sonyps4.ru

Новая эра процессоров от AMD: Обзор презентации процессора Ryzen (Zen). Умный процессор? Новая система охлаждения

Чего нам ждать от компании в 2017 году?

Некоторое время назад AMD поделилась с широкой общественностью очередной порцией данных о новой микроархитектуре Zen, а также платформе AM4, которая (вкупе с новыми процессорами и APU) со следующего года должна стать основным продуктом компании для десктопного рынка. Понятно, что предварительная информация исчерпывающей не является, однако она достаточно интересна, поскольку позволяет примерно понять, чего следует ждать от новых продуктов (а чего - не стоит). Это и явилось поводом для написания данного материала, посвященного не микроархитектурным тонкостям (безусловно, важным, но далеко не всем), а, скажем так, потребительским характеристикам новой платформы.

Текущие проблемы

Как мы уже писали почти два года назад , последние несколько лет ситуация с настольными платформами AMD выглядела несколько странной. Фактически основные события происходили в области APU (как компания называет процессоры с интегрированной графикой), где с 2011 года сменились две с половиной платформы: FM1, FM2 и совместимая с последней сверху вниз FM2+. Впрочем, все перечисленные решения (даже платформу FM1 , на рынке не слишком задержавшуюся) можно считать современными: высокая степень интеграции позволяет создавать законченные системы, используя буквально пару чипов - собственно процессор (большинство которых снабжено отличными по меркам интегрированных решений GPU) и чипсет. Линейка же чипсетов также соответствует современным требованиям - в плане интеграции функциональных возможностей AMD очень часто опережала Intel, первой снабдив свои микросхемы и встроенной поддержкой USB 3.0, и скоростью в 6 Гбит/с для всех SATA-портов, например. Единственное, что мешало широкой экспансии решений для этой платформы - относительно невысокая производительность и высокое энергопотребление процессорной части APU в сравнении с конкурирующими решениями. Более высокую производительность можно было получить, выбирая решения для платформы АМ3+, по сути восходящей еще к платформам начала века. Да и сами по себе многомодульные процессоры для нее существенно не обновлялись с 2012 года, так что могли продаваться лишь благодаря низким ценам при относительно высокой себестоимости, обусловленной использованием уже порядком устаревшего техпроцесса 32 нм. Последнее в какой-то степени касалось и APU, которые за время существования «перешли» с упомянутых норм лишь на 28 нм, что тоже пиком технологий давно не является - во многом именно это вызывало упомянутые проблемы с энергопотреблением.

Стоит отметить, что такое положение дел компания «нормальным» не считала никогда: унификация платформ изначально планировалась как раз на 2012 год. Однако на практике этого не случилось, так что своеобразное «сидение на двух стульях» продолжается до сих пор. Таким образом, по сути, ныне уже устарели и процессоры, и платформы AMD, так что ситуацию нужно менять радикально. Это компания и планирует сделать.

АМ4: наконец-то единая платформа

AMD полностью подтвердила существующие предположения о характеристиках новой платформы, причем даже «с горкой». В частности, к ключевым особенностям AM4 компания относит следующее:

  • Память типа DDR4
  • Полная поддержка PCIe 3.0
  • USB 3.1 («полноценный», т. е. Gen2 со скоростью до 10 Гбит/с)
  • NVMe и SATA Express

Что касается последнего пункта, то, в принципе, серьезные аппаратные доработки для его реализации не требовались: она возможна и в рамках существующих платформ. В частности, многие производители системных плат даже ассортимент моделей с АМ3+ обновили, предусмотрев для них загрузку с NVMe-накопителей. Более важным для полноценного функционирования NVMe-накопителей на максимальной скорости является поддержка PCIe 3.0, которой в рамках АМ3+ не было вообще, а APU для FM2+ поддерживали лишь 24 линии данного интерфейса, часть которых «уходила» на связь с чипсетом, а 16 могли потребоваться видеокарте. Кроме того, как уже было сказано выше, высокопроизводительных процессоров для FM2+ не существовало, так что платформа давно и прочно обосновалась в бюджетном секторе, где протокол NVMe не слишком актуален (просто потому, что пока все поддерживающие его накопители исключительно «небюджетны»). АМ4 же по планам должна стать решением для всех сегментов рынка, так что для нее это может стать необходимым - особенно учитывая тягу AMD к созданию «долгоживущих» платформ, что весьма ценят многие пользователи. Ровно то же самое относится и к поддержке USB 3.1: пока она необходимостью не является, однако в будущем может пригодиться. Опять же, как уже было сказано выше, предыдущую версию стандарта AMD реализовала в чипсетах на год раньше, чем Intel, так что логично того же ожидать и для новой версии USB.

Освоение DDR4 - это давно ожидавшийся шаг, поскольку производительность интегрированных GPU сильно зависит от пропускной способности памяти. Ранее решать эту проблему приходилось повышением частот DDR3, но такой подход, мягко говоря, не идеален с точки зрения цены и энергопотребления модулей. Собственно, именно поэтому разговоры о внедрении поддержки DDR4 в APU AMD шли еще с 2013 года (тогда высказывалась масса предположений о двух вариантах в ожидающихся Kaveri), но долгое время новые модули памяти были слишком дороги для использования в массовых системах. На данный момент отгрузки DDR4 уже превосходят DDR3, так что цены сравнялись - с тенденцией в пользу DDR4. В общем, пришло время прощаться со старыми стандартами, причем, судя по всему, AMD планирует это сделать более резко, чем Intel - та, напомним, пока полностью от DDR3 не отказывается. С другой стороны, последнее серьезное обновление LGA115x было в прошлом году, а наиболее интересные продукты для АМ4 появятся в следующем, так что такая разница в подходах вполне объяснима.

Bristol Ridge: промежуточное решение

Впрочем, «обкатка» платформы уже практически началась: как и предполагалось, некоторое количество процессоров для нее выпущено прямо сейчас и уже отгружается крупным производителям. Все они по-прежнему относятся к бюджетному сегменту, так что и самый функциональный из чипсетов (Х380) компания пока «зажала», поставляя лишь пару недорогих модификаций - А320 и В350. Тем не менее, на практике многим будет достаточно и их. Чего в них нет, так это поддержки PCIe 3.0 - лишь 4 или 6 линий PCIe 2.0 соответственно. С другой стороны, 10 линий PCIe 3.0 (не считая нужных для связи с чипсетом) поддерживаются самими нынешними процессорами/APU, а наличие в этих APU мощной (для решений такого класса) графики в недорогом компьютере точно оставит процессорные линии PCIe свободными для периферии.

Вообще же, по сути, можно наблюдать унификацию мобильных и настольных решений: APU семейства Bristol Ridge - это наследники уже знакомых нам Carrizo . Кроме упомянутых 10 линий PCIe 3.0 (х8+х1+х1, две последние можно одновременно «отдать» NVMe-накопителю), они сами поддерживают 4 порта USB 3.0 (оно же USB 3.1 Gen1) и 2 порта SATA600. Использование младшего чипсета А320 добавляет к вышеуказанному разъем USB 3.1 (полноскоростной, как уже было отмечено выше), 2 порта USB 3.0, 6 портов USB 2.0, 4 линии PCIe 2.0, 2 порта SATA600 и 1 разъем SATA Express (который можно использовать как пару SATA). В В350 функциональные возможности аналогичны, но добавлен еще 1 порт USB 3.1 и 2 линии PCIe 2.0. Кроме того, по доброй традиции все решения AMD поддерживают создание RAID-массивов уровней 0, 1 и 10.

