциальном, NRZ состояние меняется в начале битового интервала для 1 и не меняется для 0. (рис.6.Б). Привязки 1 и 0 к определенному состоянию нету.

NRZI — Non-return to zero Inverted, измененная схема NRZ (рис. 6.в). Тут состояния изменяются на противоположные в начале битового интервала 0, и не меняются при передаче 1. Возможна и обратная схема представления. Используются в FDDI, 100BaseFX.

Рисунок — 6-а,б,в

RZ — Return to zero (с возвратом к нулю), биполярная транзитивная самосинхронизирующаяся схема. Состояние в определенный момент битового интервала всегда возвращается к нулю. Имеет дифференциальный/недифференциальный варианты. В дифференциальном привязки 1 и 0 к состоянию нету. (рис. 7.а).

Рисунок — 7-а,б

FM 0 — Frequency Modulation 0 (частотная модуляция), самосинхронизирующийся полярный код. Меняется на противоположное на границе каждого битового интервала. При передаче 1 в течение битового интервала состояние неизменное. При передаче 0, в середине битового интервала состояние меняется на противоположное. (рис. 8). Используется в LocalTalk.

Рисунок — 8

PAM 5 — Pulse Amplitude Modulation, пятиуровневое биполярное кодирование, где пара бит в зависимости от предыстории оказывается одним из 5 уровней потенциала. Нужен неширокая полоса частот (вдвое ниже битовой скорости). Используется в 1000BaseT.

Здесь пара бит оказывается одним четверичным символом (Quater-nary symbol), где каждому соответствует один из 4 уровней сигнала. В табллице показано представление символов в сети ISDN.

4B3T — блок из 4 бит (16 состояний) кодируется тремя троичными символами (27 символов). Из множества возможных методов изменений рассмотрим MMS43, который используется в интерфейсе BRI сетей ISDN (таблица). Тут применяются специальные методы для исключения постоянной составляющей напряжения в линии, в следствии чего кодирования ряда комбинаций зависит от предыстории — состояния, где находится кодер. Пример: последовательность бит 1100 1101 будет представлена как: + + + — 0 -.

Двоичный код S1 Переход S2 Переход S3 Переход S4 Переход
0001 0 — + S1 0 — + S2 0 — + S3 0 — + S4
0111 — 0 + S1 — 0 + S2 — 0 + S3 — 0 + S4
0100 — + 0 S1 — + 0 S2 — + 0 S3 — + 0 S4
0010 + — 0 S1 + — 0 S2 + — 0 S3 + — 0 S4
1011 + 0 — S1 + 0 — S2 + 0 — S3 + 0 — S4
1110 0 + — S1 0 + — S2 0 + — S3 0 + — S4
1001 + — + S2 + — + S3 + — + S4 — — — S1
0011 0 0 + S2 0 0 + S3 0 0 + S4 — — 0 S2
1101 0 + 0 S2 0 + 0 S3 0 + 0 S4 — 0 — S2
1000 + 0 0 S2 + 0 0 S3 + 0 0 S4 0 — — S2
0110 — + + S2 — + + S3 — — + S2 — — + S3
1010 + + — S2 + + — S3 + — — S2 + — — S3
1111 + + 0 S3 0 0 — S1 0 0 — S1 0 0 — S3
0000 + 0 + S3 0 — 0 S1 0 — 0 S2 0 — 0 S3
0101 0 + + S3 — 0 0 S1 — 0 0 S2 — 0 0 S3
1100 + + + S4 — + — S1 — + — S2 — + — S3

Итог

Схемы, которые не являются самосинхронизирующими, вместе с логическим кодированием и определением фиксированной длительности битовых интервалов разрешают достигать синхронизации. Старт-бит и стоп-бит служат для синхронизации, а контрольный бит вводит избыточность для повышения достоверности приема.

Кодирование запросных и ответных сигналов является важной особенностью систем опознавания, которая определяет принципы их построения и функционирования. Необходимость кодирования сигналов в системах САЗО обусловлена следующими причинами:

1) Коды запросных сигналов содержат требования к характеру выдаваемой информации ответчиков, а ответных сигналов – информацию о параметрах воздушного объекта;

2) Кодирование запросных сигналов повышает надежность работы линий опознавания, так как снижает вероятность ошибочного запуска ответчиков помехами;

3) Кодирование запросных и ответных сигналов повышает имитоустойчивость системы опознавания.

