sonyps4.ru

Телефоны на процессоре a10 fusion. Детальные результаты в бенчмарке AnTuTu

Обновление линейки iPhone в этом году получилось странным. Мы вам детально рассказывали про iPhone 7 Plus, где описали и ситуацию с исчезнувшим разъемом для гарнитуры, и появление второй тыловой камеры, и новый цвет корпуса... У младшей модели в целом ситуация аналогичная, однако проигнорировать ее совсем было бы неправильно. Обычно мы тестируем обе новых модели практически одновременно, но в этот раз оказалось, что именно iPhone 7 был дефицитом. И вот совсем недавно нам удалось получить экземпляр в достаточно длительное использование, позволяющее внимательно изучить все аспекты этого гаджета.

Взглянем на характеристики устройства.

Технические характеристики Apple iPhone 7

  • SoC Apple A10 Fusion (4 ядра, 2 из которых работают на частоте 2,34 ГГц, 64-битная архитектура ARMv8-A)
  • GPU Apple A10 Fusion
  • Сопроцессор движения Apple M10, включающий барометр, акселерометр, гироскоп и компас
  • RAM 2 ГБ
  • Флэш-память 32/128/256 ГБ
  • Поддержка карт памяти отсутствует
  • Операционная система iOS 10
  • Сенсорный дисплей IPS, 4,7″, 1334×750 (326 ppi), емкостной, мультитач, поддержка технологий 3D Touch и отклика Taptic Engine
  • Камеры: фронтальная (7 Мп, видео 1080р 30 к/с, 720р 240 к/с) и тыльная (12 Мп, съемка видео 4К 30 к/с и 60 к/с)
  • Wi-Fi 802.11b/g/n/ac (2,4 и 5 ГГц; поддержка MIMO)
  • Сотовая связь: UMTS/HSPA/HSPA+/DC-HSDPA (850, 900, 1700/2100, 1900, 2100 МГц); GSM/EDGE (850, 900, 1800, 1900 МГц), LTE Bands 1, 2, 3, 4, 5, 7, 8, 12, 13, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 38, 39, 40, 41, поддержка LTE Advanced
  • Bluetooth 4.2 A2DP LE
  • Сканер отпечатков пальцев Touch ID третьей версии
  • NFC (только для Apple Pay)
  • Универсальный разъем Lightning
  • Литий-полимерный аккумулятор 1960 мА·ч, несъемный
  • GPS / A-GPS, Глонасс
  • Габариты 138×67×7,1 мм
  • Масса 138 г (наше измерение)

Для наглядности сопоставим характеристики новинки с iPhone 7 Plus и iPhone 6s .

Apple iPhone 6s
Экран 4,7″, IPS, 1334×750, 326 ppi 5,5″, IPS, 1920×1080, 401 ppi 4,7″, IPS, 1334×750, 326 ppi
SoC (процессор) Apple A10 Fusion (4 ядра, 2 из которых работают на частоте 2,34 ГГц, 64-битная архитектура ARMv8-A) Apple A9 (2 ядра @1,8 ГГц, 64-битная архитектура ARMv8-A)
Графический процессор Apple A10 Fusion Apple A10 Fusion Apple A9
Флэш-память 32/128/256 ГБ 32/128/256 ГБ 16/64/128 ГБ
Разъемы универсальный разъем Lightning док-коннектор Lightning, разъем 3,5 мм для гарнитуры
Поддержка карт памяти нет нет нет
Оперативная память 2 ГБ 3 ГБ 2 ГБ
Камеры основная (12 Мп; видео 4K) и фронтальная (7 Мп; съемка и передача видео Full HD) основная (12 Мп; видео 4K) с двумя объективами и фронтальная (7 Мп; съемка и передача видео Full HD) основная (12 Мп; видео 4K) и фронтальная (5 Мп; съемка и передача видео Full HD)
Датчики идентификации пользователя сканер отпечатков пальцев сканер отпечатков пальцев сканер отпечатков пальцев
Защита корпуса IP67 (защита от воды и пыли) IP67 (защита от воды и пыли) нет
Емкость батареи (мА·ч) 1960 2900 1715
Операционная система Apple iOS 10 Apple iOS 10 Apple iOS 9 (доступно обновление до iOS 10)
Габариты (мм)* 138×67×7,1 158×78×7,3 138×67×7,1
Масса (г)** 138 189 143
Средняя цена (за версию с минимумом флэш-памяти) T-14206636 T-14206637 T-12858631
Розничные предложения iPhone 7 (32 ГБ) L-14206636-10
Розничные предложения iPhone 7 (128 ГБ) L-14206682-10
Розничные предложения iPhone 7 (256 ГБ) L-14206684-10

* по информации производителя
** наше измерение

Как мы видим, отличия характеристик iPhone 7 от iPhone 7 Plus минимальны. Помимо очевидного (габаритов и размера/разрешения дисплея) это меньший объем оперативной памяти (2 ГБ вместо трех у iPhone 7 Plus), а также меньшая емкость батареи и отсутствие второго объектива у камеры. При этом, по сравнению с непосредственным предшественником — iPhone 6s — у новинки чуть меньше масса (при тех же габаритах) и больше емкость батареи.

Давайте познакомимся со смартфоном вживую и поймем, как эти особенности сказываются на пользовательских качествах модели.

Упаковка и комплектация

Коробка и комплектация iPhone 7 аналогична старшей модели.

Напомним, что главное здесь — новые наушники (с разъемом Lightning вместо Mini-jack 3,5 мм) и переходник с Lightning на миниджек. Благодаря этому переходнику можно использовать iPhone c традиционными наушниками или колонками.

В остальном — все то же самое, что и раньше: листовки, зарядное устройство (5 В 1 А), кабель Lightning, наклейки и ключик для извлечения колыбельки SIM-карты.

Дизайн

Внешне новый iPhone, как и его старший собрат, очень похож на своего предшественника. Габариты и основные элементы дизайна остались неизменными. У нас на тестировании была золотистая версия, и в таком варианте iPhone 7 еще сложнее отличить от iPhone 6/6s, чем в случае с новыми цветами «черный» и «черный оникс».

Кстати, вариант «черный оникс», особо дефицитный в первые дни продаж, сейчас уже можно приобрести без проблем, но у него есть свои недостатки, о которых мы писали в статье про iPhone 7 Plus, так что это решение на любителя. Золотистый — тоже не всем нравится, но он более практичный и привычный.

В целом дизайн iPhone 7 идентичен iPhone 7 Plus. Расположение разъемов, форма корпуса, влагозащищенность, новая кнопка Home (сенсорная, а не физическая) — все аналогично. Поэтому здесь мы сосредоточимся на сравнении iPhone 7 с iPhone 6, для того, чтобы заметить некоторые неочевидные изменения.

Во-первых, пластиковые вставки теперь размещены иначе. Они проходят только по граням, не залезая на заднюю поверхность. Впрочем, отметим, что в случае с золотистой версией они все равно слишком бросаются в глаза. И в этом плане нам кажутся более удачными серебристая и черные версии.

Во-вторых, тыльная камера теперь крупнее и она более выпуклая. Но, в отличие от iPhone 7 Plus, она только одна. И, наконец, третье отличие — второй ряд отверстий на нижней грани. Однако не думайте, что там еще один динамик! Скорее всего, там микрофон.

В целом, с точки зрения внешности, отличия iPhone 7 от iPhone 6s минимальны. Однако, несмотря на это, Apple не обеспечила совместимость защитных аксессуаров. Чехлы для iPhone 6s не подойдут к iPhone 7 по причине изменившегося глазка камеры. Это, конечно, очень странное и обидное решение. Но зато для iPhone 7 доступны новые цветовые варианты кожаных чехлов: миндальный, «грозовое небо» и «синее море». Последний из них мы смогли оценить вживую.

С золотистым цветом он сочетается довольно странно, но в определенном обаянии этому оттенку не откажешь. Он вроде и не голубой, но в то же время и не синий, а что-то среднее. Однако, здесь же отметим традиционную проблему кожаных чехлов Apple: довольно быстро они покрываются царапинами и теряют презентабельный вид. Поэтому если вы воспринимаете чехол именно как элемент стиля, а не как просто защиту смартфона, стоит с ним обращаться бережно.

Резюмируя наши впечатления от дизайна, можем просто повторить сказанное ранее про iPhone 7 Plus и пожелать, чтобы в следующей версии iPhone функциональные особенности текущего поколения сохранились (влагозащита, прежде всего), а внешний вид все-таки обновился более существенно.

Экран

Параметры экрана iPhone 7 не отличаются от таковых у iPhone 6s: диагональ 4,7 дюйма, IPS-матрица разрешением 1134×750. По современным меркам — средние параметры.

О том, каково качество дисплея, расскажет редактор разделов «Мониторы» и «Проекторы и ТВ» Алексей Кудрявцев .

Лицевая поверхность экрана выполнена в виде стеклянной пластины с зеркально-гладкой поверхностью, устойчивой к появлению царапин. Судя по отражению объектов антибликовые свойства экрана лучше, чем у экрана Google Nexus 7 (2013) (далее просто Nexus 7). Для наглядности приведем фотографию, на которой в выключенных экранах отражается белая поверхность (слева — Nexus 7, справа — Apple iPhone 7, далее их можно различать по размеру):

Экран у Apple iPhone 7 немного темнее (яркость по фотографиям 110 против 118 у Nexus 7). Двоение отраженных объектов в экране Apple iPhone 7 очень слабое, это свидетельствует о том, что между слоями экрана (конкретнее между внешним стеклом и поверхностью ЖК-матрицы) нет воздушного промежутка (экран типа OGS — One Glass Solution). За счет меньшего числа границ (типа стекло/воздух) с сильно различающимися коэффициентами преломления такие экраны лучше смотрятся в условиях интенсивной внешней засветки, но вот их ремонт в случае потрескавшегося внешнего стекла обходится гораздо дороже, так как менять приходится экран целиком. На внешней поверхности экрана есть специальное олеофобное (жироотталкивающее) покрытие (эффективное, примерно как у Nexus 7), поэтому следы от пальцев удаляются существенно легче, а появляются с меньшей скоростью, чем в случае обычного стекла.

