sonyps4.ru

Автомобильный генератор с самовозбуждением. Самовозбуждение генераторов

В генераторах с самовозбуждением питание обмотки главных полюсов осуществляется напряжением самого генератора. При этом отпадает необходимость в отдельном источнике энергии.

В зависимости от схемы включения обмотки возбуждения различают генераторы параллельного, последовательного и смешанного возбуждения.

Генератор параллельного возбуждения. Схема генератора параллельного возбуждения, или шунтового генератора, изображена на рис. 7.21.

Ток якоря генератора разветвляется на ток нагрузки и ток возбуждения:

причем ток возбуждения составляет 1-3% от номинального тока нагрузки.

Характеристика холостого хода генератора параллельного возбуждения аналогична характеристике генератора независимого возбуждения. Поскольку ток возбуждения невелик, генератор можно считать ненагруженным. При необходимости получить более точную характеристику обмотку возбуждения генератора параллельного возбуждения питают от отдельного источника.

Внешняя характеристика генератора параллельного возбуждения (рис. 7.22) показывает, что напряжение на его зажимах с увеличением тока нагрузки падает быстрее (кривая 1), чем при независимом возбуждении (кривая 2).

Падение напряжения на зажимах генератора объясняется тремя причинами:

  • а) уменьшением среднего значения магнитной индукции в машине вследствие реакции якоря;
  • б) увеличением падения напряжения внутри генератора;
  • в) уменьшением (вследствие двух первых причин) напряжения, подводимого к цепи возбуждения.

Ток нагрузки генератора может быть определен по закону Ома:

где U - напряжение на зажимах генератора, равное напряжению на обмотке возбуждения; R lt - сопротивление нагрузки.

При снятии внешней характеристики увеличение тока I осуществляется за счет уменьшения сопротивления R H . Как указывалось, с увеличением тока I уменьшается напряжение U на зажимах генератора. Следовательно, при уменьшении R H одновременно уменьшается и U. При некотором значении тока нагрузки скорость уменьшения U сравнивается со скоростью уменьшения Д„ и, как очевидно из формулы закона Ома, увеличение тока прекращается. Эго максимально возможное значение тока называют критическим током 1 К . При дальнейшем уменьшении сопротивления R H напряжение U падает относительно быстрее и ток нагрузки гоже начинает уменьшаться. Поэтому для генераторов параллельного возбуждения не опасны короткие замыкания. Ток короткого замыкания / ю такого генератора обычно меньше номинального тока и создается только за счет остаточного намагничивания, поскольку напряжение на зажимах генератора, а следовательно, и напряжение, подводимое к цепи возбуждения, при коротком замыкании равно нулю.

Регулировочная характеристика генератора параллельного возбуждения в пределах рабочих токов нагрузки имеет такой же вид, как и у генератора независимого возбуждения. Для поддержания неизменного напряжения на зажимах генератора с возрастанием тока нагрузки необходимо увеличивать ток возбуждения, что достигается уменьшением сопротивления R B цепи возбуждения машины.

Генераторы постоянного тока параллельного возбуждения находят широкое применение, особенно в качестве бортовых источников питания на подвижных объектах: кораблях, самолетах, автомобилях и т.д.

Карточка № 7.9 (177) Генераторы параллельного возбуждения

У какого генератора об- мотка возбуждения включена параллельно обмотке якоря?

Независимого возбуждения

Параллельного возбуждения

Последовательного возбуждения

Смешанного возбуждения

Как изменяются при па- раллельном возбуждении с увеличением нагрузки:

  • а) Увеличивается;
  • б) уменьшается
  • а) Уменьшается;
  • б) уменьшается
  • а) Уменьшается;
  • б) не изменяется
  • а) Не изменяется;
  • б) не изменяется

Покажите внешнюю характеристику генератора параллельного возбуждения.

Кривая 1

Кривая 2

Какой ток опасен для генератора параллельного возбуждения?

Ток короткого замыкания

Критический ток

Как зависит от скоро- сти вращения якоря ток короткого замыкания генератора параллельного возбуждения?

Не зависит

С увеличением скорости вращения якоря ток короткого замыкания генератора увеличивается

Генератор последовательного возбуждения. Генератор последовательного возбуждения, или сериесный генератор, назван так потому, что обмотка возбуждения и обмотка якоря соединены последовательно (схема на рис. 7.23, а). Для этого генератора / = / я = / в.

Характеристика холостого хода, характеризующая магнитные свойства системы возбуждения, может быть снята только при независимом возбуждении.