С целью приспособления формы информации к линии САЗО как каналу связи, информацию представляют в виде сообщений, построенных по определенному правилу (коду). Сообщение состоит из одного или нескольких слов. Каждое слово представляет собой конечную последовательность кодовых знаков (символов). Под кодовым знаком понимают условное обозначение элементарного сигнала, обладающего определенными параметрами. Количество различных символов, которые используются в словах данного кода, называют основанием кода.

Элементарные сигналы формируются путем изменения таких их параметров, как несущая частота, параметры амплитудной, частотной или фазовой модуляции, количество и временное положение сигналов и др.

Выбор того или иного кода зависит от количества различных сообщений N , которое нужно передавать по линии связи. При основании кода n и размерности слов l максимальное число различных сообщений N определяется выражением .

Чем больше основание n кода, тем больше можно передавать различных сообщений размерностью l . Но при большом основании кода ухудшается различимость его элементарных сигналов, усложняется построение кодирующих и декодирующих устройств. Поэтому во многих областях техники наибольшее распространение получили коды с основание два, которые называют двоичными кодами. В САЗО наряду с двоичным кодом и его разновидностями (импульсно-временным кодом (ИВК) и частотно-временным кодом (ЧВК)) применяется код амплитудно-модулированных импульсов (АМИ).

В двоичном коде каждый символ слова представляет собой один разряд двоичного числа, который принимает значение ноль или единица. В качестве элементарных сигналов в радиолиниях САЗО применяют радиоимпульсы определенной несущей частоты. Наличие элементарного сигнала на данной позиции – передача единицы в данном разряде, а отсутствие сигнала – передача нуля (рис.1.16, а). При использовании кода с активной паузой для передачи одного разряда применяются две позиции: одна для передачи единицы, вторая – для передачи нуля (рис.1.16, б). Код с активной паузой обладает избыточностью, но лучшей достоверностью передачи информации.

). Физическое кодирование может менять форму, ширину полосы частот и гармонический состав сигнала в целях осуществления синхронизации приёмника и передатчика, устранения постоянной составляющей или уменьшения аппаратных затрат.

Энциклопедичный YouTube

  • 1 / 5

    Система кодирования сигналов имеет многоуровневую иерархию.

    Физическое кодирование

    Самым нижним уровнем в иерархии кодирования является физическое кодирование, которое определяет число дискретных уровней сигнала (амплитуды напряжения, амплитуды тока, амплитуды яркости).

    Физическое кодирование рассматривает кодирование только на самом низшем уровне иерархии кодирования - на физическом уровне и не рассматривает более высокие уровни в иерархии кодирования, к которым относятся логические кодирования различных уровней.

    С точки зрения физического кодирования цифровой сигнал может иметь два, три, четыре, пять и т. д. уровней амплитуды напряжения, амплитуды тока, амплитуды света.

    Ни в одной из версий технологии Ethernet не применяется прямое двоичное кодирование бита 0 напряжением 0 вольт и бита 1 - напряжением +5 вольт, так как такой способ приводит к неоднозначности. Если одна станция посылает битовую строку 00010000, то другая станция может интерпретировать её либо как 10000, либо как 01000, так как она не может отличить «отсутствие сигнала» от бита 0. Поэтому принимающей машине необходим способ однозначного определения начала, конца и середины каждого бита без помощи внешнего таймера. Кодирование сигнала на физическом уровне позволяет приемнику синхронизироваться с передатчиком по смене напряжения в середине периода битов.

    Логическое кодирование

    Вторым уровнем в иерархии кодирования является самый нижний уровень логического кодирования с разными назначениями.

    В совокупности физическое кодирование и логическое кодирование образуют систему кодирования самого низшего уровня.

    Форматы кодов

    Каждый бит кодового слова передается или записывается с помощью дискретных сигналов, например, импульсов. Способ представления исходного кода определенными сигналами определяется форматом кода. Известно большое количество форматов, каждый из которых имеет свои достоинства и недостатки и предназначен для использования в определенной аппаратуре.