При ручном управлении яркостью и при выводе белого поля во весь экран максимальное значение яркости составило около 560 кд/м², минимальное — 4,8 кд/м². Максимальная яркость очень высокая, и, учитывая отличные антибликовые свойства, читаемость даже в солнечный день вне помещения будет на хорошем уровне. В полной темноте яркость можно понизить до комфортного значения. В наличии автоматическая регулировка яркости по датчику освещенности (он находится над прорезью фронтального громкоговорителя). В автоматическом режиме при изменении внешних условий освещенности яркость экрана как повышается, так и понижается. Работа этой функции зависит от положения ползунка регулировки яркости — им пользователь выставляет желаемый уровень яркости для текущих условий. Если ничего не менять, то в полной темноте яркость понижается до 2,6 кд/м² (очень темно), в условиях освещенного искусственным светом офиса (около 550 лк) яркость экрана устанавливается на 120 кд/м² (приемлемо), в очень ярком окружении (соответствует освещению ясным днем вне помещения, но без прямого солнечного света — 20000 лк или немного больше) поднимается до 650 кд/м² (даже выше, чем при ручной регулировке). Результат нас не совсем устроил, поэтому в темноте мы чуть подвинули ползунок яркости вправо, и для трех указанных выше условий получили 16, 100-170 и 650 кд/м² (идеально). Получается, что функция автоподстройки яркости работает адекватно, и есть возможность отрегулировать характер изменения яркости под требования пользователя. На любом уровне яркости значимая модуляция подсветки отсутствует, поэтому нет и никакого мерцания экрана.

В данном смартфоне используется матрица типа IPS. Микрофотографии демонстрируют типичную для IPS структуру субпикселей:

Для сравнения можно ознакомиться с галереей микрофотографий экранов, используемых в мобильной технике.

Традиционно для iPhone в слое клея-заполнителя между внешним стеклом и матрицей обнаруживается много пылинок, не будем даже это демонстрировать.

Экран имеет хорошие углы обзора без значительного сдвига цветов даже при больших отклонениях взгляда от перпендикуляра к экрану и без инвертирования оттенков. Для сравнения приведем фотографии, на которых на экраны Apple iPhone 7 и Nexus 7 выведены одинаковые изображения, при этом яркость экранов изначально установлена примерно на 200 кд/м² (по белому полю во весь экран), а цветовой баланс на фотоаппарате принудительно переключен на 6500 К. Перпендикулярно к экранам белое поле:

Отметим хорошую равномерность яркости и цветового тона белого поля.

И тестовая картинка:

Цветовой баланс немного различается, насыщенность цветов в норме. Напомним, что фотография не может служить надежным источником сведений о качестве цветопередачи и приводится только для условной наглядной иллюстрации. В данном случае, видимо из-за особенностей спектра излучения экрана, цветовой баланс и яркость цветов на фотографиях экрана Apple iPhone 7 несколько отличается от того, что видно глазом и определяется спектрофотометром.

Теперь под углом примерно 45 градусов к плоскости и к стороне экрана:

Видно, что цвета не сильно изменились у обоих экранов и контраст остался на высоком уровне.

И белое поле:

Яркость под углом у экранов уменьшилась (как минимум в 4 раза, исходя из разницы в выдержке), но в случае Apple iPhone 7 падение яркости меньше. Черное поле при отклонении по диагонали высветляется в средней степени и приобретает фиолетовый оттенок. Фотографии ниже это демонстрируют (яркость белых участков в перпендикулярном плоскости экранов направлении примерно одинаковая!):

И под другим углом:

При перпендикулярном взгляде равномерность черного поля хорошая, хотя и неидеальная:

Контрастность (примерно в центре экрана) высокая — порядка 1375:1. Время отклика при переходе черный-белый-черный равно 23 мс (12 мс вкл. + 11 мс выкл.). Переход между полутонами серого 25% и 75% (по численному значению цвета) и обратно в сумме занимает 30 мс. Построенная по 32 точкам с равным интервалом по численному значению оттенка серого гамма-кривая не выявила завала ни в светах, ни в тенях. Показатель аппроксимирующей степенной функции равен 1,76, что ниже стандартного значения 2,2, поэтому изображение чуть высветлено. При этом реальная гамма-кривая заметно отклоняется от степенной зависимости:

Цветовой охват равен sRGB:

Смотрим на спектры:

Такие спектры встречаются в топовых мобильных устройствах Sony и других производителей. По всей видимости, в этом экране используются светодиоды с синим излучателем и зеленым и красным люминофором (обычно — синий излучатель и желтый люминофор), что в сочетании со специальными светофильтрами матрицы позволяет получить широкий цветовой охват. Да, и в красном люминофоре, видимо, используются так называемые квантовые точки. Для потребительского устройства широкий цветовой охват является никак не достоинством, а существенным недостатком, так как в итоге цвета изображений — рисунков, фотографий и фильмов, — ориентированных на пространство sRGB (а таких подавляющее большинство), имеют неестественную насыщенность. Особенно это заметно на узнаваемых оттенках, например на оттенках кожи. Но в отличие от многих именитых и не очень компаний в Apple знают, каким должен быть цветовой охват, а потому аккуратно корректируют его до границ sRGB. В итоге визуально цвета имеют естественную насыщенность.

Это относится к тем изображениям, в которых прописан профиль sRGB или не прописано вообще никакого профиля. Однако родным для современных устройств Apple (как минимум для iPhone 7 и iPhone 7 Plus, iPad Pro 9.7 и MacBook Pro) является цветовое пространство Display P3 с немного более насыщенными зеленым и красным цветами. Пространство Display P3 основано на SMPTE DCI-P3, но имеет точку белого D65 и гамма-кривую с показателем примерно 2,2. Кроме того, производитель заявляет, что начиная с iOS 9.3 на системном уровне поддерживается управление цветом, это облегчает приложениям под iOS задачу правильно выводить на экран изображения с прописанным цветовым профилем. Действительно, дополнив тестовые изображения (файлы JPG и PNG) профилем Display P3, мы получили цветовой охват шире sRGB (вывод в Safari):

Отметим, что координаты первичных цветов практически в точности совпали с теми, что прописаны для стандарта DCI-P3. Охват этот отличается от Adobe RGB, красный в Display P3 чуть более насыщенный, а зеленый можно считать менее насыщенным:

Смотрим на спектры в случае тестовых изображений с профилем Display P3 :

Видно, что в этом случае никакого перекрестного подмешивания компонент не происходит, то есть это цветовое пространство является родным для экрана Apple iPhone 7. Самый главный вопрос заключается в том, дает ли поддержка Display P3 хоть какое-то значимое преимущество, и сомнения связаны прежде всего с тем, что контента с охватом шире, чем sRGB, практически нет, а когда он появится, то не факт, что он будет именно в варианте Display P3 , да и все текущие устройства к тому времени безнадежно устареют. Однако нужно с чего-то начинать, и широкий охват экранов, а также встроенное в ОС управление цветом этому способствуют. А пока контент может создавать сам пользователь, так как в фотографиях с камер iPhone 7/7 Plus прописывается профиль Display P3 (впрочем, про реальный цветовой охват этих камер нам неизвестно).

Баланс оттенков на шкале серого хороший, так как цветовая температура близка к стандартным 6500 К, а отклонение от спектра абсолютно черного тела (ΔE) меньше 10, что для потребительского устройства считается приемлемым показателем. При этом цветовая температура и ΔE мало изменяются от оттенка к оттенку — это положительно сказывается на визуальной оценке цветового баланса. Характер изменения величин от оттенка к оттенку косвенно показывает, что используется программная коррекция цветопередачи. (Самые темные области шкалы серого можно не учитывать, так как там баланс цветов не имеет большого значения, да и погрешность измерений цветовых характеристик на низкой яркости большая.)

Как и в iPad Pro с дисплеем 9,7 дюйма и в iPhone SE , в этом устройстве Apple есть функция Night Shift , которая ночью делает картинку теплее (насколько теплее — указывает пользователь). Описание того, почему такая коррекция может быть полезной, приведено в указанной статье про iPad Pro 9,7 . В любом случае, при развлечении с планшетом или смартфоном на ночь глядя лучше снизить яркость экрана до минимального, но еще комфортного уровня, а уж затем для успокоения собственной паранойи желтить экран настройкой Night Shift .

Подведем итоги. Экран имеет очень высокую максимальную яркость и обладает отличными антибликовыми свойствами, поэтому устройством без особых проблем можно пользоваться вне помещения даже летним солнечным днем. В полной темноте яркость можно понизить до комфортного уровня. Допустимо использовать и режим с автоматической подстройкой яркости, работающий адекватно. К достоинствам экрана нужно отнести эффективное олеофобное покрытие, отсутствие воздушного промежутка в слоях экрана и мерцания, хорошую стабильность черного к отклонению взгляда от перпендикуляра к плоскости экрана, высокий контраст, а также поддержку цветового охвата sRGB (при участии ОС) и хороший цветовой баланс. Значимых недостатков нет. На текущий момент это, пожалуй, один из лучших дисплеев среди всех смартфонов.