Как это соотносится с бюджетными предложениями Intel, типа H110 и B150? Для упрощения понимания соберем характеристики платформ в таблицу, добавив к ней и массовый A78 для уходящей с рынка FM2+.

Чипсет AMD A78 AMD A320 AMD B350 Intel H110 Intel B150
Линий PCIe 3.0 (сумм.) 8/16 10 10 16 24
Линий PCIe 2.0 4 4 6 6 0
Портов SATA600 6 до 6 до 6 4 до 6
RAID 0/1/10 да да да нет нет
Портов SATA Express 0 1 1 0 0
Портов USB 3.1 0 1 2 0 0
Портов USB 3.0 4 6 6 4 6
Портов USB 2.0 14 6 6 6 6

Итак, единственное формально слабое место новой платформы - количество линий PCIe 3.0, обеспечиваемых процессором: всего 10 против обычных в массовом сегменте 16. Но это место слабое лишь пока - просто на данный момент других моделей APU нет, но в будущем они появятся. В конце концов, у решений на FM2+ (A78) линий PCIe 3.0 может и вовсе не оказаться - если установить в плату процессор под FM2, каковые поддерживали только PCIe 2.0. А у платформ Intel другая проблема: все процессоры для LGA1151 поддерживают PCIe 3.0 x16, но на платах с бюджетными чипсетами такая конфигурация линий будет единственной - «расщеплять» эти линии по слотам/устройствам не положено. AMD придерживается иной практики, так что в системе с А320 можно, например, «гонять» два NVMe-накопителя на PCIe 3.0 - а в системе с Н110 нельзя (впрочем, PCIe 3.0 x2 по пропускной способности равно PCIe 2.0 х4, но во многих ли недорогих платах на Н110 найдется возможность реализовать хотя бы такой слот?). Насколько это (равно как и поддержка SATA Express или RAID-массивов) востребовано в недорогих системах - вопрос отдельный. Но факт остается фактом: по сути, даже самые младшие варианты новой платформы сравнимы по функциональности со старшими решениями Intel.

Что же касается возможностей подключения внешней периферии, то по общему количеству USB-портов рекордсменом продолжают оставаться чипсеты для FM2+. Но рекорд этот чисто теоретический - на самом деле столько USB 2.0 в конечных решениях просто не бывает востребовано. А вот четырех высокоскоростных USB-портов иногда уже маловато, что «бьет» и по Intel Н110. При этом самый младший чипсет для АМ4 поддерживает семь портов USB 3.0 (один из которых вообще USB 3.1, что пока, как уже было сказано выше, является в основном заделом на будущее, однако на скорости USB 3.0 этот порт можно использовать уже сейчас) - даже больше, чем В150. Возможно, в «двухсотой» серии чипсетов Intel «подрихтует» и младшие модификации, но пока ее нет, а А320 и В350 уже отгружаются производителям.

Новыми красками должна заиграть разработка компактных компьютеров на базе процессоров AMD, поскольку часть функциональных возможностей традиционных чипсетов уже перенесена в собственно процессоры, что в какой-то степени роднит АМ4 не только с FM2+ или АМ3+, но и с АМ1. В АМ1, правда, функциональность SoC была сильно ограниченной, да и возможности ее расширения отсутствовали, но сейчас эта проблема снята. Точнее, она была снята в ноутбучных Carrizo год назад, и нет ничего удивительного в том, что при разработке новой настольной платформы эти достижения были учтены и унаследованы. Что это дает на практике? Например, без каких-либо особых сложностей можно выпускать платы формата Mini-STX с заменяемым процессором, но «сэкономив» на микросхеме чипсета - четырех портов USB 3.0 и пары SATA600 (один из которых в сочетании с PCIe 3.0 x4 разумно отвести под слот M.2) там хватит. Раньше с этим были сложности - теперь нет.

Процессор AMD A12-9800 AMD A12-9800E AMD A10-9700 AMD A10-9700E AMD A8-9600 AMD A6-9500 AMD A6-9500E AMD Athlon X4 950
Технология пр-ва 28 нм
Частота ядра std/max, ГГц 3,8/4,2 3,1/3,8 3,5/3,8 3,1/3,5 3,1/3,4 3,5/3,8 3,0/3,4 3,5/3,8
Кол-во модулей / потоков вычисления 2/4 2/4 2/4 2/4 2/4 1/2 1/2 2/4
Кэш L1 (сумм.), I/D, КБ 192/128 192/128 192/128 192/128 192/128 96/64 96/64 192/128
Кэш L2, КБ 2×1024 2×1024 2×1024 2×1024 2×1024 1×1024 1×1024 2×1024
Оперативная память 2×DDR4-2400
TDP, Вт 65 35 65 35 65 65 35 65
Графика Radeon R7 Radeon R7 Radeon R7 Radeon R7 Radeon R7 Radeon R5 Radeon R5 -
Кол-во ГП 512 512 384 384 384 384 384 -
Частота std/max, МГц 1108 900 1029 847 900 1029 800 -

Но почему при всех этих интересных особенностях мы текущую реализацию платформы склонны считать промежуточным решением? Дело в том, что сильно ограничены существующие сейчас для нее процессоры. AMD, конечно, высоко оценивает APU «седьмого поколения», но то же самое говорилось и про предыдущие модели. А на практике это лишь дальнейшее развитие все той же модульной архитектуры, дебютировавшей еще в 2011 году, и все тот же техпроцесс 28 нм, используемый с 2014 года. Да, как показали наши тесты, процессоры Carrizo нередко оказываются (благодаря оптимизациям) быстрее Kaveri, работающих на более высокой тактовой частоте, а поддержка памяти типа DDR4 должна их еще немного «подстегнуть». Интегрированный GPU и ранее был одним из лучших в своем классе, а с 2015 года получил обновленный блок видеообработки с аппаратной поддержкой VP9 и H.265/HEVC с разрешением до 4К. Все это верно - но тянет лишь на эволюционные изменения, не меняющие принципиально класс решения. Так, единственный на данный момент Athlon X4 для новой платформы, модель с индексом 950, во всем, кроме типа оперативной памяти, идентичен Athlon X4 845 для FM2+, да и другим новым процессорам более-менее близкие аналоги подобрать можно. Поэтому настоящий старт платформы АМ4 ожидается лишь в следующем году - во всяком случае, если планы AMD будут выполнены.

Zen: что нового?