    • Формат БВН (без возвращения к нулю) естественным образом соответствует режиму работы логических схем. Единичный бит передается в пределах такта уровень не меняется. Положительный перепад означает переход из 0 к 1 в исходном коде, отрицательный - от 1 к 0. Отсутствие перепадов показывает, что значения предыдущего и последующего битов равны. Для декодирования кодов в формате БВН необходимы тактовые импульсы, так как в его спектре не содержится тактовая частота. Соответствующий коду формата БВН сигнал содержит низкочастотные компоненты (при передаче длинных серий нулей или единиц перепады не возникают).
    • Формат БВН-1 (без возвращения к нулю с перепадом при передаче 1) является разновидностью формата БВН. В отличие от последнего в БВН-1 уровень не передает данные, так как и положительные и отрицательные перепады соответствуют единичным битам. Перепады сигнала формируются при передаче 1. При передаче 0 уровень не меняется. Для декодирования требуются тактовые импульсы.
    • Формат БВН −0 (без возвращения к нулю с перепадом при передаче 0) является дополнительным к БВН-1 (перепады соответствуют нулевым битам исходного кода). В многодорожечных системах записи цифровых сигналов вместе с кодом в формате БВН надо записывать тактовые импульсы. Возможным вариантом является запись двух дополнительных сигналов, соответствующих кодам в форматах БВН-1 и БВН-0. В одном из двух сигналов перепады происходят в каждом такте, что позволяет получить импульсы тактовой частоты.
    • Формат ВН (с возвращением к нулю) требует передачи импульса, занимающего только часть тактового интервала (например, половину), при одиночном бите. При нулевом бите импульс не формируется.
    • Формат ВН-П (с активной паузой) означает передачу импульса положительной полярности при единичном бите и отрицательной - при нулевом бите. Сигнал этого формата имеет в спектре компоненты тактовой частоты. Он применяется в ряде случаев для передачи данных по линиям связи.
    • Формат ДФ-0 (двухфазный со скачком фазы при передаче 0) соответствует способу представления, при котором перепады формируются в начале каждого такта. При единичных битах сигнал в этом формате меняется с тактовой частотой, то есть в середине каждого такта происходит перепад уровня. При передаче нулевого бита перепад в середине такта не формируется, то есть имеет место скачок фазы. Код в данном формате обладает возможностью самосинхронизации и не требует передачи тактовых сигналов.

    Направление перепада при передаче сигнала единицы не имеет значения. Поэтому изменение полярности кодированного сигнала не влияет на результат декодирования. Он может передаваться по симметричным линиям без постоянной составляющей. Это также упрощает его магнитную запись. Этот формат известен также под названием «Манчестер 1». Он используется в адресно-временном коде SMPTE, широко применяющемся для синхронизации носителей звуковой и видеоинформации.

    Системы с двухуровневым кодированием

    Без возврата к нулю

    Потенциальное кодирование, также называется кодированием без возвращения к нулю (NRZ (англ.) русск. ).

    При передаче нуля он передает потенциал, который был установлен на предыдущем такте (то есть не меняет его), а при передаче единицы потенциал инвертируется на противоположный. Этот код называется потенциальным кодом с инверсией при единице (NRZI).

    NRZ

    Для передачи единиц и нулей используются два устойчиво различаемых потенциала:

    • биты 0 представляются нулевым напряжением 0 (В);
    • биты 1 представляются значением U (В).

    NRZ (перевёрнутый):

    • биты 0 представляются значением U (В);
    • биты 1 представляются нулевым напряжением 0 (В).

    Простейший код, обычный цифровой (дискретный) сигнал (может быть преобразован на обратную полярность или изменены уровни соответствующие нулю и единице).

    Достоинства - простая реализация; не нужно кодировать и декодировать на концах. Высокая скорость передачи при заданной полосе пропускания (для обеспечения пропускной способности в 10Мбит/сек полоса пропускания составит 5 МГц, так как одно колебание равно 2 битам). Для синхронизации передачи байта используется старт-стоповый бит.

    Недостатки - Наличие постоянной составляющей, из за чего невозможно обеспечить гальваническую развязку с помощью трансформатора. Высокие требования к синхронизации частот на приёмном и передающем конце - за время передачи одного слова (байта) приемник не должен сбиться больше, чем на бит (например для слова длиной в байт с битом старта и стопа, то есть всего 10 бит канальной информации, рассинхронизация частот приёмника и передатчика не может превышать 10 % в обе стороны, для слова в 16 бит, то есть 18 бит канальной информации, рассинхронизация не должна превышать 5,5 %, а в физических реализациях и того меньше).

    NRZI

    При передаче последовательности единиц, сигнал, в отличие от других методов кодирования, не возвращается к нулю в течение такта. То есть смена сигнала происходит при передаче единицы, а передача нуля не приводит к изменению напряжения.

    Достоинства метода NRZI:

    • Простота реализации.
    • Метод обладает хорошей распознаваемостью ошибок (благодаря наличию двух резко отличающихся потенциалов).
    • Основная гармоника f0 имеет достаточно низкую частоту (равную N/2 Гц, где N - битовая скорость передачи дискретных данных бит/с), что приводит к узкому спектру.