Производительность

iPhone 7, как и iPhone 7 Plus, работает на новой SoC Apple A10 Fusion (мы подробно рассказывали о ней в обзоре iPhone 7 Plus, так что не будем повторяться). Однако объем оперативной памяти у младшей модели меньше. Давайте посмотрим, как это сказалось на производительности!

Начнем с браузерных тестов: SunSpider 1.0.2, Octane Benchmark и Kraken Benchmark. Также добавим к нашему стандартному набору — новый браузерный бенчмарк, рекомендованный создателями SunSpider в качестве замены ему. Использовался браузер Safari.

Как мы видим, iPhone 7 не только не отстал от iPhone 7 Plus, но даже немножко превзошел его. Впрочем, разница настолько невелика, что может быть списана на погрешность измерения.

Теперь посмотрим, как iPhone 7 Plus выступит в комплексном бенчмарке AnTuTu (с недавних пор мы его используем и на iOS) и Geekbench 4, который измеряет производительность CPU.

И вот первый сюрприз: iPhone 7 сильно проиграл в AnTuTu старшему iPhone 7 Plus. Причем, что интересно, дело не только в RAM, хотя и в баллах «за память» тоже. А вот в процессорном бенчмарке Geekbench 4 результаты уже получились практически идентичными.

Последняя группа бенчмарков посвящена тестированию производительности GPU. Мы использовали 3DMark и GFXBench Metal.

Напомним, что тесты вне экрана — это вывод на экран картинки в 1080р вне зависимости от реального разрешения экрана. А тесты Onscreen — это вывод картинки в том разрешении, которое соответствует разрешению экрана устройства. То есть тесты Offscreen показательны с точки зрения абстрактной производительности SoC, а Onscreen-тесты — с точки зрения комфортности игры на конкретном устройстве.


(Apple A10)

(Apple A10)
GFXBenchmark Manhattan 3.3.1 (1440р) 22,7 fps 18,3 fps
GFXBenchmark Manhattan 3.1 59,4 fps 26,1 fps
GFXBenchmark Manhattan 3.1 (Вне экрана) 38,8 fps 26,1 fps
GFXBenchmark Manhattan 59,8 fps 41,1 fps
GFXBenchmark Manhattan (1080p Вне экрана) 58,3 fps 41,0 fps

И вот загадка: iPhone 7 обошел iPhone 7 Plus не только в тестах с реальным разрешением, что вполне логично, но и в тестах вне экрана! При этом на обоих смартфонах была установлена одна и та же версия программы и идентичные версии ОС. Чудеса, да и только!

Здесь результаты уже более правдоподобны, хотя и несколько противоречивы, но разница не так велика, поэтому вполне можно сказать, что соперники равны.

В итоге можно признать, что iPhone 7, даже несмотря на меньший объем оперативной памяти, практически не уступает iPhone 7 Plus в производительности. В большинстве бенчмарков, включая те, что используют реальные 3D-сцены, он продемонстрировал результаты, схожие со старшей моделью. Конечно, можно предположить, что однажды пользователь почувствует нехватку оперативной памяти. Но это произойдет нескоро, а пока можно не очень переживать за цифры в технических характеристиках и выбирать между iPhone 7 и iPhone 7 Plus без оглядки на параметр производительности.

Камеры

В iPhone 7 нет главной фишки iPhone 7 Plus — второй тыловой камеры. Однако, в отличие от iPhone 6s, здесь есть оптическая стабилизация при съемке видео (в прошлом поколении она была только у iPhone 6s Plus), а прочие параметры камер (фронтальной и тыловой) идентичны iPhone 7 Plus.

Теперь оценим фотовозможности. Ниже — примеры снимков на тыловую камеру с комментариями нашего эксперта Антона Соловьева .

Похоже, с обновлением прошивки камера лучше не стала. Она по-прежнему нередко ошибается с фокусом, а снимки пестрят артефактами, пусть и мелкими. Впрочем, хорошо снимать камера тоже умеет, но для получения хороших снимков придется постараться. По результатам стендовой съемки камера не слишком улучшила результаты, зато теперь кривая на графике вполне соответствует реальности. Раньше, несмотря на невысокое фактическое разрешение, снимки были чистыми и аккуратными. Теперь они теряются среди снимков топовых смартфонов, а некоторым заметно уступают. Как выясняется, уступает камера даже старшей модели . Ну, возможно, еще не все потеряно. И в любом случае камера справится со множеством сюжетов даже в текущем виде.

Автономная работа и нагрев

Как и в случае с iPhone 7 Plus, Apple сохранила у iPhone 7 продолжительность автономной работы, аналогичную предыдущему поколению. В реальном повседневном использовании это примерно сутки, при активном использовании — даже меньше.

В 3D-играх смартфон полностью разряжается за семь с половиной часов, что очень неплохо и указывает на высокую энергоэффективность SoC, но в режимах чтения и воспроизведения видеороликов из YouTube результат не сильно лучше, то есть батарея расходуется не столько за счет нагрузки на SoC, сколько за счет экрана. И здесь уже все упирается в небольшую емкость аккумулятора.

Ниже приведен теплоснимок задней поверхности, полученный после двух запусков подряд (примерно 10 минут работы) теста Basemark Metal:

Видно, что нагрев сильно локализован в верхней правой части аппарата, что, видимо, соответствует расположению микросхемы SoC. По данным теплокамеры, максимальный нагрев составил 44 градуса (при температуре окружающего воздуха в 24 градуса), что на 3 градуса больше, чем в случае iPhone 7 Plus.

Выводы

Не побоимся выступить в роли Капитана Очевидности и просто признаем: iPhone 7 — один из лучших компактных смартфонов на рынке. Высочайшая производительность (несмотря на всего 2 ГБ оперативной памяти), прекрасный экран (пусть и не впечатляющий паспортными характеристиками), влагозащищенность, камера с оптической стабилизацией (хотя и пока несовершенной прошивкой, что проявляется при съемке фото) — вот основные преимущества iPhone 7.

С другой стороны, ничего революционного в этой модели нет, а из-за отсутствия второй тыловой камеры она получилась еще скучнее, чем «старший брат». Поэтому обновляться на нее с iPhone 6s или даже iPhone 6 точно не имеет смысла (если вас в целом устраивает, как работает ваш текущий смартфон). Ну, разве что из-за влагозащищенности. Однако мы надеемся, что будущие модели iPhone сохранят влагозащиту, а помимо нее получат много других интересных новшеств.

Многих наших читателей волнует вопрос - какой из процессоров лучше и мощнее: Apple A10 Fusion или Qualcomm Snapdragon 821. Мы провели сравнение ключевых параметров, вроде ядер, тактовой частоты, графики, встроенных LTE модемов и производительности чипов. Ниже все подробности о том, какой из них все-таки круче.

Виджет от SocialMart

Сравнение характеристик

Snapdragon 821 A10 Fusion
Тех процесс 14 нм 16 нм
Ядра 64-бит, 4 ядра 2x Kryo 2.4 ГГц + 2x Kryo 2.0 ГГц 64-бит, 4 ядра, 2x Hurricane 2.34 ГГц + 2x Zephyr
Вычисления на ядро на кластер
Графика Adreno 530 GPU 650 МГц 6-ти ядерная графика
тип ОЗУ LPDDR4, 1866 МГц LPDDR4
4G LTE X12 LTE Cat 12/13 нет данных
Зарядка Qualcomm Quick Charge 3.0 нет данных
Поддержка графики OpenGL ES 3.2, Open CL 2.0,Vulkan 1.0,DX11.2 OpenGL ES 3.0, Metal
Видео запись 4K Ultra HD видео с частотой кадров в секунду 30 fps. Проигрывание 4K/30fps видео
Кодеки H.264 (AVC) +H.265 (HEVC) H.264 (AVC) + H.265 (for Facetime?)
Wi-Fi 802.11ac 802.11ac

Архитектура

Как видно с таблицы, оба чипсета имеют 64-битную архитектуру и 4 вычислительные ядра в своем составе. Такая конструкция была создана ARM, она называется big.LITTLE Heterogeneous Multi-Processing (HMP) и означает, что не все ядра в кластере равны между собой. У Snapdragon 821 два ядра работают на частоте 2.4 ГГц на ядро и два - на 2.0 ГГц. У чипа от Apple применяется такая же конструкция, максимальная тактовая частота процессора достигает отметки 2.34 ГГц на ядро.

Это сделано с той целью, чтобы процессор мог выдавать максимальную производительно в тяжелых приложениях, а в слабеньких процессах максимально сохранять заряд батареи. Apple A10 Fusion - первый 4-ядерный процессор от компании из Купертино, который построен на базе архитектуры big.LITTLE.

Графика и LTE модем

Что касается графики, оба чипсета использую свою собственную графическую систему. У Qualcomm Snapdragon 821 - это Adreno 530 GPU с тактовой частотой 650 МГц. Apple ранее использовала графику PoweVR GPU от компании Imagination Technologies. Но с процессором 10 Fusion она перешла на графический чип собственной разработки на 6 ядер. Официального названия у графики Apple до сих пор нет.

Snapdragon 821 поддерживает OpenGL ES 3.2 и Vulkan 1.0, в то время, как A10 Fusion - OpenGL ES 3.0 и Metal API (собственную разработку Apple). Еще одним различием между чипсетами является поддержка быстрой зарядки Quick Charge 3.0 в SD 821 и ее отсутствие в Apple. Также SoC Snapdragon 821 имеет встроенный на кристалле модем X12 LTE, в то время, как Apple A10 не имеет встроенного LTE модема и использует стороннее решение на отдельном чипе.

Производительность

Процессор Snapdragon 821 можно посчтитеть более производительным, так как для сравнительно одинаковой архитектуры и частоты, он построен на меньшем технологическом процессе (14 нм против 16 нм). Также это положительно скажется на меньшем потреблении энергии. Но в популярных бенчмарках, вроде AnTuTu, Geekbench и Basemark OS III, Apple A10 Fusion набирает большее количество баллов, чем SoC от Qualcomm.