Итак, какие проблемы стояли перед компанией? Первоочередным спорным моментом разработанной модульной архитектуры были сами модули: для экономии транзисторного бюджета входящая в них пара «х86-ядер» зависит друг от друга, поскольку разделяет некоторые блоки. В частности, в первых реализациях единым был даже декодер команд и кэш инструкций. Второе слабое место - система памяти. На момент разработки первых процессоров сделать быстрый кэш второго уровня получалось, а вот L3 так и остался внешним по отношению к основной части процессора, так что работал асинхронно с ней и на более низких тактовых частотах. В итоге в старших конфигурациях процессоров семейства FX суммарная емкость L2 оказывалась равной L3, что вынуждало AMD продолжать использование эксклюзивной архитектуры кэш-памяти. Та прекрасно работала во времена одноядерных процессоров, но затрудняла обмен данными между вычислительными потоками в многоядерных, усложняя алгоритмы: если чего-то нет в L3, оно может быть в L2 одного из модулей, а может - только в памяти. И даже единый L2 на пару ядер, столь удобный у Core 2 Duo, для синхронизации использовать не выходило: наибольшую эффективность демонстрировал модуль, выполняющий всего один поток команд, т. е. загружать «вторые половинки» (на самом деле, меньшую их часть) работой имело смысл только при слишком большом ее количестве, но не на привычных для массовых нагрузок двух-четырех потоках.

А в APU бо́льшую часть кристалла занимало графическое ядро, так что эти модели остались вовсе без единой кэш-памяти, пусть даже медленной, поскольку иначе процессор получился бы слишком большим. Собственно, при использовании одинаковых норм производства APU по себестоимости конкурировали со старшими четырехъядерными моделями массовой линейки процессоров Intel, а старшие процессоры с четырьмя модулями оказывались еще более дорогими. Но при этом о конкуренции в плане производительности можно было говорить, только сравнивая четыре модуля AMD с четырьмя же ядрами Intel - масла в огонь подливал и всего один SIMD-блок на модуль. При этом процессоры Intel и сами по себе были дешевле в производстве, а из-за особенностей платформ стоили существенно меньше. APU же «воевали» только с совсем дешевыми двухъядерными процессорами Intel, да и это делали с переменным успехом. Конечно, они имели преимущество в производительности графической части, но далеко не всегда оно было востребовано.

Что меняется в новом поколении (как мы и обещали - простым языком, не вдаваясь в технические дебри)? «Базовый элемент» Zen чем-то напоминает двухмодульный процессор предыдущей архитектуры, но с существенными доработками. Во-первых, он включает не четыре попарно объединенных «х86-ядра», а четыре полноценных и независимых ядра - независимых даже в плане кэш-памяти второго уровня, суммарная емкость которой уменьшилась вдвое, зато теперь у каждого ядра появился свой L2 (и, разумеется, собственный декодер команд вместе с кэш-памятью инструкций). Во-вторых, кэш-память третьего уровня стала неотъемлемой составляющей такого вот «кирпичика». Судя по всему, работать она будет существенно быстрее, чем в предшественниках, а ее емкость составляет 8 МБ. В-третьих, что немаловажно, в AMD тоже сумели реализовать технологию симметричной многопоточности, так что каждое ядро может выполнять команды не одного, а двух потоков.

Фактически, как видите, в «базовом» варианте Zen сильно напоминает топовые процессоры Intel массовых серий, т. е. четырехъядерные Core i7. При этом такой «модуль» во второй половине следующего года будет использоваться и в APU, где сейчас всего-навсего, напомним, два модуля «старого образца», причем без кэш-памяти третьего уровня вообще. Графическое ядро, возможно, «не дотянется» до топовых решений Intel (тем более, снабженных кэш-памятью четвертого уровня - ничего подобного AMD пока не обещает), но будет производительнее массовой интегрированной графики Intel. Причем, судя по имеющимся данным о внутренней организации процессоров, компания сможет освоить и бюджетную модификацию с парой ядер и уменьшенным до 4 МБ L3, т. е. выпустить непосредственных конкурентов для разнообразных Core i3 и прочих двухъядерных процессоров (особенно мобильных). Сейчас соперничать с ними могут только двухмодульные (в терминологии AMD - «четырехъядерные») процессоры, а в будущем это будут делать и «обычные» двухъядерные.

Однако нельзя сказать, что компании полностью удалось достичь «паритета по ядрам». В частности, блоки для работы с числами с плавающей запятой и прочими SIMD-инструкциями изменились в меньшей степени, чем хотелось бы. Нормальной поддержки работы с векторами по 256 бит у них нет, т. е. на AVX2-коде ожидать высоких результатов не приходится. С другой стороны, на данный момент преждевременно утверждать о производительности хоть что-либо - новая микроархитектура дебютирует в готовых изделиях только в следующем году. Тогда-то и будет полная ясность с их тактовыми частотами, ценами, да и производительностью в реальных задачах. Пока же мы можем оценивать лишь планы AMD.

А в них нашлось место и любителям высокой процессорной производительности, поскольку вариантов компоновки готовых изделий будет как минимум два (а если учесть возможность выпуска двухъядерных моделей, которые легко найдут свое место в бюджетном сегменте, то и три): кроме APU, где, как уже было сказано выше, один четырехъядерный «модуль» Zen будет соседствовать с GPU, планируется также выпуск «чистых» CPU - с двумя модулями. То есть такие решения получат 8 ядер, способных выполнять одновременно 16 потоков вычисления и снабженных кэш-памятью третьего уровня емкостью 16 МБ. С L3 полной ясности нет - будет ли это единый объем, доступный всем ядрам «составного» процессора, или два отдельных блока (что присуще «склейкам»), но емкость будет именно такой. При этом топовые процессоры сохранят совместимость со все той же платформой АМ4, что является немаловажным конкурентным преимуществом перед процессорами Intel для LGA2011-3 и их последователями, с массовой линейкой механически несовместимыми. Да, разумеется, верным будет сказанное выше насчет производительности векторных инструкций, да и контроллер памяти у этих новых моделей останется двух-, а не четырехканальным, но последнее имеет и свои достоинства: платы будут дешевле. Причем это будут те же самые платы, что и для недорогих APU, т. е. давно ожидаемая единая платформа AMD, вероятно, сможет использоваться еще шире, чем Intel LGA115x. А если компании удастся еще и «зафиксировать» ее лет на пять (реализуя хотя бы совместимость «сверху вниз»), превратив в «долгожителя» класса АМ3 - тем лучше для многих потребителей.

Возникает, разумеется, закономерный вопрос: если все изменения настолько логичны и ожидаемы, то почему «ожидание» затянулось так надолго? Ведь, по-хорошему, такие устройства нужны еще «вчера», а компания планирует их поставки только «завтра». Проблема есть, но собственно разработки она не касается - только производства. Фактически, всё, что до последнего времени было доступно AMD - техпроцесс с нормами 32 нм, которого достаточно разве что для FX. В лучшем случае - достижение уровня Intel Sandy Bridge, которому тоже уже больше пяти лет. Последние модели APU, впрочем, используют нормы 28 нм, но это не намного лучше, чем 32 нм. Поэтому и в производстве запланирован «большой скачок» - переход на техпроцесс 14 нм. Переход совершится с некоторым отставанием от Intel (которая использует этот техпроцесс уже два года), но понятным и объяснимым. В общем, сделать такие процессоры без освоения новых норм производства было невозможно - а их освоение требует времени. Нам же хочется верить, что у AMD все получится.