Внешняя характеристика изображена на рис. 7.23, 6. Пока магнитная система не насыщена, с увеличением тока нагрузки возрастает магнитный поток и ЭДС генератора. Однако по мере насыщения магнито про вода рост ЭДС замедляется, а размагничивающее действие реакции якоря проявляется все сильнее. Поэтому напряжение, достигнув максимального значения, начинает снижаться.


Генераторы последовательного возбуждения используются сравнительно редко.

Генераторы смешанного возбуждения. Более широкое применение находят генераторы постоянного тока, у которых магнитный поток возбуждения создается двумя обмотками: шунтовой и сериесной. Это генераторы смешанного возбуждения, или компаундные генераторы (рис. 7.24), которые могут иметь согласно или встречно включенные обмотки возбуждения.

У генераторов с согласным включением обмоток напряжение почти не изменяется при изменении нагрузки. Это объясняется тем, что магнитный поток сериесной обмотки создается током нагрузки и при увеличении нагрузки возрастает, компенсируя влияние реакции якоря и увеличение падения напряжения внутри машины. Генераторы с согласным включением обмоток применяются в тех случаях, когда требуется высокая стабильность напряжения питания при изменении нагрузки в широких пределах.

Генераторы со встречным включением обмоток имеют крутопадающую внешнюю характеристику. При увеличении тока нагрузки встречный поток сериесной обмотки размагничивает машину, и напряжение генератора резко снижается. Такие машины используются в качестве сварочных генераторов, где требуется относительное постоянство сварочного тока при изменении напряжения в широких пределах вплоть до значений, близких к нулю (когда электрод касается свариваемых деталей).

Внешние характеристики генератора смешанного возбуждения изображены на рис. 7.25, при согласном (кривая 1) и встречном (кривая 2) включении обмоток возбуждения.

Карточка № 7.10(208)

Генераторы последовательного и смешанного возбуждения

Как изменяются с увеличени- ем нагрузки при последовательном возбуждении:

  • а) магнитный поток главных полюсов;
  • б) результирующий магнитный поток генератора?
  • а) Увеличивается;
  • б) уменьшается
  • а) Не изменяется;
  • б) увеличивается
  • а) Увеличивается;
  • б) увеличивается до максимума, затем уменьшается

Чем определяется величина ЭДС при холостом ходе генератора последовательного возбуждения?

Остаточным намагничиванием полюсов

Скоростью вращения якоря

Остаточным намагничиванием полюсов и скоростью вращения якоря

Какова основная причина, ограничивающая рост напряжения на зажимах генератора последовательного возбуждения при увеличении нагрузки?

Реакция якоря

Падение напряжения на активном сопротивлении цепи якоря

Насыщение магнитопро- вода

По приведенной внешней характеристике генератора смешанного возбуждения (рис. 7.25 кривая 2) опреде- лите, как включены обмотки возбуждения.

Согласно

Встречно

Как надо включить обмотки возбуждения компаундного генератора, чтобы уменьшить влияние тока нагрузки на напряжение генератора?

Согласно

Встречно

Генератор с самовозбуждением

Генератор качающейся частоты – это генератор, который вырабатывает электрические колебания. Генератор в переводе с латинского языка означает «производитель», т. е. это устройство, которое производит определенный продукт. Колебания в нем не затухают при подаче части переменного напряжения с выхода на вход генератора. В радиотехнике его называют осциллятором – системой, возбуждающей колебания относительно какого-нибудь положения равновесия.

Генератор с самовозбуждением представляет собой устройство, благодаря которому энергия постоянного тока преобразуется в энергию электромагнитных колебаний, возникающих без внешнего воздействия.

Структура такого генератора содержит два основных звена. Это звено обратной связи с коэффициентом передачи и усилительное звено.

К самовозбуждению генератор подталкивает положительная обратная связь, которая позволяет генератору перейти в режим установившихся колебаний.

При включении напряжения питания в генераторе возникают малые колебания. На них влияет положительная обратная связь, действие которой увеличивается за счет усилительного каскада. Колебания передаются по цепи положительной обратной связи на выход усилителя. Сигнал постоянно возрастает при обходе усилителя и обратной связи, пока не устанавливается режим колебаний. Переход к такому режиму возможен за счет уменьшения наклона амплитуды сигнала. Усилитель должен быть нелинейным, потому что линейное звено способствовало бы возрастанию амплитуды самовозбужденных колебаний.

Генератор производит, как правило, одночастотное колебание, а нагрузкой является параллельный колебательный контур. Сопротивление контура активно, на резонансной частоте максимально.