Стоит отметить, что производительность будет еще разниться от устройства к устройству, ведь производители используют разную степень оптимизации железа и софта, а также разный «обвес» процессора: оперативная и флеш-память и прочее.

Детальные результаты в бенчмарке AnTuTu

AnTuTu Test A10 Fusion Snapdragon 821
3D 44996 (28917, 16079) 56890 (36443, 20447)
UX 52071 (8168, 11180, 21587, 4528, 6617) 45278 (8209, 4833, 9027, 19639, 3570)
CPU 41655 (14512, 14632, 12511) 32403 (12204, 8129, 12070)
RAM 11568 6521

В AnTuTu разница между производительностью чипов - всего 6%, а вот в одноядерном тесте Geekbech разница составила 126% в пользу Apple. В AnTuTu чип Snapdragon 821 показал себя лучше, только в 3D тесте и набрал 56890 баллов, где A10 Fusion получил всего 44996 баллов.

Потребление энергии

Сравнение проводилось на смартфонах Apple iPhone 7 и Google Pixel. Как видно со слайда, в 3D играх iPhone 7 показал себя лучше и его батарея сохранила больше заряда, чем аккумулятор Google Pixel. При этом, во время просмотра видео на смартфонах, Pixel от Google на Snapdragon 821 выдал результат немного лучше, чем у Apple. Из этого можно сделать выводы, что если процессор SD 821 отлично справляется с тяжелыми играми в плане производительности, то это все-же не лушчее решение для игр в плане автономности.

galagram.com

За гранью производительности. На что способен процессор A10 Fusion

На презентации iPhone 7 нам уже рассказали что новый процессор A10 Fusion, составленный из четырех ядер разной мощности, способен адаптивно подстраиваться под нужны пользователя и значительно превосходит в производительности своего предшественника. Как оказалось, результаты смартфона в синтетических тестах оказались сопоставимы с таковыми у ноутбуков MacBook Air 2015 и MacBook Pro 2013.

По заявлениям самой Apple, прирост производительности новой «системы-на-чипе» значителен - смартфон на 40% быстрее iPhone 6s и вдвое обгоняет iPhone 6 по производительности. Два его ядра работают на тактовой частоте 2.34GHz, еще два используются в качестве энергоэффективного запаса и оперируют рабочей частотой в 1.05GHz. По наблюдениям редактора портала Ars Technika, при переводе смартфона в режим энергосбережения он полностью полагается на их мощности. Такая ротация позволяет продлить время работы смартфона - но даже в режиме регулярного пользования A10 Fusion потребляет 2/3 объема энергии, которая требовалась A9.

Фактически, говорить о переходе на четырехядерную архитектуру пока что рано - система продолжает «видеть» лишь два логических ядра для вычислений. iOS самостоятельно решает, когда переключать между собой основные и дополнительные ядра, не позволяя задействовать их одновременно. Показатели удалось проверить утилитой Xcode Activity Monitor - максимальная загрузка процессора не превышала 200% даже при использовании самых «тяжелых» программ. Как возможно преодоление барьера в 100%? Дело в том, что при мониторинге системы учитывается нагрузка на каждое отдельное ядро, для двухядерных решений предел закреплен на отметке в 200%. С момента выпуска A5 внутри iOS-устройств устанавливаются чипы из двух ядер, исключением был лишь iPad Air 2, внутри которого расположился трехъядерный A8X.

На данный момент A10 Fusion - самый разогнанный чип в истории iOS-девайсов. Как упоминалось ранее, два основных ядра работают на тактовой частоте 2.34GHz. Этот показатель определяет количество вычислений в единицу времени. В A9 применялась частота на уровне 1.85GHz, а планшетный A9X, установленный в планшетах серии Pro, разгонялся до 2.25GH. Но если сравнивать между собой iPhone 7 и iPhone 6s, эти наборы чисел выражают стабильные корреляции - рост тактовой частоты на 27% спровоцировал увеличение производительности на 30-40%.

Синтетические тесты не всегда отражают реальное положение дел, однако традиционно считаются хорошим способом сравнить технические возможностей устройств. iPhone 7 не пасет задних - благодаря последовательной политике использования малого количества ядер высокой мощности, смартфон уверенно конкурирует в многоядерном режиме и фантастически превосходит конкурентов в сравнении «на одно ядро».

Многоядерная конфигурация Одноядерный режим

Результаты теста Geekbench 3 оставляют iPhone 7 и iPhone 7 Plus наглядно показывают эволюцию фирменных процессоров. Но еще интереснее выглядит сравнение с топовыми Android-устройствами - флагманы от HTC, Nexus и Samsung остались далеко позади.

Одноядерный режим Многоядерная конфигурация

Также новые процессоры отлично справляются с задачами, требующими быстрого исполнения JS-кода, о чем свидетельствуют результаты специализированного теста Octane V2. Это свидетельствует об отсутствии неприятных подергиваний и краткосрочных зависаний при загрузке массивных JS-приложений.

Кроме того, издание Daring Fireball обратило внимание на то, что iPhone 7 в синтетических тестах оставляет далеко позади все модели MacBook Air и вплотную приближается к результатам MacBook Pro Retina 2013. В перспективе это может означать, что компания готова использовать мобильные процессоры в своих ноутбуках - однако они построены на разной архитектуре.

Поэтому их сравнительная характеристика не отражает реального положения вещей: смартфоны и компьютеры запускают совершенно разные приложения и сравнивать их производительность попросту некорректно. Но успехи компании в разработке собственных ARM-процессоров очевидны. И новый A10 Fusion - хорошее тому подтверждение.

uip.me

Полный обзор чипа Apple A10

Полный обзор чипа Apple A10

На традиционном сентябрьском мероприятии Apple представила два новых процессора - A10 Fusion для iPhone 7 и iPhone 7 Plus и S2 для Apple Watch Series 2. Несмотря на то, что о процессоре S2 не было сказано практически ничего, презентации чипа A10 компания уделила гораздо больше времени. Приписка “Fusion” в названии чипа указывает на его гетерогенную архитектуру, которая включает два высокопроизводительных ядра с высокой пропускной способностью в паре с двумя меньшими, энергоэффективными ядрами. Подобный подход позволяет не только повысить время автономной работы, но и увеличить надежность устройства, тогда как ремонт iPhone 7 при повреждении чипа едва ли станет сложнее.

В итоге мы получили отличное решение в отношении баланса производительности и энергоэффективности, и за последний год инженеры Apple разработали самый передовой SoC процессор с момента перехода на 64-bit архитектуру.

Общая информация

О самых крупных технических изменениях, которые включает Apple A10, нам сообщили в самом начале презентации: новый процессор может похвастаться четырьмя ядрами с 3.3 миллиардами транзисторов. На данный момент нам неизвестно количество транзисторов в предыдущем чипе компании, Apple A9, однако для A8 этот показатель составлял 2 миллиарда, из чего следует вывод, что показатель A9 располагается где-то посередине, то есть прошлогодний чип имеет менее 3 миллиардов транзисторов. Компания Apple продолжает развивать свой флагманский проект из года в год. К примеру, недавно Куперниновцы запатентовали прозрачный дисплей и не собираются останавливаться.

Таким образом A10 получился на 50% “больше” в сравнении с A8, однако тут стоит отметить, что некоторая часть транзисторов приходится на новые низкопроизводительные ядра. В основе графики, в свою очередь, лежит знакомая шестикластерная подсистема, а объем L1- и L2-кэша остался прежним.

Судя по всему, 16-нм техпроцесс FinFET, который фирма TSMC использовала для производства чипов A9, применяется и в новом процессоре, так что физические размеры A10 могли увеличиться в сравнении с предшественником. Apple имела возможность комплектовать часть смартфонов 14-нм чипами от Samsung, однако для упрощения производства компания остановилась на более старой технологии, уделив внимание оптимизации размеров чипа и его размещения в корпусе устройства.

Производительность

Производительность процессора традиционно не осталась в тайне: в пике A10 работает на 40% быстрее предшественника, чипа A9. Частота процессора выросла на 25%, теперь этот показатель составляет 2.33 ГГц, тогда как iPhone 6s имел чип с частотой 1.85 ГГц. Большого прироста, по видимому, удалось добиться улучшениями в архитектуре.

25-процентный прирост частоты является значимым достижением, особенно если учесть тот факт, что A10 построен на базе того же техпроцесса. Подобных результатов, по видимому, позволила добиться улучшенная система теплоотвода и новая гетерогенная архитектура с двумя дополнительным ядрами.

Стоит отметить, что вместе с созданием пары новых “медленных” ядер Apple открыла абсолютно новый спектр опций по динамическому изменению напряжения и частоты, что позволяет при необходимости полностью отключать ядра или их отдельные разделы. Кроме того, для использования в iPhone 7 Apple разработала собственный контроллер, который позволяет переводить рабочую нагрузки между ядрами.

Некоторые источники указывают на то, что компания применяет специальную схему деления кэш-памяти, благодаря которой память ядра при переключении не обязана постоянно обращаться к кэшу предыдущего ядра, что позволяет быстрее вводить те или иные блоки процессора в работу.

Увеличение частоты до 2.33 ГГц позволило Apple вплотную приблизиться к показателям конкурентов, однако достижение этих результатов потребовало от компании некоторых изменений в работе транзисторов. Так, Apple повысила напряжение и выбрала транзисторы с высоким показателем статической утечки. Подобные жертвы прошли для чипа сравнительно безболезненно, поскольку, как было отмечено выше, чип имеет лучшую схему теплоотвода, а накапливание статической энергии сводится на нет благодаря простой возможности отключения схемы с переходом на низкопроизводительные ядра.