Итого

Итак, что мы получим? Во-первых - наконец-то! - переход на единую платформу, чего не было пять лет. Причем и в этом случае можно говорить о «большом скачке»: АМ4 по планам должна быть универсальнее, чем Intel LGA115x. Во-вторых, существенное изменение микроархитектуры - с ростом производительности и общей эффективности основанных на ней процессоров. В-третьих, резкое улучшение норм производства, что хорошо и само по себе, и без чего такие изменения были бы невозможны. То есть, как видите, AMD планирует одним махом ликвидировать все недостатки сегодняшних массовых систем своего производства. Получится ли? Это покажет только практика - пока мы можем оценивать лишь планы и предварительную информацию. Впрочем, в каком-то виде платформа АМ4 уже существует, причем в своем ценовом сегменте имеет ряд преимуществ перед конкурирующими разработками. В основном они унаследованы у предшественников (это не удивительно - выпускаемые сейчас APU «новыми» назвать сложно), но с добавлением (хотя бы потенциально) модернизируемости и более длинного жизненного цикла. А окончательный ответ на вопрос, насколько удачным окажется переход, мы получим в следующем году. Хочется верить, что ответ будет положительным - так, как минимум, интереснее:)

В прошлом году для компании AMD наступил переломный момент, когда она представила процессоры Summit Ridge с архитектурой Zen. А последовавший за этим успех данных процессоров стал революцией для всей индустрии, так как именно благодаря ему компания Intel начала куда активнее развивать свои процессоры. В этом году компания AMD представила процессоры Pinnacle Ridge на архитектуре Zen+, в которых были исправлены ошибки предшественников и внесены некоторые улучшения.

А уже в следующем году AMD представит новые процессоры на архитектуре Zen 2, которые будут производиться по 7-нм техпроцессу. Новая архитектура должна принести большие изменения и улучшения, нежели Zen+. Не так давно AMD объявила, что основная работа над дизайном Zen 2 завершена, и во второй половине 2018 года компания начнёт поставки тестовых образцов. Изначально это будут образцы серверных процессоров Epyc, так как именно на серверном сегменте сейчас сосредоточена AMD.

Теперь же на просторах Сети появились слухи относительно того, что можно ожидать от будущих процессоров AMD. Наиболее интересным сообщением является то, что будущие процессоры на Zen 2 получат значительный прирост числа исполняемых инструкций за такт (Instruction Per Clock, IPC). Сообщается, что данный показатель вырастет на 10 %, а то и на все 15 %, по сравнению с нынешним Zen+.

Использование нового передового 7-нм технологического процесса, вкупе с архитектурными улучшениями, сулит более высокие тактовые частоты. Это позволит дополнительно увеличить производительность одного ядра, что поможет будущим новинкам сравняться по этому показателю с процессорами Intel или даже превзойти их. На данный момент процессоры AMD отстают от конкурентов в задачах, использующих одно ядро. Попутно более тонкий техпроцесс позволит уменьшить энергопотребление.

Источник также утверждает, что с архитектурой Zen 2 придёт и увеличение количества ядер. Сообщается, что будущие процессоры AMD Ryzen в исполнении Socket AM4 предложат до 16 ядер. У перспективных процессоров Ryzen Threadripper, которые выполнены в корпусе Socket TR4, будет до 32 ядер, то есть здесь их число не изменится. Наконец, серверные процессоры AMD Epyc (Socket SP3) предложат до 64 ядер. Во всех случаях, конечно же, будет поддержка многопоточности (SMT).

Если это действительно так, то получается, что AMD изменит дизайн блока CCX (Core Complex), наделив его восемью ядрами, вместо нынешних четырёх. В принципе, с учётом использования «более тонкого» техпроцесса это вполне возможно. Отметим, что согласно другим слухам, новые CCX будут шестиядерными, и в результате будущие процессоры Ryzen получат до 12 ядер. И, к сожалению, пока что сложно сказать, какие из этих слухов ближе к истине.

Интересно также и то, что компания MSI формально подтвердила наличие у будущих процессоров AMD в исполнении Socket AM4 более чем восьми ядер. В своём рекламном ролике, посвящённом скорому выходу материнских плат на чипсете AMD B450, производитель явно указал, что эти платы поддерживают процессоры с восемью и более ядрами.

В целом, данным слухам и утечкам хочется верить. Но всё же больше хочется верить именно в увеличение IPC у будущих процессоров AMD. Ведь увеличение числа ядер будет заметно лишь в «тяжёлых» задачах и оптимизированном под это программном обеспечении, а вот повышение IPC положительно скажется на всех задачах, в особенности на повседневных.

Компания AMD на специальном мероприятии перед CES 2018 выпустила новые мобильные процессоры и анонсировала настольные чипы со встроенной графикой. А Radeon Technologies Group, структурное подразделение AMD, - анонсировала мобильные дискретные графические чипы Vega. Компания также раскрыла планы по переходу на новые техпроцессы и перспективные архитектуры: графическую Radeon Navi и процессорные Zen+, Zen 2 и Zen 3.

Новые процессоры, чипсет и охлаждение

Первые настольные Ryzen с графикой Vega

Сразу две модели настольных Ryzen со встроенной графикой Vega появятся в продаже 12 февраля 2018 года. Модель 2200G относится к процессорам начального сегмента Ryzen 3, а 2400G - к среднему сегменту Ryzen 5. Обе модели динамически повышают частоту на 200 и 300 МГц с базовых частот в 3,5 ГГц и 3,6 ГГц соответственно. Фактически они сменяют ультра-бюджетные модели Ryzen 3 1200 и 1400.

Блоков графики у 2200G всего 8 штук, в то время как у 2400G - на 3 больше. Частота графических ядер 2200G достигает 1 100 МГц, а 2400G - больше на 150 МГц. Каждый графический блок заключает в себе 64 шейдера.

Ядра обоих процессоров носят носят такое же кодовое имя, что и мобильные процессоры со встроенной графикой - Raven Ridge (букв. Воронья гора, горная порода в Колорадо). Но тем не менее, они подключаются в такое же LGA гнездо AMD AM4, как и все остальные процессоры Ryzen 3, 5 и 7.

Справка: Иногда AMD называет процессоры со встроенной графикой не CPU (Central Processing Unit, англ. Центральное процессорное устройство), а APU (Accelerated Processor Unit, англ. Ускоренное процессорное устройство, иначе говоря, процессор с видеоускорителем).
Настольные процессоры AMD со встроенной графикой маркируются буквой G на конце, по первой букве слова graphics (англ. графика). Мобильные процессоры и AMD и Intel маркируют буквой U на конце, по первой букве слов ultrathin (англ. ультратонкий) или ultra-low power (англ. сверхнизкое энергопотребление) соответственно.
При этом не стоит думать, что если номера моделей новых Ryzen начинаются на цифру 2, то архитектура их ядер относятся ко второму поколению микроархитектуры Zen. Это не так - эти процессоры ещё в первом поколении.