В усилительном звене генератора применяются операционные усилители и транзисторы, биполярные и полевые. Частоту производящихся колебаний определяет баланс амплитуд на определенной частоте, в связи с соответствием усилителя с резонансной нагрузкой резонансной же частоте контура.

От выбранного рабочего режима для генератора с самовозбуждением зависит процесс генерации колебаний. Режим определяется коэффициентом обратной связи и питающим напряжением. При выборе режима важно обращать внимание на положение рабочей точки на усилительном элементе, зависящей от напряжения смещения. Самовозбуждение легко возникает при расположении рабочей точки в области большой крутизны. Обратное положение рабочей точки приостанавливает, затрудняет самовозбуждение генератора. Существует два режима возбуждения: жесткий и мягкий. При жестком режиме рабочая точка смещается в левую сторону, напряжение смещения отсутствует. В результате этого небольшие колебания контура не могут вызвать самовозбуждение. Мягкий режим возникает тогда, когда рабочая точка лежит на прямолинейном участке усилительного элемента.

Процесс самовозбуждения проходит беспрепятственно, увеличивается амплитуда тока базы и в то же время возрастает амплитуда выходного напряжения.

Для эксплуатации генератора с самовозбуждением необходимо использовать оба перечисленных режима возбуждения, т. е. комбинированную схему смещения. В момент включения удобен мягкий режим, но в дальнейшем он приводит к большим потерям в схеме генератора, поэтому после установления мягкого надо перейти к жесткому режиму.

Одним из главнейших параметров генератора с самовозбуждением считается стабильность частоты. Ее количественной оценкой выступает обратная величина. Эта обратная величина представляет собой относительную нестабильность частоты. Под влиянием дестабилизирующих факторов параметры генератора меняются, в результате чего изменяются и фазовые углы. Любопытно, что после этой операции в генераторе устанавливается другой стационарный режим колебаний и сумма фазовых углов снова соответствует соотношению.

Повысить стабильность, так необходимую генератору с самовозбуждением, можно с помощью нескольких приемов. Путем параметрической стабилизации – при поддержке постоянства колебательной системы и нужных параметров генератора. Для осуществления такой стабилизации необходимо поддерживать постоянство питающих напряжений и защищать колебательную систему от влияния внешних воздействий. Повысить стабильность можно и другим путем. Для этого необходимо выбрать такие схему и режим работы генератора, при которых фазовые углы изменялись бы незначительно. Еще один вариант повышения стабильности заключается в компенсации изменений температуры элементов генератора, причем они должны быть противоположными другим изменениям по своему характеру. Этим элементом может быть колебательный контур, который увеличивается с повышением температуры. И, наконец, последний способ добиться стабилизации – с использованием кварцевых резонаторов, которые обладают высокой стабильностью как колебательные системы.

Существуют синхронные генераторы с самовозбуждением серии SJ, которые предназначаются для долгого режима работы как источник переменного тока. Они работают в составе передвижных и стационарных агрегатов. Такие генераторы могут работать автономно, параллельно с другими генераторами, а также с жесткой сетью.

Двигатели внутреннего сгорания, электродвигатели и различные турбины используются в качестве привода такого генератора.

Генератор с самовозбуждением применяется в радиопередающих устройствах, где он генерирует энергию постоянного и переменного тока в энергию радиочастотных колебаний.

Ток возбуждения у большинства генераторов является частью тока якоря. При пуске в ход генератора сначала ток в якоре, а следо­вательно, и в обмотке возбуждения отсутствует, но в массивной станине всегда сохраняется небольшой магнит­ный поток Ф r остаточного намагничи­вания, равный 1-3 % нормального ра­бочего потока машины. Когда первичный двигатель вращает якорь генератора, остаточный поток индуктирует в обмот­ке якоря небольшую ЭДС. В случае ге­нератора с параллельным возбуждением эта ЭДС E я, х создает некоторый ток i B в обмотке возбуждения, а следовательно, возникает некоторая МДС возбуждения. По отношению к магнитному потоку Ф г она может быть направлена согласно или встречно, т. е. подмагничивать или размагничивать магнитопровод машины. Для самовозбуж­дения необходимо согласное направление, что имеет место при пра­вильном соединении обмотки возбуждения с якорем. При таком со­единении напряженность поля от тока возбуждения усиливает магнит­ное поле машины, а последнее индуктирует большую ЭДС в обмотке якоря. Возрастание ЭДС вызывает дальнейшее увеличение тока воз­буждения. Ограничение самостоятельного увеличения потока и тока возбуждения связано с насыщением магнитной цепи машины.