Дополнительные ядра

Новые низкопроизводительные ядра Apple A10 представляют для нас не меньший интерес, так как насчет их происхождения в интернете существует огромное количество спекуляций. Существует мнение, что эти ядра не являются собственной разработкой Apple и берут свое начало в ARM, у которой имеются подобные схемы вроде Cortex-A53. Если это действительно так, мы можем лишь задаться вопросом, почему Apple впервые за долгое время решила отказаться от внутренней разработки в пользу сторонних технологий.

Стоит отметить, что чип первого поколения Apple Watch также представляет собой сторонний процессор Cortex-A7. Series 2, в свою очередь, перешли на двухъядерный чип S2, ядра которого, по мнению экспертов, могли быть включены и в A10 в качестве низкопроизводительного блока.

Главный вопрос заключается в том, почему Apple перешла на гетерогенную архитектуру именно сейчас. Судя по всему, A-серия процессоров в своем классическом исполнении достигла своего логического потолка, и дальнейшее увеличение производительности оказалось невозможно без повышения требований к питанию процессора, что и стало толчком к разделению чипа на высоко- и низкопроизводительные блоки.

Кроме того, размер полупроводниковой микросхемы является ограниченным, но до тех пор, пока каких-либо преимуществ можно добиться путем увеличения физического размера чипа, Apple будет идти этой дорогой. Расширенный функционал процессора обработки изображения, в свою очередь, мог стать поводом для увеличения кэш-памяти L3 SRAM с 4 до 8 МБ, что также могло сказаться на размере полупроводниковой микросхемы.

Графическая подсистема

Презентация чипа A10 закончилась на рассказе о графической подсистеме процессора. К счастью, Фил Шиллер рассказал о том, что графика базируется на шестикластерной разработке, что соответствует показателям чипа A9. Если говорить о производительности графической подсистемы, то A10 оказался на 50% быстрее предшественника, потребляя при рендеринге на треть меньше энергии. Если говорить о производительности Apple A10 в условиях реальной эксплуатации, то на сегодняшний день мы имеем один из самых быстрых процессоров на рынке, чего во многом позволила добиться программная оптимизация и внедрение собственного интерфейса Metal для программирования сложных приложений. Кроме того, внедрение новой архитектуры позволило Apple открыть дорогу для дальнейшей модернизации чипа A10, что гарантирует долгую жизнь этой технологии.

Никогда раньше не обращались за ремонтом электроники?

Не знаете с чего начать? В первую очередь - не переживать! Признаки хорошего и качественного сервиса видны сразу. Мы подготовили инструкцию для тех, кто ищет мастерскую или сервисный центр по ремонту Apple


Настоящие, честные и прозрачные цены на сайте


Реальные сроки и гарантия - это уважение к вам


Репутация профессионалов Apple и опыт в несколько лет

Нас знают 12 лет

Ремонтируем только Apple. Никогда не закрывались, нас знают десятки тысяч пользователей

Свой склад запчастей

Не нужно ждать! Крупный склад, актуальные запчасти в наличии, контроль качества

Ремонтируем для сервисов

Нам доверяют Сервисные центры. Наш опыт, и репутация говорят сами за себя.

Против сервиса на коленке

За качество! Правильно, профессионально и по технологии можно сделать только в СЦ.

Цены без "звездочек"

У нас все прозрачно и честноСпросите любого:КОМАНДА MACPLUS

Новости

} ?>

www.macplus.ru

Что представляет собой процессор Apple A10 Fusion в iPhone 7

Анонсированные прошлой осенью флагманские смартфоны iPhone 7 и iPhone 7 Plus оснащены новейшим процессором Apple A10 Fusion, и как утверждает Apple, это самый мощный из существующих чипов для смартфонов, который делает их не только быстрее всех предыдущих моделей iPhone, но и экономичнее. Те из вас, кто приобрёл себе эти смартфоны, уже смогли испытать Apple A10 Fusion в действии, мы же предлагаем вам узнать, что на самом деле представляют собой эти чипы и как они работают.

В отличие от своего двухъядерного предшественника Apple A9, процессор Apple A10 Fusion получил четыре ядра и он может работать быстрее, когда необходима высокая производительность, и экономичнее, когда мощность устройства не столь важна для текущих задач. Это стало возможным благодаря тому, что в Apple A10 Fusion инженеры Apple использовали совершенно новую архитектуру процессора, в которой два ядра отвечают за производительность, а другие два - за эффективность.


За счёт ядер высокой производительности Apple A10 Fusion работает в 120 раз быстрее процессора в оригинальном iPhone, и на 40% быстрее, чем чип A9 в iPhone 6S. При этом ядра эффективности в 5 раз экономичнее, чем ядра высокой производительности, что позволило добиться максимальной производительности и эффективности тогда, когда это требуется. В итоге, iPhone 7 работает от аккумулятора до двух часов дольше, а iPhone 7 Plus - до одного часа дольше, чем их предшественники.


Что касается графики, наряду с Apple A10 Fusion последние флагманы Apple получили усовершенствованный шестиядерный графический процессор (GPU), который работает в три раза быстрее, чем процессор A8 в iPhone 6, Apple TV четвертого поколения, и последней модели iPod Touch. Как отмечает компания Apple, мощность этого процессора позволяет обеспечить в мобильных играх для iPhone 7 и iPhone 7 Plus консольный уровень графики, что подтвердила демонстрация игры Oz: Broken Kingdom на осеннем эвенте компании.

Подводя итог отметим, что Apple A10 Fusion представляет собой гигантский шаг вперед по сравнению с процессором A9 в iPhone 6S. И это даже несмотря на то, что он по-прежнему выпускается на основе 14-нанометрового технологического процесса FinFET. Вероятно, в дальнейшем Apple удивит нас ещё больше, ведь согласно последним слухам, этой осенью она выведет на рынок «юбилейный» iPhone 8 с чипом нового поколения - A11, который будет выпускаться по 10-нанометровой технологии.

******************************************

Подписывайтесь на наш канал в Telegram, чтобы быть в курсе самых последних новостей и слухов из мира Apple и других крупнейших IT-компаний мира!Чтобы подписаться на канал Newapples в Telegram, перейдите по этой ссылке с любого устройства, на котором установлен этот мессенджер, и нажмите на кнопку «Присоединиться» внизу экрана.

newapples.ru

Apple A10X Fusion: что скрывало «сердце» новых iPad Pro

Представляя ранее в этом году в рамках конференции WWDC 2017 новые iPad Pro, компания Apple оставила за кадром технические подробности относительно лежащей в их основе однокристальной системы A10X Fusion. Купертиновцы ограничились лишь заявлением, что с этим чипом планшеты стали на 30 % производительнее по части CPU, а скорость обработки графики выросла на 40 % по сравнению с предыдущим поколением. Однако нашим коллегам из канадского издания TechInsights наконец-то представилась возможность детально изучить «сердце» этих устройств, и далее мы расскажем, что именно они в нём увидели.


Прежде всего, источник отмечает, что Apple A10X Fusion произведён компанией TSMC по 10-нм техпроцессу FinFET. Таким образом, перед нами первый выпущенный тайваньским чипмейкером 10-нм процессор, который появился в потребительском устройстве. И это весьма неожиданный поворот, ведь ранее все дорожные карты TSMC указывали на то, что таким чипом станет MediaTek Helio X30.


Благодаря новому техпроцессу A10X обладает на 34 % меньшей площадью, чем 16-нм A9X, - 96,4 мм2 против 143,9 мм2. Что касается остальных спецификаций микросхемы, то они включают шесть ядер (Hurricane + Zephyr), максимальную тактовую частоту порядка 2,36 ГГц, поддержку 4 Гбайт ОЗУ LPDDR4 и 128-битной шины памяти, а также наличие 8 Мбайт кеша L2. Интегрированный 12-кластерный GPU на уровне IP-блоков очень похож на графический ускоритель в A10, только занимающий меньше места ввиду 10-нм технологии, на основании чего можно предположить, что это одно и то же решение Imagination PowerVR. Просто в преддверии готовящегося перехода Apple на GPU собственной разработки, данный факт ею не афишируется.

Если вы заметили ошибку - выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Qualcomm Snapdragon 821 против Apple A10 Fusion

Введение

Двумя лидирующими производителями мобильных процессоров являются компании Qualcomm и Apple. Чипы Qualcomm находят применение во многих популярных смартфонах, тогда как Apple выпускает свои модели для собственных устройств iPhone и iPad. В прошлом году флагманским процессором Qualcomm была модель Snapdragon 821, тогда как конкуренцию ему составлял Apple A10 Fusion. Именно эти две системы на чипе задавали тон в плане производительности и функциональности мобильных процессоров. Какой же из них лучше?

Что в данном случае значит лучше? Производительность, энергоэффективность, графический чип? Беспроводной модем? У мобильных процессоров есть множество характеристик. По этой причине нам придётся сравнить эти процессоры по разным параметрам.

Спецификации

Qualcomm и Apple не любят рассказывать подробности о содержимом своих процессоров. Особой скрытностью отличается Apple, так что зачастую информацию приходится собирать из интернета из неофициальных источников.

Оба процессора является 4-ядерными и используют архитектуру Heterogeneous Multi-Processing (HMP). Это означает, что не все вычислительные ядра одинаковые. У них есть два производительных ядра и два энергоэкономичных. Это сочетание также известно под названием ARM big.LITTLE. Именно компания ARM стала основоположником такого подхода и внесла вклад в открытый исходный код проектов вроде ядра Linux.