Ryzen 3 2200G Ryzen 5 2400G
Ядра 4
Потоки 4 8
Базовая частота 3,5 ГГц 3,6 ГГц
Увеличенная частота 3,7 ГГц 3,9 ГГц
Кэш 2 и 3 уровней 6 Мб 6 Мб
Блоки графики 8 11
Максимальная частота графики 1 100 МГц 1 250 МГц
Процессорное гнездо AMD AM4 (PGA)
Базовое тепловыделение 65 Вт
Переменное тепловыделение 45-65 Вт
Кодовое имя Raven Ridge
Рекомендуемая цена* 5 600 ₽ ($99) 9 500 ₽ ($99)
Дата выхода 12 февраля 2018

Новые мобильные Ryzen с графикой Vega

В прошлом году AMD уже вывела на рынок первые мобильные Ryzen под кодовым именем Raven Ridge. Всё мобильное семейство Ryzen предназначено для игровых ноутбуков, ультрабуков и гибридных планшетов-ноутбуков. Но таких моделей было всего две, по штуке в среднем и старшем сегментах: Ryzen 5 2500U и Ryzen 7 2700U. Младший сегмент пустовал, но прямо на CES 2018 компания это исправила - к мобильному семейству прибавились сразу две модели: Ryzen 3 2200U и Ryzen 3 2300U.

Вице-президент AMD Джим Андерсон демонстрирует мобильное семейство Ryzen

Процессор 2200U - первый двухъядерный ЦП из всех Ryzen, в то время как 2300U - стандартно четырёхъядерный, однако, оба они работают в четырёх потоках. При этом базовая частота у ядер 2200U - 2,5 ГГц, а у 2300U пониже - 2 ГГц. Но при возрастающих нагрузках частота обеих моделей поднимется до одного показателя - 3,4 ГГц. Впрочем, потолок мощности могут понизить производители ноутбуков, ведь им надо ещё и рассчитывать затраты энергии и продумывать систему охлаждения. Также между чипами есть разница в объёме кэша: у 2200U всего два ядра, а потому в два раза меньше кэша 1 и 2 уровней.

Графических блоков у 2200U всего 3 штуки, а вот у 2300U - в два раза больше, также как и процессорных ядер. Но разница в графических частотах не столь существенна: 1 000 МГц против 1 100 МГц.

Ryzen 3 2200U Ryzen 3 2300U Ryzen 5 2500U Ryzen 7 2700U
Ядра 2 4
Потоки 4 8
Базовая частота 2,5 ГГц 2 ГГц 2,2 ГГц
Увеличенная частота 3,4 ГГц 3,8 ГГц
Кэш 1 уровня 192 Кб (96 Кб на ядро) 384 Кб (96 Кб на ядро)
Кэш 2 уровня 1 Мб (512 Кб на ядро) 2 Мб (512 Кб на ядро)
Кэш 3 уровня 4 Мб (4 Мб на комплекс ядер)
Оперативная память Двухканальная DDR4-2400
Блоки графики 3 6 8 10
Максимальная частота графики 1 000 МГц 1 100 МГц 1 300 МГц
Процессорное гнездо AMD FP5 (BGA)
Базовое тепловыделение 15 Вт
Переменное тепловыделение 12-25 Вт
Кодовое имя Raven Ridge
Дата выхода 8 января 2018 26 октября 2018

Первые мобильные Ryzen PRO

На второй квартал 2018 года AMD запланировала выпуск мобильных версий Ryzen PRO, процессоров корпоративного уровня. Характеристики мобильных PRO идентичны потребительским версиям, за исключением Ryzen 3 2200U, который вообще не получил PRO-реализации. Отличия настольных и мобильных Ryzen PRO - в дополнительных аппаратных технологиях.

Процессоры Ryzen PRO - полные копии обычных Ryzen, но с дополнительными функциями

Например, для обеспечения безопасности используется TSME, аппаратное шифрование оперативной памяти «на лету» (у Intel есть только программное ресурсоёмкое шифрование SME). А для централизованного управления парком машин доступен открытый стандарт DASH (Desktop and mobile Architecture for System Hardware, англ. мобильная и настольная архитектура для системных устройств) - поддержка его протоколов встроена в процессор.

Ноутбуки, ультрабуки и гибридные планшеты-ноутбуки с Ryzen PRO в первую очередь должны заинтересовать компании и госучреждения, которые планируют закупить их для сотрудников.

Ryzen 3 PRO 2300U Ryzen 5 PRO 2500U Ryzen 7 PRO 2700U
Ядра 4
Потоки 4 8
Базовая частота 2 ГГц 2,2 ГГц
Увеличенная частота 3,4 ГГц 3,6 ГГц 3,8 ГГц
Кэш 1 уровня 384 Кб (96 Кб на ядро)
Кэш 2 уровня 2 Мб (512 Кб на ядро)
Кэш 3 уровня 4 Мб (4 Мб на комплекс ядер)
Оперативная память Двухканальная DDR4-2400
Блоки графики 6 8 10
Максимальная частота графики 1 100 МГц 1 300 МГц
Процессорное гнездо AMD FP5 (BGA)
Базовое тепловыделение 15 Вт
Переменное тепловыделение 12-25 Вт
Кодовое имя Raven Ridge
Дата выхода Второй квартал 2018

Новые чипсеты AMD 400-ой серии

Второму поколению Ryzen полагается второе поколение системной логики: 300-ую серию чипсетов сменяет 400-ая. Флагманом серии ожидаемо стал AMD X470, а позже выйдут более простые и дешёвые наборы схем, такие как B450. Новая логика улучшила всё, что касается оперативной памяти: снизила задержку доступа, подняла верхний предел частоты и добавила запас для разгона. Также в 400-ой серии выросла пропускная способность USB и улучшилось энергопотребление процессора, а вместе с тем - и его тепловыделение.

А вот процессорное гнездо не поменялось. Настольное гнездо AMD AM4 (и его мобильный несъёмный вариант AMD FP5) - особое преимущество компании. Во втором поколении такой же разъём, как и в первом. Не сменится он и в третьем и пятом поколениях. AMD пообещала в принципе не менять AM4 до 2020 года. А чтобы матплаты 300-ой серии (X370, B350, A320, X300 и A300) заработали с новыми Ryzen - достаточно лишь обновить BIOS. Причём помимо прямой совместимости, есть и обратная: старые процессоры будут работать на новых платах.

Gigabyte на CES 2018 уже даже показала прототип первой матплаты на новом чипсете - X470 Aorus Gaming 7 WiFi. Эта и другие платы на X470 и младших чипсетах появятся в апреле 2018 года, одновременно со вторым поколением Ryzen на архитектуре Zen+.

Новая система охлаждения

Компания AMD также представила новый кулер AMD Wraith Prism (англ. призма гнева). В то время как его предшественник Wraith Max подсвечивался одноцветным красным цветом, Wraith Prism оснащён управляемой с матплаты RGB-подсветкой по периметру вентилятора. Лопасти кулера кулера выполнены из прозрачного пластика и также подсвечиваются миллионами оттенков. Любители RGB-подсветки оценят, а ненавистники смогут её просто отключить, хотя в таком случае нивелируется смысл покупки этой модели.