После окончания переходного процесса ЭДС в обмотке якоря Е я и ток возбуждения I в будут иметь постоянные значения. Найдем эти значения, воспользовавшись характеристикой холостого хода машины (рис. 13.26). Если пренебречь сопротивлением цепи якоря r я по сравнению с сопротивлением цепи возбуждения r в, то устано­вившийся ток возбуждения r в определяется из условия Е я = r в I в. Этому условию на графике соответствует точка пересечения характе­ристики холостого хода Е я (I B) и прямой Е я = r в I в, т. е. точка А. Тангенс угла наклона прямойЕ я = r в I в к оси абсцисс зависит от r в. Если уменьшать I в, например вводя реостат в цепь возбуждения, то точка пересечения смещается влево (А"). При достаточно большом сопротивлении цепи возбуждения, называемом критическим, машина не возбуждается.

Если в машине отсутствует остаточная намагниченность (из-за короткого замыкания или механических ударов), то для ее восстанов­ления нужен посторонний источник постоянного тока хотя бы малой мощности. Этот источник нужно на короткий срок замкнуть на обмотку возбуждения размагнитившейся машины, а затем использовать создан­ное остаточное намагничивание для нормального возбуждения.

Явления самовозбуждения используются в генераторах с параллель­ным и смешанным возбуждением.

13.10. Генераторы с параллельным, последовательным и смешанным возбуждением

У генератора с параллельным возбуждением часть тока якоря слу­жит для возбуждения основного магнитного поля машины (рис. 13.27). Эти генераторы наиболее часто применяются для получения постоян­ного тока, так как они не требуют дополнительного источника электро­энергии для цепи возбуждения, что существенно упрощает обслужи­вание машины; вместе с тем напряжение таких генераторов мало изме­няется из-за колебаний нагрузки.

При пуске в ход генератора с параллельным возбуждением для создания магнитного потока в магнитопроводе используется выше описанное явление самовозбуждения.

Характеристика холостого хода генератора при параллельном возбуждении практически не отличается от характеристики при неза­висимом возбуждении, так как влияние на эту характеристику изме­нения напряжения r в 1 в и реакции якоря оттока возбуждения ничтожно. Это совпадение вида характеристик имеет место и для регулировочной характеристики.

Но внешняя характеристика при параллельном возбуждении гене­ратора (а) идет значительно ниже, чем при независимом возбуждении () (рис. 13.28). Причиной этому является уменьшение тока возбужде­ния при понижении напряжения, так как I в = U / r B . При независимом возбуждении понижение напряжения между выводами генератора при увеличении тока якоря вызывается двумя причинами: увеличением напряжения на активном сопротивлении якоря и реакцией якоря. При параллельном возбуждении к этим двум причинам добавляется третья - уменьшение тока возбуждения. Пока этот ток соответствует условиям насыщения магнитной цепи генератора (пологой части маг­нитной характеристики), уменьшение ЭДС якоря меньше уменьшения тока возбуждения (рис. 13.29). В таких условиях при уменьшении сопротивления цепи нагрузки ток якоря возрастает. Но условия резко изменяются, когда в результате увеличения тока якоря и вызванного этим понижения напряжения ток возбуждения уменьшается настолько, что магнитная цепь генератора оказывается в ненасыщенном состоянии. В условиях линейной части магнитной характеристики уменьшение тока возбуждения вызывает пропорциональное уменьшение потока и ЭДС якоря, что вызывает дальнейшее уменьшение тока возбуждения, а это в свою очередь обусловливает новое по­нижение ЭДС и т. д. Имеет место своеобразное саморазмагничивание генератора, заканчиваю­щееся тем, что в машине при коротком замыкании якоря сохраняется только остаточная намагниченность, под­держивающая ограниченный (меньше номинального) ток короткого замыкания.


Ток якоря, при котором машина переходит в режим саморазмагни­чивания, называется критическим I кр. Его значение больше номиналь­ного в 2-2,5 раза. Участок внешней характеристики ниже I кр (штри­ховая линия на рис. 3.28) соответствует неустойчивому режиму.

Номинальное изменение напряжения у генератора при параллель­ном возбуждении значительно больше, чем при независимом, и состав­ляет 8-15 %.

В генераторе с последовательным возбуждением якорь соединен последовательно с обмоткой возбуждения, благодаря чему ток нагрузки является вместе с тем током возбуждения (рис. 13.30). Обмотка воз­буждения w такой машины выполняется из провода, рассчитанного на большой ток якоря; число витков такой обмотки мало.