Snapdragon 821 стал первой системой HMP компании Qualcomm на собственных вычислительных ядрах Kryo, хотя прежде она уже использовала HMP в процессоре Snapdragon 810 с ядрами Cortex-A57 и Cortex-A53. Также Qualcomm использует сочетание big.LITTLE и в других процессорах, вроде Snapdragon 652, где есть по четыре ядра Cortex-A72 и Cortex-A53.

Хотя A10 Fusion является процессором 4-го поколения ARM 64 бит, впервые он стал 4-ядерным и впервые использует HMP. Большой разницей между Snapdragon 821 и A10 Fusion является возможность первого задействовать одновременно все ядра, тогда как процессор Apple может только переключаться между ними.

Другим важным компонентом является GPU. Qualcomm использует собственную разработку, Apple делает то же самое, впервые для себя. Раньше Apple задействовала GPU PowerVR от компании Imagination Technologies, а теперь её собственный продукт полагается на PowerVR, но подробной информации нет. Что касается поддержки интерфейсов программировании, Adreno 530 в Snapdragon поддерживает OpenGL ES 3.2 и Vulkan 1.0, а процессор Apple OpenGL ES 3.0 и собственный Metal API.

Есть ещё два достойных упоминания отличия. Snapdragon 821 поддерживает стандарт быстрой подзарядки Qualcomm Quick Charge 3.0 с мощностью до 18 Вт, у процессора Apple подобных возможностей нет. В состав Snapdragon входит модем Qualcomm X12 LTE, в A10 Fusion встроенного модема нет, используется дополнительный чип сторонних производителей. Три из четырех экземпляра iPhone 7 применяют модемы от Qualcomm.

Производительность

Этот параметр вызывает наибольший интерес не только на мобильных устройствах, но и в процессорах для персональных компьютеров, серверов и суперкомпьютеров. Прежде чем углубиться в этот вопрос, нужно напомнить, что производительность и энергоэффективность являются противоположными показателями. Чем выше производительность, тем больше энергии расходуется. Есть разные уравнения, которые описывают соотношение этих двух параметров, в их состав входят такие переменные, как энергопотребление, напряжение, частота и емкостное сопротивление.

Если центральный процессор работает на более высокой частоте, он расходует больше энергии. Если он создал на меньшем технологическом процессе, он использует меньше энергии. Тем ниже напряжение, тем меньше расходуется энергии. На компьютерах энергопотребление не имеет такого важного значения, поскольку они подключены к розетке и охлаждаются большими вентиляторами, но на мобильных устройствах всё по-другому. Смартфоны работают от аккумулятора и не могут позволить себе слишком нагреваться.

Snapdragon 821 создан на технологическом процессе Samsung 14 нм, тогда как А10 произведён компанией TSMC на техпроцессе 16 нм. Это должно означать, что процессор Apple расходует больше энергии. Тактовая частота примерно одинаковая, 2,4 ГГц и 2,34 ГГц, но нужно принимать во внимание тактовую частоту энергоэффективных ядер A10. Также на производительность влияет скорость памяти, размер кэша L1 и L2, количество инструкций за такт.

Также играет роль разница в дизайне операционной системы. Android основана на Linux, тогда как iOS за основу использует BSD. Android задействует язык программирования Java, iOS применяет Objective-C и Swift.

Тестирование велось с применением смартфона Google Pixel на Snapdragon 821 и iPhone 7 на A10 Fusion. На Snapdragon 821 могут быть и более быстрые смартфоны в зависимости компонентов. В то же время, разница разрешения экранов iPhone 7 и iPhone 7 Plus влияет на производительность графического процессора. Также есть мнение, что модель iPhone 7 32 Гб, которая использовалась в данном случае, обладает более медленной флеш-памятью, чем модели 128 и 256 Гб.

Было запущено два набора тестов. AnTuTu, Geekbench и Basemark OS II есть на Android и iOS. Также были задействованы некоторые кастомные тесты. Результаты приведены ниже.

Как видно на графике, A10 Fusion опережает Snapdragon 821. Разница в производительности варьируется в разных бенчмарках. В AnTuTu она составляет всего 6%, тогда как в одноядерном тестировании Geekbench преимущество целых 126%. В остальных тестах разница около 30%.

AnTuTu проводит четыре вида тестов; 3D, UX, CPU и RAM. В разделе 3D Adreno 530 проявляет себя лучше, чем графический процессор в A10 Fusion. Несмотря на это, процессор Apple побеждает в остальных категориях. В некоторых кастомных тестах процессоры идут ноздря в ноздрю, вроде многоядерного теста центрального процессора и тестирования безопасности данных графического интерфейса. Есть некоторые тесты, в которых процессор Apple является явным лидером. В особенности это относится к тестированию оперативной памяти.

Второй набор тестов состоял из эксклюзивных для каждой платформы бенчмарков. У кроссплатформенных бенчмарков могут быть различные слабые места. Первая проблема в том, что платформы используют разные языки программирования. Это означает, что приложение для одной платформы не может быть легко перенесено на другую просто при помощи перекомпиляции. Другая проблема состоит в использовании библиотек среды выполнения. Например, если приложение должно манипулировать определёнными данными, сжимать, зашифровать, копировать и т.д., есть разные функции соответствующего языка программирования и операционной системы для этого. Но для бенчмарка это означает, что приложение проверяет эффективность библиотеки среды выполнения и операционной системы, а не аппаратных компонентов.

Есть разные методы написания приложений для двух платформ одновременно. Один заключается в применении комплекта средств разработки с поддержкой разных платформ, другой в использовании языка программирования C, который является своего рода универсальным языком программирования для разных платформ. Почти все операционные системы обладают компилятором С, включая Windows, Android, iOS, Linux, macOS.

В проведённых тестах рассматривались оба подхода. В одном наборе тестов применялся язык программирования LUA с поддержкой различных комплектов средств разработки для Android и iOS, другой набор бенчмарков задействовал C.

На LUA была два теста. Первый рассматривает только производительность центрального процессора без графики. Вычисляются сто хэшей SHA1 данных объёмом 4 Кб и другие задачи центрального процессора. Результатом является время прохождения теста.

Как видно на графике, iPhone 7 стал явным победителем. Второй тест отличается от первого, здесь задействована двухмерная графика. Используется движок физической обработки 2D для симуляции воды, которая льётся в контейнер. Приложение создано для работы на частоте 60 кадров/с, каждые две капли воды прибавляют один кадр. Измеряется, сколько капель обрабатываются и сколько пропускаются, максимальный результат может составлять 10800. Pixel набрал 10178, iPhone 7 10202.

В тестирование языка С приложение на iOS на самом деле написано на Objective-C для обработки пользовательского интерфейса, но код бенчмарка на обоих операционных системах одинаковый.

Первый тест постоянно вычисляет хэш-функцию SHA1 блока данных. Второй вычисляет первый миллион простых чисел с применением деления. Третий тест вычисляет произвольную функцию, которая выполняет множество различных математических функций. В каждом случае измеряется время на прохождение теста.

Как видим, во всех случаях Snapdragon 821 выигрывает. Складывается отчасти парадоксальная ситуация. Если предыдущие бенчмарки показали более ровные результаты, здесь лидирует только процессор Qualcomm. Впрочем, итоговый вывод заключается в том, что процессор Apple быстрее. В последних тестах компилятор языка С на Android NDK может быть лучше, чем компилятор в Xcode, или же из-за природы HMP производительные ядра A10 Fusion могли быть не задействованы в этих тестах.

Энергопотребление

Как было сказано выше, можно создать высокопроизводительный процессор, если можно позволить большое энергопотребление и мощную систему охлаждения. На мобильных устройствах это невозможно, поэтому важно следить за расходом энергии. Тестировать эффективность процессоров на мобильных устройствах непросто. Есть множество вариантов, включая разбор устройства и подключение проводов к системной плате. В данном случае мы применим программное обеспечение и математику.

Для начала яркость каждого смартфона выставлена на минимум, запущен домашний экран, на котором ничего не происходит. Через час анализируется расход энергии, чтобы понять, сколько расходуется в таком режиме простоя процессора. Pixel израсходовал 5%, iPhone 4%. Это ожидаемо, поскольку экран Pixel больше и у него выше разрешение, минимальная яркость тоже чуть выше. Ёмкость батареи iPhone 7 равна 1960 мАч, Pixel 2770 мАч. Значит, Pixel израсходовал за час 138 мАч, iPhone 7 78 мАч.

После этого на час было запущено демо Epic Citadel. Аппараты израсходовали по 20%. Очевидно, что 4% и 5% ушло на отображение на экране, поэтому сам тест на iPhone израсходовал 16% от общего заряда батареи, на Pixel 15%, что составляет 319 мАч и 415 мАч соответственно. Графический процессор Pixel работает тяжелее, поскольку ему нужно обрабатывать больше пикселей на экране в каждом кадре. Разница в количестве пикселей 2-кратная.

Такой же тест был выполнен для воспроизведения видео. Поменялся видеоплеер VLC и файл продолжительностью 1 час. iPhone потратил 11% заряда, Pixel 10%, без учёта экрана 7% и 5% или 137 мАч и 138 мАч.

Назвать очевидного победителя затруднительно. На iPhone аккумулятор меньше, что кто-то может посчитать доказательством большей энергоэффективности, но здесь меньше и разрешение экрана. Нужно заметить, что на iPhone 7 Plus аккумулятор крупнее, чем на Pixel, а разрешение экрана такое же. В трёхмерных играх аппарат Apple расходует меньше энергии, но графический процессор меньше нагружен. При отображении видео результаты почти одинаковые.

Заключение

Миллионы процессоров Qualcomm и Apple используются в данный момент в мобильных устройствах по всему миру. Если рассматривать в комплекте центральный и графический процессор, процессор обработки изображений и сигнальный, модем, у них есть свои плюсы и минусы.