Wraith Prism - полная копия Wraith Max, но с подсветкой из миллионов цветов

Остальные характеристики идентичны Wraith Max: теплотрубки прямого контакта, программные профили обдува в режиме разгона и практически бесшумная работа на 39 дБ при стандартных условиях.

Пока нет информации о том сколько Wraith Prism будет стоить, будет ли он поставляться в комплекте c процессорами и когда его можно будет купить.

Новые ноутбуки на Ryzen

Помимо мобильных процессоров, AMD также продвигает новые ноутбуки на их основе. В 2017 году на мобильных Ryzen вышли модели HP Envy x360, Lenovo Ideapad 720S и Acer Swift 3. В первом квартале 2018 к ним прибавятся серии Acer Nitro 5, Dell Inspiron 5000 и HP. Все они работают на прошлогодних мобильных Ryzen 7 2700U и Ryzen 5 2500U.

Семейство Acer Nitro представляет собой игровые машины. Линейка Nitro 5 оснащается IPS-дисплеями диагональю 15,6 дюймов и разрешением 1920 × 1080. А к некоторым моделям будет добавлен дискретный графический чип Radeon RX 560 c 16 графическими блоками внутри.

Линейка ноутбуков Dell Inspiron 5000 предлагает модели с диагональю дисплеев 15,6 и 17 дюймов, оснащённые или жёсткими дисками или твёрдотельными накопителями. Некоторые модели линейки также получат дискретную видеокарту Radeon 530 с 6 графическими блоками. Это достаточно странная конфигурация, ведь даже в интегрированной графике Ryzen 5 2500U больше графических блоков - 8 штук. Но преимущество дискретной карты может быть в более высоких тактовых частотах и отдельных чипах графической памяти (вместо секции памяти оперативной).

Снижение цен на все процессоры Ryzen

Процессор (гнездо) Ядра/Потоки Старая цена* Новая цена*
Ryzen Threadripper 1950X (TR4) 16/32 56 000 ₽ ($999) -
Ryzen Threadripper 1920X (TR4) 12/24 45 000 ₽ ($799) -
Ryzen Threadripper 1900X (TR4) 8/16 31 000 ₽ ($549) 25 000 ₽ ($449)
Ryzen 7 1800X (AM4) 8/16 28 000 ₽ ($499) 20 000 ₽ ($349)
Ryzen 7 1700X (AM4) 8/16 22 500 ₽ ($399) 17 500 ₽ ($309)
Ryzen 7 1700 (AM4) 8/16 18 500 ₽ ($329) 17 000 ₽ ($299)
Ryzen 5 1600X (AM4) 6/12 14 000 ₽ ($249) 12 500 ₽ ($219)
Ryzen 5 1600 (AM4) 6/12 12 500 ₽ ($219) 10 500 ₽ ($189)
Ryzen 5 1500X (AM4) 4/8 10 500 ₽ ($189) 9 800 ₽ ($174)
Ryzen 5 1400 (AM4) 4/8 9 500 ₽ ($169) -
Ryzen 5 2400G (AM4) 4/8 - 9 500 ₽ ($169)
Ryzen 3 2200G (AM4) 4/4 - 5 600 ₽ ($99)
Ryzen 3 1300X (AM4) 4/4 7 300 ₽ ($129) -
Ryzen 3 1200 (AM4) 4/4 6 100 ₽ ($109) -

Планы до 2020 года: графика Navi, процессоры Zen 3

2017 год для AMD стал совершенно переломным. После многолетних проблем, AMD завершила разработку ядерной микроархитектуры Zen и выпустила первое поколение ЦП: семейство ПК-процессоров Ryzen, Ryzen PRO и Ryzen Threadripper, семейство мобильных Ryzen и Ryzen PRO, а также серверное семейство EPYC. В том же году группа Radeon разработала графическую архитектуру Vega: на её основе вышли видеокарты Vega 64 и Vega 56, а а концу года ядра Vega были интегрированы в мобильные процессоры Ryzen.


Доктор Лиза Су, генеральный директор AMD, уверяет, что компания выпустит процессоры на 7 нанометров раньше 2020 года

Новинки не только привлекли интерес фанатов, но и завладели вниманием обычных потребителей и энтузиастов. Intel и NVIDIA пришлось спешно парировать: Intel выпустила шестиядерные процессоры Coffee Lake, незапланированный второй «так» архитектуры Skylake, а NVIDIA расширила 10-ую серию видеокарт на архитектуре Pascal до 12 моделей.

Слухи о дальнейших планах AMD копились весь 2017 год. До сих пор Лиза Су, гендиректор AMD, лишь отмечала, что компания планирует превысить 7-8%-ую годовую норму прироста производительности в электронной индустрии. Наконец на выставке CES 2018 компания показала «дорожную карту» не просто до конца 2018 года, а вплоть до 2020. Основа этих планов - улучшение архитектур чипов через миниатюризацию транзисторов: поступательный переход с нынешних 14 нанометров на 12 и 7 нанометров.

12 нанометров: второе поколение Ryzen на Zen+

На техпроцессе 12 нанометров базируется микроархитектура Zen+, второе поколение бренда Ryzen. Фактически новая архитектура - это доработанный Zen. Норма технологического производства заводов GlobalFoundries переводится с 14-нанометровой 14LPP (Low Power Plus, англ. низкое энергопотребление плюс) на 12-нанометровую норму 12LP (Low Power, англ. низкое энергопотребление). Новый техпроцесс 12LP должен обеспечивать чипам 10% прирост производительности.

Справка: Сеть фабрик GlobalFoundries - это бывшие производственные мощности AMD, выделенные в 2009 в отдельную компанию и объединённые с другими подрядными производителями. По доле рынка контрактного производства GlobalFoundries делит второе место с UMC, значительно уступая TSMC. Разработчики чипов - компании AMD, Qualcomm и прочие - заказывают производство как в GlobalFoundries, так и на других фабриках.

Помимо нового техпроцесса, архитектура Zen+ и чипы на её основе получат улучшенные технологии AMD Precision Boost 2 (англ. точный разгон) и AMD XFR 2 (Extended Frequency Range 2, англ. расширенный диапазон частот). В мобильных процессорах Ryzen уже можно найти Precision Boost 2 и специальную модификацию XFR - Mobile Extended Frequency Range (mXFR).

Во втором поколении выйдет семейство ПК-процессоров Ryzen, Ryzen PRO и Ryzen Threadripper, но пока нет никаких сведений об обновлении поколений мобильного семейства Ryzen и Ryzen PRO, и серверного EPYC. Зато известно, что некоторые модели процессоров Ryzen с самого начала будут иметь две модификации: с интегрированной в чип графикой и без неё. Модели начального и среднего уровней Ryzen 3 и Ryzen 5 выйдут в обоих вариантах. А высокий уровень Ryzen 7 никакой графической модификации не получит. Скорее всего, за архитектурой ядер для именно этих процессоров закреплено кодовое имя Pinnacle Ridge (букв. острый геребень горы, одна из вершин хребта Уинд-Ривер в Вайоминге).

Второе поколение Ryzen 3, 5 и 7 начнёт продаваться в апреле 2018 года вместе с чипсетами 400 серии. А второе поколение Ryzen PRO и Ryzen Threadripper припозднится до второй половины 2018 года.