При холостом ходе генератора с последовательным возбуждением ЭДС в обмотке его якоря будет индуктироваться только потоком оста­точного намагничивания. Следовательно, у этого генератора нельзя снять характеристику холостого хода. Отсутствует также у него и регулировочная характеристика.

Напряжение этого генератора (рис. 13.31) сначала возрастает с увеличением тока якоря. Затем вид характеристики начинает изме­няться из-за магнитного насыщения (ЭДС якоря перестает увеличи­ваться, в то время как продолжает возрастать напряжение на активном сопротивлении якоря) и размагничивающего действия реакции якоря. В результате напряжение генератора при дальнейшем возрастании нагрузки уменьшается. Из-за непостоянства напряжения генераторы с последовательным возбуждением применяются лишь в немногих специальных случаях.

Генератор со смешанным возбуждением имеет две обмотки возбужден ния: параллельную w пар и последовательную w пос (рис. 13.32). У такого генератора напряжение остается практически постоянным при изме­нениях нагрузки в определенных пределах. Это достигается путем использования последовательного возбуждения для компенсации уве­личения падения напряжения на активном сопротивлении якоря и уменьшения тока в параллельной обмотке возбуждения, а также для компенсации размагничивающего действия якоря при увеличении тока нагрузки. Благодаря наличию обмотки последовательного воз­буждения

главный магнитный поток генератора и вместе с ним ЭДС Е я возрастают g увеличением нагрузки. Соответствующим подбором числа витков обмотки последовательного возбуждения можно достичь равенства напряжений генератора при холостом ходе и при номинальной на­грузке (кривая а на рис. 13.33).

Генератор со смешанным возбуждением удобен в установках относительно небольшой мощности для предупреждения возникнове­ния значительных изменений напряжения при отключениях отдельных потребителей. Но использование таких генераторов для параллельной работы обычно неудобно: случайное понижение частоты вращения первичного двигателя генератора может снизить ЭДС генератора до уровня, меньшего напряжения сети, из-за этого ток в якоре генератора и в его последовательной обмотке возбуждения изменит свое направле­ние, что может вызвать перемагничивание генератора и тяжелую ава­рию установки.

Условия самовозбуждения генератора.

В генераторах с самовозбуждением, а к ним относится и генератор параллельного возбуждения, обмотки возбуждения получают питание непосредственно от якоря самого генератора, при этом посторонний источник питания им не требуется.

Самовозбуждение генератора возможно при выполнении трех условий:

1) наличие потока остаточного намагничивания полюсов Ф ост;

2) согласное направление магнитного потока остаточного намагничивания и магнитного потока, создаваемого обмоткой возбуждения генератора;

3) сопротивление цепи возбуждения r в должно быть ниже некоторого критического значения, а частота вращения должна быть не ниже номинального значения.

В электрической машине практически всегда существует небольшой, порядка (2…5)% от номинального, поток остаточного намагничивания. Если в генераторе такой поток отсутствует, то необходимо его намагнитить, пропустив ток по обмотке возбуждения от постороннего источника.

Если привести якорь генератора во вращение с частотой, равной номинальной, то под действием потока остаточного намагничивания в обмотке якоря возникает небольшая ЭДС E ост =с е nФ ост равная (2…5)% от U н.

Под действием этой ЭДС по цепи возбуждения потечет ток, который создает добавочный поток намагничивания Ф доб. Ток, создающий Ф доб, равен

где r в =r рв +r шо; r рв — сопротивление регулировочного реостата; r шо — сопротивление параллельной обмотки возбуждения; r а — сопротивление цепи якоря.

В зависимости от направления тока I в в обмотке возбуждения поток Ф доб может быть направлен либо встречно относительно Ф оcт, либо согласно с ним. При встречном направлении Ф ост и Ф доб процесс самовозбуждения идти не будет, т.к. не выполняется второе условие. В этом случае необходимо поменять направление тока I в, переключив концы питания обмотки возбуждения. Если потоки направлены согласно, то развивается процесс самовозбуждения, который можно представить в виде следующий логической схемы

При выполнении двух первых условий процесс самовозбуждения будет развиваться до определенного предела. Этот предел зависит от сопротивления цепи возбуждения r в, вида ее вольт-амперной характеристики и вида характеристики холостого хода. На рисунке-1., представлены характеристики холостого хода (1) при частоте вращения генератора n 1 , и (2) при частоте вращения n 2 >n 1 , и вольтамперные характеристики цепи возбуждения генератора (3-6) при различных углах a.