Snapdragon 821 является более функциональным, поскольку он содержит в себе модем LTE, который используется на iPhone 7 отдельно, поддерживает быструю подзарядку и больше графических интерфейсов. Это отображает бизнес-модель компании Qualcomm, процессоры Snapdragon продаются производителям смартфонов, планшетов, телевизионных приставок, мультимедийных плееров и других устройств. Процессор A10 разработан только для iPhone и iPad.

Что касается производительности, лидирует процессор Apple, хотя ненамного и разница зависит от типа нагрузки. В некоторых тестах AnTuTu Snapdragon 821 не уступает, а в остальных тестах на языке программирования С превосходит своего конкурента.

По энергоэффективности большой разницы замечено не было, здесь свою роль играют другие компоненты, помимо процессора.

Смартфоны и планшеты на базе чипов ARM в последние годы наращивали производительность кратными темпами, тогда как на рынке x86 давно забыли о подобном прогрессе. В результате сегодня достигнут психологический перелом. По одноядерной производительности CPU новый чип Apple A10 Fusion, используемый в смартфонах iPhone 7 и 7 Plus, достиг уровня процессоров Intel Core для ноутбуков. Согласно тестам Geekbench , по этому показателю новые iPhone не только обходят конкурентов из стана Android, но и оказываются быстрее любого из выпущенных ноутбуков MacBook Air, многих компьютеров Mac и даже рабочей станции Mac Pro 2013 года .

Конечно, сравнивать смартфоны с настольными системами странно, но сам факт говорит очень многое о направлении развития индустрии в последние годы и о взрывном развитии мобильного рынка. Многие годы Intel доминировала в секторе потребительских процессоров, но уже сегодня её положение здесь нельзя назвать устойчивым.

В современном мире, который медленно, но верно смещается в сектор мобильных вычислительных устройств, будущее Intel становится ещё туманнее. Рекламодатели начинают вкладывать в мобильный сектор всё больше средств, уменьшая инвестиции в область рекламы для ПК — это происходит гораздо быстрее, чем в прошлом сворачивание рынка печатной рекламы. Да и люди приобретают смартфоны в пять раз чаще, чем новые ПК.

В 2015 году, по данным IDC, на рынке было продано 1,43 млрд смартфонов против 276 млн ПК. Одна лишь Apple в последней четверти 2015 года реализовала больше iPhone (74,8 млн), чем персональных компьютеров вся индустрия вместе взятая (71,9 млн)! Уже сегодня, если судить по одним лишь цифрам, процессоры Apple A по меньшей мере так же важны, как большая часть чипов Intel x86.

Но теперь, когда A10 Fusion может тягаться с мобильными процессорами Intel по производительности, лишь вопрос операционной системы останавливает Apple от запуска ноутбуков на собственных процессорах: macOS оптимизирована для x86. Но купертинская компания обладает достаточными ресурсами, чтобы начать превращение iOS в универсальную платформу. Продвижение iPad Pro, возможно, лишь первый шаг на этом пути. И в рамках этого шага такие настольные тяжеловесы, как Adobe Photoshop или Lightroom, уже появляются на iOS с весьма широкой функциональностью.

Важным преимуществом ПК до сих пор остаются богатые графически игры высокого класса. Но это верно только если речь идёт о Windows-системах: для macOS этот фактор куда менее значим. Apple продолжает развивать macOS, но сегодня большинство новшеств последней приходят из iOS. Таким образом, во многих отношениях macOS является платформой, существующей ради совместимости со старым ПО и в любой момент Apple может назвать её устаревшей, сконцентрировав все силы на развитии iOS.

Для поколения, выросшего в золотую эпоху ПК, сложно понять и принять новый мир, в котором появилось уже новое поколение людей, очень далёкое от настольных систем. ПК сегодня постепенно превращаются в подобие мэйнфреймов: это внушительные, мощные и габаритные системы, необходимость в которых возникает лишь в случае, когда необходимо решить особо сложные задачи.

Рынок для мощных систем никуда не исчезнет: в ПК можно установить производительные многоядерные процессоры, несколько видеокарт высокого класса, огромный массив накопителей. Но рынок для таких систем будет продолжать сокращаться вместе с ростом мощностей мобильных чипов и возможностей мобильного ПО.

Apple явно уменьшает внимание к настольному рынку (возможно, из-за недовольства новыми чипами Intel): многие её компьютеры в течение долгого времени не получали обновлений (например, MacBook Pro и Air так и не обзавелись чипами Intel Skylake). Microsoft даже раскритиковала купертинцев за недостаток внимания к рынку ПК. Возможно, это ещё один признак желания Apple переключиться на собственные чипы в компьютерах Mac.

Справедливые, не завышенные и не заниженные. На сайте Сервиса должны быть цены. Обязательно! без "звездочек", понятно и подробно, где это технически возможно - максимально точные, итоговые.

При наличии запчастей до 85% процентов сложных ремонтов можно завершить за 1-2 дня. На модульный ремонт нужно намного меньше времени. На сайте указана примерная продолжительность любого ремонта.

Гарантия и ответственность

Гарантию должны давать на любой ремонт. На сайте и в документах все описано. Гарантия это уверенность в своих силах и уважение к вам. Гарантия в 3-6 месяцев - это хорошо и достаточно. Она нужна для проверки качества и скрытых дефектов, которые нельзя обнаружить сразу. Видите честные и реальные сроки (не 3 года), вы можете быть уверены, что вам помогут.

Половина успеха в ремонте Apple - это качество и надежность запчастей, поэтому хороший сервис работает с поставщиками на прямую, всегда есть несколько надежных каналов и свой склад с проверенными запчастями актуальных моделей, чтобы вам не пришлось тратить лишнее время.

Бесплатная диагностика

Это очень важно и уже стало правилом хорошего тона для сервисного центра. Диагностика - самая сложная и важная часть ремонта, но вы не должны платить за нее ни копейки, даже если вы не ремонтируете устройство по ее итогам.

Ремонт в сервисе и доставка

Хороший сервис ценит ваше время, поэтому предлагает бесплатную доставку. И по этой же причине ремонт выполняется только в мастерской сервисного центра: правильно и по технологии можно сделать только на подготовленном месте.

Удобный график

Если Сервис работает для вас, а не для себя, то он открыт всегда! абсолютно. График должен быть удобным, чтобы успеть до и после работы. Хороший сервис работает и в выходные, и в праздники. Мы ждем вас и работаем над вашими устройствами каждый день: 9:00 - 21:00

Репутация профессионалов складывается из нескольких пунктов

Возраст и опыт компании

Надежный и опытный сервис знают давно.
Если компания на рынке уже много лет, и она успела зарекомендовать себя как эксперта, к ней обращаются, о ней пишут, ее рекомендуют. Мы знаем о чем говорим, так как 98% поступающих устройств в СЦ восстанавливется.
Нам доверяют и передают сложные случаи другие сервисные центры.

Сколько мастеров по направлениям

Если вас всегда ждет несколько инженеров по каждому виду техники, можете быть уверены:
1. очереди не будет (или она будет минимальной) - вашим устройством займутся сразу.
2. вы отдаете в ремонт Macbook эксперту именно в области ремонтов Mac. Он знает все секреты этих устройств

Техническая грамотность

Если вы задаете вопрос, специалист должен на него ответить максимально точно.
Чтобы вы представляли, что именно вам нужно.
Проблему постараются решить. В большинстве случаев по описанию можно понять, что случилось и как устранить неисправность.

Двумя лидирующими производителями мобильных процессоров являются компании Qualcomm и Apple. Чипы Qualcomm находят применение во многих популярных смартфонах, тогда как Apple выпускает свои модели для собственных устройств iPhone и iPad. В прошлом году флагманским процессором Qualcomm была модель Snapdragon 821, тогда как конкуренцию ему составлял Apple A10 Fusion. Именно эти две системы на чипе задавали тон в плане производительности и функциональности мобильных процессоров. Какой же из них лучше?

Что в данном случае значит лучше? Производительность, энергоэффективность, графический чип? Беспроводной модем? У мобильных процессоров есть множество характеристик. По этой причине нам придётся сравнить эти процессоры по разным параметрам.

Спецификации

Qualcomm и Apple не любят рассказывать подробности о содержимом своих процессоров. Особой скрытностью отличается Apple, так что зачастую информацию приходится собирать из интернета из неофициальных источников.

Оба процессора является 4-ядерными и используют архитектуру Heterogeneous Multi-Processing (HMP). Это означает, что не все вычислительные ядра одинаковые. У них есть два производительных ядра и два энергоэкономичных. Это сочетание также известно под названием ARM big.LITTLE. Именно компания ARM стала основоположником такого подхода и внесла вклад в открытый исходный код проектов вроде ядра Linux.

Snapdragon 821 стал первой системой HMP компании Qualcomm на собственных вычислительных ядрах Kryo, хотя прежде она уже использовала HMP в процессоре Snapdragon 810 с ядрами Cortex-A57 и Cortex-A53. Также Qualcomm использует сочетание big.LITTLE и в других процессорах, вроде Snapdragon 652 , где есть по четыре ядра Cortex-A72 и Cortex-A53.

Хотя A10 Fusion является процессором 4-го поколения ARM 64 бит, впервые он стал 4-ядерным и впервые использует HMP. Большой разницей между Snapdragon 821 и A10 Fusion является возможность первого задействовать одновременно все ядра, тогда как процессор Apple может только переключаться между ними.