    Недостатки метода NRZI:

    • Метод не обладает свойством самосинхронизации. Даже при наличии высокоточного тактового генератора приёмник может ошибиться с выбором момента съёма данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита.
    • Вторым серьёзным недостатком метода, является наличие низкочастотной составляющей, которая приближается к постоянному сигналу при передаче длинных последовательностей единиц и нулей (можно обойти сжатием передаваемых данных). Из-за этого многие линии связи, не обеспечивающие прямого гальванического соединения между приёмником и источником, этот вид кодирования не поддерживают. Поэтому в сетях код NRZ в основном используется в виде различных его модификаций, в которых устранены как плохая самосинхронизация кода, так и проблемы постоянной составляющей.

    MLT-3 Multi Level Transmission - 3 (многоуровневая передача) - немного схож с кодом NRZI, но в отличие от последнего имеет три уровня сигнала. Единице соответствует переход с одного уровня сигнала на другой, причем изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. При передаче «нуля» сигнал не меняется.

    Этот код, так же как и NRZI нуждается в предварительном кодировании. Используется в Fast Ethernet 100Base-TX .

    Гибридный троичный код (англ.) русск.

    Входной бит Предыдущее состояние
    на выходе
    Выходной бит
    0 +
    0
    0
    1 +
    0 +

    4B3T [убрать шаблон]

    Таблица кодирования:

    MMS 43 coding table
    Input Accumulated DC offset
    1 2 3 4
    0000 + 0 + (+2) 0−0 (−1)
    0001 0 − + (+0)
    0010 + − 0 (+0)
    0011 0 0 + (+1) − − 0 (−2)
    0100 − + 0 (+0)
    0101 0 + + (+2) − 0 0 (−1)
    0110 − + + (+1) − − + (−1)
    0111 − 0 + (+0)
    1000 + 0 0 (+1) 0 − − (−2)
    1001 + − + (+1) − − − (−3)
    1010 + + − (+1) + − − (−1)
    1011 + 0 − (+0)
    1100 + + + (+3) − + − (−1)
    1101 0 + 0 (+1) − 0 − (−2)
    1110 0 + − (+0)
    1111 + + 0 (+2) 0 0 − (−1)

    Таблица декодирования.

    Кодирование сигналов

    Кодирование сигналов служит для обмена информацией между отдельными составляющими СУ ТОУ (САУ или АСУ) (схемами, узлами, устройствами, блоками), ее обработки и хранение с требуемой точностью и надежностью (самая высокая помехозащищенность). Кодирование состоит в использовании кода универсального способа отображения информации при ее передаче, обработке и хранении. Код представляет собой систему соответствий между элементами сообщений и сигналами, при помощи которых эти элементы можно зафиксировать. В коде различные виды сигналов одной физической природы называются символами . Конечная совокупность символов, выбранная для передачи конкретного сообщения , называется словом . Кодовый сигнал (код) - особый вид сигналов (цифровой сигнал). Кодирование может производиться либо от аналоговых, либо от дискретных сигналов (рис.1.2).

    пример : 0 или 1 – символы в одном разряде двоичного кода (1 бит информации);

    байт содержит 8 бит информации (8 разрядов), т.е. например, 10001001 байтовое слово.

    В АСУ так же как в любых информационно-измерительных системах (ИИС) применяются два способа передачи сообщений (совокупности слов): параллельным кодом – все символы одного слова передаются одновременно по каналам, число которых соответствует количеству символов, т.е. длине слова (для передачи байтового слова нужно 8 каналов); последовательным кодом - символы одного слова передаются друг за другом по одному каналу.

    Выбор кодов определяется спецификой восприятия и преобразования информации, характерной для данного уровня АСУ ТП и ее составляющих.

    Основными требованиями , которые выдвигаются при выборе способа кодирования, являются: экономичность отображения информации, простота технической реализации устройств кодирования, удобство выполнения вычислительных операций и надежность передачи сообщений.

    Для выполнения этих требований, особенно связанных с удобством выполнения вычислительных операций , наиболее пригоден цифровой код (алфавит), число символов в котором зависит от основания системы счисления и обычно не превышает 10 или 16. Такой подход позволяет осуществлять кодирование не только чисел, но и понятий.

    При помощи кода с основанием n любое число можно представить в виде:

    где N – количество разрядов; a j – количество символов в одном разряде.