Рисунок-1 – Условия самовозбуждения генератора параллельного возбуждения

Определим предел, до которого идет процесс самовозбуждения. При этом считаем, что генератор работает на холостом ходу, т.е. I=0.

При самовозбуждении I в ≠const и следовательно уравнение ЭДС может быть написано в двух вариантах следующим образом

где U в — напряжения возбуждения, равные изменяющемуся напряжению U на генераторе; I в — ток возбуждения; r в — сопротивление цепи возбуждения; L в — индуктивность цепи возбуждения.

Так как r в =const, то напряжение I в r в изменяется прямо пропорционально току I в. Графически эта зависимость выражается прямой (3) (рисунок — 1), выходящей из начала координат под углом a, причем

следовательно, каждому значению r в соответствует определенная характеристика цепи возбуждения, выходящая из начала координат под углом, определяемым формулой.

При работе генератора на холостом ходу ток I в мал, поэтому можно считать, что I a r a ≈0, тогда из уравнения равновесия ЭДС следует, что U=E a и зависимость изменения напряжения на зажимах генератора определяется характеристикой холостого хода (кривая I). Отрезки ординат между кривой 1 и линией 3 дают разность

и служат мерой интенсивности происходящего процесса самовозбуждения, т.е. скорости изменения тока возбуждения. Очевидно, что этот процесс окончится тогда, когда разность

станет равной нулю, т.е. установившееся значение тока I в определяется точкой А пересечения характеристик 1 и 3.

Если увеличить r в, то вольтамперная характеристика пойдет круче и примет положение 4. Процесс самовозбуждения в этом случае замедляется и заканчивается в точке А 1 при меньшем напряжении на генераторе. При дальнейшем увеличении r в получим прямую 5, каса­тельную к начальной части характеристики холостого хода. Значение r в, соответствующее прямой 5, называется критическим (r вкр). При сопротивлении цепи обмотки возбуждения, равной и большей r вкр (кривая 6) генератор практически не возбуждается.

Если изменять частоту вращения генератора, то вид характеристики холостого хода меняется (кривая 2), следовательно, величина критического сопротивления r вкр зависит также от частоты вращения генератора. Большей частоте вращения генератора соответствует большее значение критического сопротивления r вкр.

ГЕНЕРАТОРЫ С САМОВОЗБУЖДЕНИЕМ

На практике, наиболее широко используемыми являются ультразвуковые генераторы, выполненные по схемам самовозбуждения, в которых весь тракт усилителя и колебательной системы охвачен положительной обратной связью так, что в нем возникают автоколебания на частоте максимальных механических колебаний рабочей колебательной системы.

Примером генераторов с самовозбуждением могут служить генераторы технологических аппаратов фирмы "KLN Ultraschal GVBH" (ФРГ) для ультразвуковой сварки, генераторы аппаратов фирмы " Вranson " (Великобритания) для УЗ ванн очистки и отечественные аппараты типа УЗ01-01.

Для формирования сигнала обратной связи в генераторах с самовозбуждением применяются мостовые схемы, схемы с дифференциальным трансформатором, а также различные индуктивные и емкостные схемы положительной обратной связи. Основным недостатком генераторов с самовозбуждением является необходимость его перенастройки при смене колебательной системы или рабочих инструментов для выполнения различных технологических операций. Кроме того, в генераторах с самовозбуждением невозможно осуществлять регулирование выходных параметров аппарата (например, интенсивности УЗ колебаний на рабочем инструменте колебательной системы), поскольку необходимыми условиями оптимальной работы аппарата с самовозбуждением являются баланс фаз и баланс амплитуд, нарушение которых ведет к срыву автоколебаний. Происходит это потому, что нарушение режимов работы ультразвуковой колебательной системы (изменение нагрузки, нагрев и т.п., а также изменение электрических и геометрических параметров самой колебательной системы) приводит к расстройке одновременно двух взаимосвязанных систем: системы выделения сигнала обратной связи и системы согласования колебательной системы с генератором. Поэтому перестройка аппарата требует изменения и взаимной увязки всех элементов, что представляет собой сложную техническую задачу, решение которой практически трудно осуществимо в процессе эксплуатации аппарата.

На практике, при выполнении различных технологических операций, требуется быстрая настройка аппарата при изменении параметров колебательной системы путем изменения характеристик (регулирования) одного электронного элемента, а также осуществление регулирования выходных параметров аппарата в процессе выполнения технологических операций.