Другим важным компонентом является GPU. Qualcomm использует собственную разработку, Apple делает то же самое, впервые для себя. Раньше Apple задействовала GPU PowerVR от компании Imagination Technologies, а теперь её собственный продукт полагается на PowerVR, но подробной информации нет. Что касается поддержки интерфейсов программировании, Adreno 530 в Snapdragon поддерживает OpenGL ES 3.2 и Vulkan 1.0, а процессор Apple OpenGL ES 3.0 и собственный Metal API.

Есть ещё два достойных упоминания отличия. Snapdragon 821 поддерживает стандарт быстрой подзарядки Qualcomm Quick Charge 3.0 с мощностью до 18 Вт, у процессора Apple подобных возможностей нет. В состав Snapdragon входит модем Qualcomm X12 LTE, в A10 Fusion встроенного модема нет, используется дополнительный чип сторонних производителей. Три из четырех экземпляра iPhone 7 применяют модемы от Qualcomm.

Производительность

Этот параметр вызывает наибольший интерес не только на мобильных устройствах, но и в процессорах для персональных компьютеров, серверов и суперкомпьютеров. Прежде чем углубиться в этот вопрос, нужно напомнить, что производительность и энергоэффективность являются противоположными показателями. Чем выше производительность, тем больше энергии расходуется. Есть разные уравнения, которые описывают соотношение этих двух параметров, в их состав входят такие переменные, как энергопотребление, напряжение, частота и емкостное сопротивление.

Если центральный процессор работает на более высокой частоте, он расходует больше энергии. Если он создал на меньшем технологическом процессе, он использует меньше энергии. Тем ниже напряжение, тем меньше расходуется энергии. На компьютерах энергопотребление не имеет такого важного значения, поскольку они подключены к розетке и охлаждаются большими вентиляторами, но на мобильных устройствах всё по-другому. Смартфоны работают от аккумулятора и не могут позволить себе слишком нагреваться.

Snapdragon 821 создан на технологическом процессе Samsung 14 нм, тогда как А10 произведён компанией TSMC на техпроцессе 16 нм. Это должно означать, что процессор Apple расходует больше энергии. Тактовая частота примерно одинаковая, 2,4 ГГц и 2,34 ГГц, но нужно принимать во внимание тактовую частоту энергоэффективных ядер A10. Также на производительность влияет скорость памяти, размер кэша L1 и L2, количество инструкций за такт.

Также играет роль разница в дизайне операционной системы. Android основана на Linux, тогда как iOS за основу использует BSD. Android задействует язык программирования Java, iOS применяет Objective-C и Swift.

Тестирование велось с применением смартфона Google Pixel на Snapdragon 821 и iPhone 7 на A10 Fusion. На Snapdragon 821 могут быть и более быстрые смартфоны в зависимости компонентов. В то же время, разница разрешения экранов iPhone 7 и iPhone 7 Plus влияет на производительность графического процессора. Также есть мнение, что модель iPhone 7 32 Гб, которая использовалась в данном случае, обладает более медленной флеш-памятью, чем модели 128 и 256 Гб.

Было запущено два набора тестов. AnTuTu, Geekbench и Basemark OS II есть на Android и iOS. Также были задействованы некоторые кастомные тесты. Результаты приведены ниже.

Как видно на графике, A10 Fusion опережает Snapdragon 821. Разница в производительности варьируется в разных бенчмарках. В AnTuTu она составляет всего 6%, тогда как в одноядерном тестировании Geekbench преимущество целых 126%. В остальных тестах разница около 30%.

AnTuTu проводит четыре вида тестов; 3D, UX, CPU и RAM. В разделе 3D Adreno 530 проявляет себя лучше, чем графический процессор в A10 Fusion. Несмотря на это, процессор Apple побеждает в остальных категориях. В некоторых кастомных тестах процессоры идут ноздря в ноздрю, вроде многоядерного теста центрального процессора и тестирования безопасности данных графического интерфейса. Есть некоторые тесты, в которых процессор Apple является явным лидером. В особенности это относится к тестированию оперативной памяти.

Второй набор тестов состоял из эксклюзивных для каждой платформы бенчмарков. У кроссплатформенных бенчмарков могут быть различные слабые места. Первая проблема в том, что платформы используют разные языки программирования. Это означает, что приложение для одной платформы не может быть легко перенесено на другую просто при помощи перекомпиляции. Другая проблема состоит в использовании библиотек среды выполнения. Например, если приложение должно манипулировать определёнными данными, сжимать, зашифровать, копировать и т.д., есть разные функции соответствующего языка программирования и операционной системы для этого. Но для бенчмарка это означает, что приложение проверяет эффективность библиотеки среды выполнения и операционной системы, а не аппаратных компонентов.

Есть разные методы написания приложений для двух платформ одновременно. Один заключается в применении комплекта средств разработки с поддержкой разных платформ, другой в использовании языка программирования C, который является своего рода универсальным языком программирования для разных платформ. Почти все операционные системы обладают компилятором С, включая Windows, Android, iOS, Linux, macOS.

В проведённых тестах рассматривались оба подхода. В одном наборе тестов применялся язык программирования LUA с поддержкой различных комплектов средств разработки для Android и iOS, другой набор бенчмарков задействовал C.

На LUA была два теста. Первый рассматривает только производительность центрального процессора без графики. Вычисляются сто хэшей SHA1 данных объёмом 4 Кб и другие задачи центрального процессора. Результатом является время прохождения теста.

Как видно на графике, iPhone 7 стал явным победителем. Второй тест отличается от первого, здесь задействована двухмерная графика. Используется движок физической обработки 2D для симуляции воды, которая льётся в контейнер. Приложение создано для работы на частоте 60 кадров/с, каждые две капли воды прибавляют один кадр. Измеряется, сколько капель обрабатываются и сколько пропускаются, максимальный результат может составлять 10800. Pixel набрал 10178, iPhone 7 10202.

В тестирование языка С приложение на iOS на самом деле написано на Objective-C для обработки пользовательского интерфейса, но код бенчмарка на обоих операционных системах одинаковый.

Первый тест постоянно вычисляет хэш-функцию SHA1 блока данных. Второй вычисляет первый миллион простых чисел с применением деления. Третий тест вычисляет произвольную функцию, которая выполняет множество различных математических функций. В каждом случае измеряется время на прохождение теста.

Как видим, во всех случаях Snapdragon 821 выигрывает. Складывается отчасти парадоксальная ситуация. Если предыдущие бенчмарки показали более ровные результаты, здесь лидирует только процессор Qualcomm. Впрочем, итоговый вывод заключается в том, что процессор Apple быстрее. В последних тестах компилятор языка С на Android NDK может быть лучше, чем компилятор в Xcode, или же из-за природы HMP производительные ядра A10 Fusion могли быть не задействованы в этих тестах.

Энергопотребление

Как было сказано выше, можно создать высокопроизводительный процессор, если можно позволить большое энергопотребление и мощную систему охлаждения. На мобильных устройствах это невозможно, поэтому важно следить за расходом энергии. Тестировать эффективность процессоров на мобильных устройствах непросто. Есть множество вариантов, включая разбор устройства и подключение проводов к системной плате. В данном случае мы применим программное обеспечение и математику.

Для начала яркость каждого смартфона выставлена на минимум, запущен домашний экран, на котором ничего не происходит. Через час анализируется расход энергии, чтобы понять, сколько расходуется в таком режиме простоя процессора. Pixel израсходовал 5%, iPhone 4%. Это ожидаемо, поскольку экран Pixel больше и у него выше разрешение, минимальная яркость тоже чуть выше. Ёмкость батареи iPhone 7 равна 1960 мАч, Pixel 2770 мАч. Значит, Pixel израсходовал за час 138 мАч, iPhone 7 78 мАч.

После этого на час было запущено демо Epic Citadel. Аппараты израсходовали по 20%. Очевидно, что 4% и 5% ушло на отображение на экране, поэтому сам тест на iPhone израсходовал 16% от общего заряда батареи, на Pixel 15%, что составляет 319 мАч и 415 мАч соответственно. Графический процессор Pixel работает тяжелее, поскольку ему нужно обрабатывать больше пикселей на экране в каждом кадре. Разница в количестве пикселей 2-кратная.

Такой же тест был выполнен для воспроизведения видео. Поменялся видеоплеер VLC и файл продолжительностью 1 час. iPhone потратил 11% заряда, Pixel 10%, без учёта экрана 7% и 5% или 137 мАч и 138 мАч.

Назвать очевидного победителя затруднительно. На iPhone аккумулятор меньше, что кто-то может посчитать доказательством большей энергоэффективности, но здесь меньше и разрешение экрана. Нужно заметить, что на iPhone 7 Plus аккумулятор крупнее, чем на Pixel, а разрешение экрана такое же. В трёхмерных играх аппарат Apple расходует меньше энергии, но графический процессор меньше нагружен. При отображении видео результаты почти одинаковые.

Заключение

Миллионы процессоров Qualcomm и Apple используются в данный момент в мобильных устройствах по всему миру. Если рассматривать в комплекте центральный и графический процессор, процессор обработки изображений и сигнальный, модем, у них есть свои плюсы и минусы.

Snapdragon 821 является более функциональным, поскольку он содержит в себе модем LTE, который используется на iPhone 7 отдельно, поддерживает быструю подзарядку и больше графических интерфейсов. Это отображает бизнес-модель компании Qualcomm, процессоры Snapdragon продаются производителям смартфонов, планшетов, телевизионных приставок, мультимедийных плееров и других устройств. Процессор A10 разработан только для iPhone и iPad.

Что касается производительности, лидирует процессор Apple, хотя ненамного и разница зависит от типа нагрузки. В некоторых тестах AnTuTu Snapdragon 821 не уступает, а в остальных тестах на языке программирования С превосходит своего конкурента.

По энергоэффективности большой разницы замечено не было, здесь свою роль играют другие компоненты, помимо процессора.



Загрузка...