    Если опустить n j , то получим более компактную запись N – разрядного (от N –1 до 0) числа М:

    . (1.2)

    Пример: М = 123 = 1×10 3-1 + 2 × 10 2-1 + 3 ×10° (n=10).

    Из формул (1.1) и (1.2) следует, что одно и то же число М в зависимости от основания n при кодировании формируется из разного количества символов в одном разряде (a j )и количества разрядов (N ). Например, цифровой 3-разрядный десятичный вольтметр, представляющий информацию в коде с основанием 10, имеет в каждом разряде 10 различных цифр (символов), может с точностью до 1 младшего разряда выдать 1000 (0, 1, …, 999) различных значений измеряемого параметра (напряжения). для осуществления той же операции в двоичном коде (коде с основанием 2) потребуется 10 разрядов с двумя значащими цифрами в каждом из них (2 10 = 1024).

    Пусть n – максимальное число символов в разряде (основание кода), а N – число разрядов.

    Тогда возможное количество различных сообщений составляет

    Например, 1024 = 2 10 ; в двоичном коде с помощью 10 разрядов можно записать максимальное число 1024, т.е. для передачи числа 1024 понадобится 10 каналов (разрядов) двоичного кода.

    Экономичность кодирования будет тем выше, чем меньше знаков следует затратить на передачу одного и того же сообщения. При передаче сообщений по каналу связи количество знаков определяет также и необходимое для этого время.

    По соображениям простоты технической реализации явное преимущество на стороне кода с n = 2, при котором для хранения, передачи и обработки информации необходимы дискретные элементы с двумя устойчивыми состояниями.

    Пример: логические функции: «да» - «нет», состояние блока ТОУ: «включено» - «отключено», действие (операция): «выполнено» – «не выполнено», техническое состояние узла ТОУ: «исправен» - «неисправен», кодируется цифрами «1» - «0».

    Поэтому двоичный код получил широкое распространение в цифровых устройствах измерения контроля, управления и автоматизации.

    При вводе двоично-кодированной информации в ЭВМ для компактной записи часто используют коды, основание которых являются целой степенью чисел 2:2 3 = 8 (восьмеричный) и 2 4 = 16 (шестнадцатеричный).

    Для примера рассмотрим формирование чисел в различных системах счисления (табл.1.1).

    Таблица 1.1

    Система счисления
    Десятичная n = 10 Двоичная n = 2 Восьмеричная n = 8 Шестнадцатеричная n = 16
    А
    В…F

    Рассмотрим двоичные позиционные коды. Среди них широко используются специальные коды: прямой, обратный, дополнительный . Во всех этих кодах введен специальный знаковый разряд.

    В прямом коде знак кодируется 0 для положительных и 1 – для отрицательных чисел. Пример 1100 (+12) в прямом коде 0.1100. Прямой код удобен для выполнения операций умножения, т.к. знак произведения получается автоматически. Однако затруднено вычитание. Этот недостаток устраняется применением обратного и дополнительного кодов , отличающихся от прямого способом представления отрицательных чисел. Обратный код отрицательного числа образуется инвертированием всех значащих разрядов (-1100 (– 12) в обратном коде: 1.0011). В дополнительном коде после инвертирования разрядов в младший размер добавляется 1. Пример: - 1100 в дополнительном коде: 1.0100.

    В системах и устройствах отображение информации (цифровой индикации) нашли применение двоично-десятичные коды . В этих кодах каждая десятичная цифра представляется четырьмя двоичными (тетрадой).

    Системы кодирования в 2-10 кодах показаны в табл.1.2.

    Таблица 1.2

    Выбор частоты квантования для аналого-цифрового преобразователя (АЦП) . При квантовании и последующем кодировании сигналов, например в случае квантования по времени в виде импульсов, модулированных по амплитуде (рис.1.3, б), дальнейшее преобразование сигналов в АЦП заключается в представлении амплитуды импульсов двоичным кодом. При этом установление частоты квантования усложняется в тех случаях, когда исходный аналоговый сигнал y (f ) является произвольной функцией времени и не поддается аналитическому выражению. Тогда частота квантования определяется на основании теоремы В.А.Котельникова . В этой теореме рассматривается непрерывная функция, имеющая ограниченный спектр частот, т.е. содержит частоты от 0 до f m а x . Такую функцию можно представить с достаточной точностью при помощи чисел, следующих друг за другом через интервалы времени

    Следовательно, исходя из формулы (1.4), определяющей шаг квантования, при частоте квантования



Загрузка...