По этой причине, для многофункционального УЗ аппарата необходимо использовать генераторы с самовозбуждением, позволяющие осуществлять широкий спектр операций с различными по конструкции рабочими инструментами колебательных систем и позволяющего легко осуществлять перестройку электронным способом характеристик аппарата в процессе его эксплуатации при обработке различных материалов, сред и объектов при различных уровнях нагрузки и т.п. Принципиальные схемы ультразвуковых генераторов для использования в составе многофункциональных УЗ аппаратов показаны на рис. 4.3. и рис. 4.4. Принципиальные схемы отличаются способами формирования сигнала обратной связи и перестройки характеристик аппарата, а также мощностными характеристиками. Генератор, показанный на рис. 4.3. более прост в реализации, имеет мощность 40 Вт и предназначен для комплектации многофункционального аппарата 2 типа. В нем обратная связь формируется с помощью перестраиваемого емкостного элемента. Генератор, принципиальная схема которого приведена на рис.4.4, более сложен, имеет электронные регулировки частоты и мощности. Такой генератор может использоваться для комплектации аппаратов второго и третьего типов.

Ввиду большей универсальности этого генератора рассмотрим подробно его устройство и принцип работы.

Схема ультразвукового генератора, показанная не рис. 4.4 содержит усилитель УЗ частоты, выполненный на транзисторах VT2, VT3, рабочую колебательную систему ZQ1, схему согласования усилителя с колебательной системой, содержащую дроссель L, трансформатор TR3, а также схему положительной обратной связи, выполненную на элементах С1, С2, С3, R1, TR1, схема обратной связи своим входом электрически соединена с выходом усилителя через комплексное сопротивление, включающее выходное сопротивление усилителя и разделительный конденсатор С4, и выполнена в виде последовательно включенных конденсатора и первичной обмотки дополнительного трансформатора TR1, вторичная обмотка которого соединена с механически или электрически перестраиваемым резистивным элементом R1, при этом схема согласования подключена параллельно схеме выделения сигнала обратной связи и выполнена в виде последовательно включенных компенсирующего дросселя L и выходного трансформатора TR3.

Рис.4.3. Принципиальная схема генератора мощностью 40вт

Рис.4.4.Принципиальная схема генератора с самовозбуждением мощностью 160 вт.

УЗ аппарат содержит усилитель на транзисторах VT2 и VT3 , работающих в режиме переключения, что позволяет обеспечить максимальный коэффициент преобразования биполярного напряжения питания в электрические колебания УЗ частоты. Нагрузкой усилителя являются последовательно включенные через разделительный конденсатор С4, компенсирующий дроссель L и первичная обмотка выходного трансформатора TR3. Ко вторичной обмотке трансформатора TR3 подключена рабочая колебательная система ZQ1, содержащая пьезоэлектрический преобразователь, согласующий концентратор и рабочий орган, для ввода УЗ колебаний в обрабатываемые материалы, объекты и среды. Компенсирующий дроссель L и трансформатор TR3 обеспечивают согласование усилителя с рабочей колебательной системой. Схема выделения сигнала обратной связи, являющаяся одновременно схемой настройки и регулирования параметров аппарата, содержит последовательно включенные конденсаторы С1, С2, С3 и первичную обмотку трансформатора TR1. Выделенный сигнал подается на последовательно включенную со схемой выделения сигнала обратной связи первичную обмотку трансформатора TR2.

Параллельно вторичной обмотке трансформатора TR1 подключен резистивный элемент R1, сопротивление которого может изменяться механическим или электронным способом (например, переменный резистор для ручной регулировки аппарата или электронная схема с перестраиваемым выходным сопротивлением для автоматизированной перестройки аппарата).

Схема выделения сигнала обратной связи с последовательно подключенной к нему первичной обмоткой трансформатора TR2 соединена с выходом усилителя на транзисторах VT2 и VT3 через комплексное сопротивление, представляющее собой выходное сопротивление усилителя и разделительный конденсатор C4, т.е. подключена параллельно схеме согласования усилителя с рабочей колебательной системой. Обмотки трансформатора TR1 выполнены на общем магнитопроводе.



Применение вторичной обмотки трансформатора TR1, расположенной на одном магнитопроводе с первичной обмоткой, позволяет за счет изменения величины нагрузочного сопротивления R1 (или выходного сопротивления перестраиваемых электронных схем) изменять индуктивность первичной обмотки трансформатора TR1 Изменение индуктивности первичной обмотки трансформатора TR1 обеспечивает перестройку схемы обратной связи.