7 нанометров: третье поколение Ryzen на Zen 2, дискретная графика Vega, графическое ядро Navi

В 2018 группа Radeon выпустит дискретную графику Vega для ноутбуков, ультрабуков и планшетов-ноутбуков. В AMD не делятся особыми подробностями: известно, что дискретные чипы будут работать с компактной многослойной памятью типа HBM2 (в интегрированной графике используется оперативная память). Отдельно в Radeon подчёркивают, что высота чипов памяти составит всего 1,7 мм.


Руководитель Radeon показывает интегрированную и дискретную графику Vega

И в том же 2018 году Radeon переведёт графические чипы на архитектуре Vega с техпроцесса 14 нм LPP сразу на 7 нм LP, полностью перепрыгнув 12 нм. Но сперва новые графические блоки будут поставляться только для линейки Radeon Instinct. Это отдельное семейство серверных чипов Radeon для гетерогенных вычислений: машинного обучения и искусственного интеллекта - спрос на них обеспечен развитием беспилотных авто.

И уже в конце 2018 или начале 2019 года простые потребители дождутся продукции Radeon и AMD на 7-нанометровом техпроцессе: процессоров на архитектуре Zen 2 и графики на архитектуре Navi. Причём работы по проектированию Zen 2 уже завершены.

С чипами на Zen 2 уже знакомятся партнёры AMD, которые будут создавать под Ryzen третьего поколения материнские платы и прочие компоненты. Такие темпы AMD набирает из-за того, что у компании две «перепрыгивающие» друг друга команды по разработке перспективных микроархитектур. Начали они с параллельных работ над Zen и Zen+. Когда была завершена Zen - первая команда перешла к Zen 2, а когда была завершена Zen+ - вторая команда перешла к Zen 3.

7 нанометров «плюс»: четвёртое поколение Ryzen на Zen 3

Пока один отдел AMD решает проблемы массового производства Zen 2, другой отдел уже проектирует Zen 3 на технологической норме, обозначенной как «7 нм+». Компания не раскрывает подробностей, но по косвенных данным можно предположить, что техпроцесс будет улучшен за счёт дополнения нынешней глубокой ультрафиолетовой литографии (DUV, Deep Ultraviolet) новой жёсткой ультрафиолетовой литографией (EUV, Extreme Ultraviolet) с длинной волны 13,5 нм.


GlobalFoundries уже установила новое оборудование для перехода к 5 нм

Ещё летом 2017 года один из заводов GlobalFoundries закупил более 10 литографических систем из серии TWINSCAN NXE от нидерландской ASML. С частичным применением этого оборудования в рамках того же техпроцесса 7 нм удастся ещё больше снизить энергопотребление и повысить производительность чипов. Точных метрик пока нет - потребуется ещё какое-то время на отладку новых линий и вывод их на приемлемые мощности для массового производства.

AMD рассчитывает начать организовать продажи чипов на норме «7 нм+» с процессоров на микроархитектуре Zen 3 уже до конца 2020 года.

5 нанометров: пятое и последующие поколения Ryzen на Zen 4?

Официального объявления AMD пока не делала, но можно смело спекулировать, что следующим рубежом для компании станет техпроцесс 5 нм. Опытные чипы на этой норме уже производились исследовательским альянсом компаний IBM, Samsung и GlobalFoundries. Кристаллы на техпроцессе 5 нм потребуют уже не частичного, а полноценного применения жёсткой ультрафиолетовой литографии с точностью выше 3 нм. Именно такое разрешение обеспечивают купленные GlobalFoundries модели литографической системы TWINSCAN NXE:3300B от компании ASML.


Слой толщиной в одну молекулу дисульфида молибдена (0,65 нанометра) демонстрирует ток утечки всего 25 фемтоампер/микрометр при напряжении 0,5 вольта.

Но сложность заключается ещё и в том, что на процессе 5 нм вероятно придётся сменить форму транзисторов. Давно зарекомендовавшие себя FinFET (транзисторы в форме плавника, от англ. fin) могут уступить место перспективным GAA FET (форма транзисторов с окружающими затворами, от англ. gate-all-around). На наладку и развёртывание массового производства таких чипов уйдёт ещё несколько лет. Сектор потребительской электроники вряд ли получит их раньше 2021 года.

Дальнейшее уменьшение технологических норм также возможно. Например, ещё в 2003 году корейские исследователи создали FinFET на 3 нанометра. В 2008 году в Университете Манчестра на основе графена (углеродных нанотрубок) был создан нанометровый транзистор. А инженерам-исследователям лаборатории Беркли в 2016 году покорился суб-нанометровый масштаб: в таких транзисторах может применяться как графен, так и дисульфид молибдена (MoS2). Правда, на начало 2018 года ещё не нашлось способа произвести целый чип или подложку из новых материалов.

Компьютерную промышленность с завидной регулярностью кидает из крайности в крайность: словно маятник, она качается между эволюцией и революцией. Стратегия «тик-так» лидера отрасли Intel задала ритм развития собственных процессоров: «тик» - это большой шаг вперед, миниатюризация технологического процесса и повышение эффективности, «так» - выпуск процессоров на том же техпроцессе, но на новой микроархитектуре. В 2017 году Intel отменяет эту стратегию и выпускает дополнительный «так», который представила на конференции CES в Лас-Вегасе.

Как всегда, CES открыла компьютерный год. Кроме Intel, свои важные новинки представили и другие гиганты, которые задают тон технологической отрасли на следующие 365 дней. Intel и AMD одновременно показали новые поколения процессоров - Kaby Lake и Zen соответственно. Судя по всему, разработав микроархитектуру Zen, AMD, наконец-то, вернется в борьбу за звание лучшего производителя. На рынок процессоры выйдут под маркой Ryzen.

Kaby Lake задает ритм

Kaby Lake для пользователей Windows знаменует начало новых времен. Ранее компания Microsoft неоднократно заявляла о намерении предложить для нового аппаратного обеспечения поддержку только Windows 10, но каждый раз отказывалась от этой затеи. С выпуском Kaby Lake Microsoft наконец-то сделают это, так что теперь, кроме Linux, в качестве операционной системы можно будет выбрать только Windows 10-й версии.

В соответствии с этим с ноября Microsoft прекратила продажу лицензий на Windows 7 и 8.1 в качестве OEM-версий. А недавно Netflix заявила, что лучшее качество изображения можно будет получить только при просмотре в браузере Edge для Windows 10 на Kaby Lake: сериалы в разрешении 4K и с поддержкой HDR будут доступны именно при таком сочетании.

За Netflix подтянутся и другие сервисы стриминга: например, Amazon, поскольку речь идет о новой технологии Microsoft DRM Play Ready 3.0, которая в сочетании с собственным процессором в системе предназначена для борьбы с пиратским копированием. Самой интересной новинкой процессора Kaby Lake является высокая тактовая частота, которая превышает частоту предыдущего поколения микроархитектуры Skylake на 200 МГц.