Для пояснения работы аппарата предположим, что при подключении рабочей колебательной системы, используемой для осуществления определенного технологического процесса, не обеспечивается режим самовозбуждения УЗ аппарата из-за отсутствия баланса фаз и амплитуд. В предложенном УЗ аппарате фазовые соотношения между напряжением в точке между конденсатором C4, и дросселем L и выходным током усилителя приводят к изменению формы напряжения обратной связи на входе усилителя за счет наличия конечного выходного сопротивления усилителя.

В этом случае небаланс фаз и амплитуд приводит к тому, что нагрузка усилителя может носить индуктивный характер и тогда сигнал обратной связи на входе усилителя начинает опережать по фазе выходной сигнал, или может носить емкостной характер и тогда, выходной сигнал опережает сигнал обратной связи. В обоих случаях изменение сопротивления R1 обеспечивает изменение индуктивности первичной обмотки трансформатора TR1 и перестройку параметров схемы обратной связи. Перестройка обратной связи приводит к изменению фазовых соотношений на входе и выходе усилителя и при определенной величине сопротивления R1 обеспечивается условие самовозбуждения. При этом происходит изменение частоты генерации до величины, равной частоте механического резонанса рабочей колебательной системы, и УЗ генератор работает в режиме самовозбуждения. Таким образом, за счет изменения сопротивления R1 частотно зависимая обратная связь обеспечивает перестройку частоты генерации до частоты механического резонанса и в начальный момент обеспечивает работу с любой из необходимых рабочих колебательных систем. При этом на выходе усилителя можно установить определенный сдвиг фаз, обеспечив режим самовозбуждения на частоте, близкой к частоте механического резонанса. Поэтому, обеспечив работу аппарата на частоте, близкой к резонансной, можно снизить интенсивность УЗ колебаний, возбуждаемых в обрабатываемой среде или объекте, т.е. установить оптимальный режим ведения процесса. Такое же изменение, можно осуществлять в процессе эксплуатации аппарата, оперативно изменяя режимы УЗ воздействия. При настройке аппарата для работы в режиме самовозбуждения с выбранной рабочей колебательной системой или необходимыми рабочими инструментами обеспечивается проведение определенного технологического процесса. В ходе проведения этого процесса может происходить изменение параметров колебательной системы (за счет нагревания пьезоэлементов и материала накладок, изменений условий ввода колебаний и т.п.). В этом случае, изменение частоты механического резонанса рабочей колебательной системы, происходящее в небольших пределах, приводит также к изменению характера нагрузки (т.е. нагрузка, приведенная ко входу генератора, начинает носить индуктивный или емкостной характер) и в небольших пределах к изменению фазовых соотношений между током и напряжением на выходе усилителя. В обоих случаях для сохранения условий самовозбуждения, т.е. сохранения на выходе усилителя первоначально установленного сдвига фаз, автоматически осуществляется изменение частоты генерации в небольших пределах до величины, равной резонансной частоте колебательной системы, и условие самовозбуждения постоянно выполняется.

Таким образом, рассмотренный УЗ генератор позволяет осуществлять технологические процессы с помощью различных рабочих колебательных систем или одной колебательной системы с различными рабочими инструментами, регулировать выходные параметры аппарата, в частности интенсивность УЗ колебаний, в ходе настройки и эксплуатации аппарата, а также обеспечивает сохранение условий первоначально установленного режима самовозбуждения в процессе эксплуатации при изменении параметров колебательной системы и условий воздействия УЗ колебаний на объекты, среды и материалы. Принципиальная схема генератора содержит также реле времени, выполненное на элементе DD1 и обеспечивающее включение технологического аппарата на время проведения технологического процесса. На транзисторе VT1 выполнена схема стабилизации амплитуды колебаний генератора. Перечисленные достоинства делают рассмотренные генераторы пригодными для комплектации многофункциональных УЗ аппаратов мощностью от 40 до 160 Вт.

Основное достоинство генераторов с самовозбуждением - простота конструкции и удобство эксплуатации. Однако, изготовление таких генераторов требует очень точной предварительной балансировки схемы согласования генератора с колебательной системой и схемы выделения сигнала обратной связи. Кроме того, генераторы с самовозбуждением, не обеспечивают автоматическое изменение параметров генератора (рабочей частоты) в очень широких пределах, например, при изменении параметров акустической нагрузки от газовой среды до твердого тела. Для решения подобных задач используются генераторы с независимым возбуждением, выполненные по схемам с автоподстройкой частоты.



Загрузка...