Достигается она благодаря дополнительной оптимизации в технологии производства новых процессоров - выпустив еще один процессорный дизайн, Intel сохранила размеры транзисторов на уровне 14 нм («тик-так-так» - процесс-архитектура-оптимизация). В начале декабря флагманский процессор Kaby Lake (Core i7-7700K) попал в тестовую лабораторию Chip, и мы воспользовались возможностью тщательно его протестировать. Индекс «K» в названии означает, что у него свободный множитель, то есть его можно разгонять.

Этот Kaby Lake - самый быстрый процессор для массового рынка, который только можно установить в ПК. Результаты наших измерений показали, что оптимизация оказалась весьма кстати: в нашем рейтинге ЦП 7700K оказался сразу за дорогим процессором Intel категории high-end Broadwell E на пятом месте, то есть немного выше своего аналога из стана Skylake Core i7-6700K. С задачами, требующими больших вычислительных ресурсов, например, кодированием видео или шифрованием данных, 7700K справляется быстрее, чем его предшественник.Производительность графического ядра процессора по сравнению со Skylake тоже увеличилась.

Вместе с Kaby Lake выходят новые чипсеты 200-й серии для материнских плат. Для тестирования Gigabyte предоставила нам материнскую плату на высокопроизводительном чипсете Intel Z270, совместимом с 7700K. По сравнению с аналогом для Skylake (Z170) он является результатом эволюционного шага вперед. Максимальная тактовая частота оперативной памяти типа DDR4 теперь достигает 2400 МГц по сравнению с прошлыми 2133 МГц.

Кроме того, материнская плата теперь поддерживает максимум 24 высокоскоростных линии PCIe, а не 20, как для Skylake. Но, как и прежде, отсутствует поддержка USB 3.1 Gen 2, которая позволила бы увеличить скорость передачи данных для внешних устройств в два раза по сравнению с USB 3.0. А вот новая платформа AMD умеет это делать.

Мастер дзен на восьми ядрах


Ryzen соединяется с новым сокетом AM4 при помощи 1339 контактов, выступающих на тыльной стороне

К началу продаж своих процессоров Intel должна готовиться тщательнее, чем обычно, поскольку модель Ryzen от AMD обещает подтянуться по производительности к лучшим процессорам Intel. И все это - за меньшие деньги.Следуя китайскому девизу «Лучше хорошая копия, чем плохая разработка», AMD, пересмотрев свою микроархитектуру, внедрила поддержку известной по продуктам Intel технологии гиперпоточности.

Вместе с тем AMD, наконец-то, переходит на техпроцесс в 14 нм, что должно обеспечить преимущества по энергопотреблению и эффективности работы процессора. Система AMD Ryzen состоит из четырех ядер, к которым при помощи технологии Infinity Fabric подключаются другие модули - ядра или графический чип.

Возможно, на ближайших выставках электроники можно будет увидеть первые процессоры Ryzen. Но точных сроков релиза, кроме весьма расплывчатой формулировки «первый квартал 2017 года» AMD нам не назвала. Судя по появившимся на сайте chiphell.com слайдам, Zen выходит на рынок в трех вариантах (с 4, 6 и 8 вычислительными ядрами) не позднее марта.

В конце декабря Ryzen SR7 наделал шуму: скорость транскодирования видео с помощью инструмента HandBrake на нем оказалась чуть выше, чем на Intel Core i7-6900K, который в настоящий момент занимает вторую строчку нашего рейтинга. Четырехъядерный Intel Core i7-7700K едва ли сможет составить ему конкуренцию. Розничная цена обоих процессоров будет составлять около 25 000 рублей. В отличие от процессоров Intel Core i для массового сегмента, AMD Summit Ridge лишены графического ядра, что вполне подходит энтузиастам, которые и так устанавливают дискретную видеокарту.

Производитель материнских плат также сообщил, что Zen можно разогнать до 4,2 ГГц. Тем не менее, реальные данные по энергопотреблению и возможному разгону Zen пока неизвестны. Вместе с Zen компания AMD меняет и сокет: теперь выходят новые платы AM4 с тремя разными чипсетами, из которых самый передовой - X370 - представляет наибольший интерес для желающих собрать ПК топового уровня. Апгрейд платформы означает не только переход на оперативную память типа DDR4, но и обновление разъемов, которые будут совместимы с высокоскоростными твердотельными накопителями NVMe, а также прямую поддержку USB 3.1 Gen 2. Платформы X370 предоставляют сопоставимые с Intel Z270 возможности оснащения ПК.


Процессоры Intel покоряют 5 ГГц

Zen подстегивает конкуренцию. В конце января Intel впервые выводит младшую модель процессоров семейства Core i3 поколения Kaby Lake с индексом «K» (Core i3-7350K) с возможностью разгона. Уже в мае, перед выпуском в июне новых процессоров для серверов Skylake EP, Intel представит новые процессоры для энтузиастов, которые позиционируются как альтернатива восьмиядерным платформам Zen - Skylake-X и Kaby Lake-X.

В то время как Skylake-X представляет собой обновление процессоров для профессионального использования и большого бюджета, стоимость Kaby Lake-X будет ощутимо ниже.В Skylake-X новинок немного. Высокопроизводительный процессор с 6-10 ядрами полностью используется только в отдельных случаях - например, при рендеринге. У Kaby Lake-X всего четыре ядра, но они должны отличаться крайне высокой производительностью, поскольку Intel здесь отказалась от интегрированного графического ядра. Тактовая частота будет достигать 5 ГГц. Оба процессора Intel получат новый сокет LGA 2066 и чипсет X299. Чипсет увеличивает количество линий PCIe до 48, что для массива твердотельных накопителей или трех видеокарт вполне достаточно.

Флэш-память Optane


В чип Optane внедрена технология, которая приходит на смену флэш-памяти SSD

Чтобы собрать производительную систему на AMD SR7 или Kaby Lake-X, можно приобрести видеокарты вроде NVIDIA GeForce GTX 1080 и твердотельные накопители типа Samsung 960 Pro, которые вышли на рынок в 2016 году. В обоих категориях устройств в 2017 году речь идет об эволюционном развитии, если не считать память Optane, которую Intel разработала совместно с Micron.

Optane работает не на ячейках флэш-памяти, а на новой технологии, основывающейся на изменении фазового состояния материала (Phase-change memory – память на основе фазового перехода). За единицу информации в такой памяти принимается поведение определенного материала, который при нагревании перетекает из кристаллического состояния в аморфное, то есть подходит для представления информации в двоичном виде (0 и 1).

Преимущества памяти PCM перед флэш-памятью заключаются в большей продолжительности службы, а также в значительно более высокой скорости чтения и записи. Технология была анонсирована несколько лет назад под названием 3D Xpoint.
Когда речь идет о совершенно новой технологии, тот факт, что Intel постоянно откладывает релиз и корректирует изначально обещанные данные по производительности, никого не удивляет.

На сегодня Optane достигает скорости передачи данных в десять раз превышающей скорость SSD-накопителей, и задержки у нее в четыре раза меньше. Серийное производство налаживается, что означает, что выпуск начнется в середине 2017 года. Чипсет Z270 для Kaby Lake предусматривает поддержку этого типа памяти.


Графика Vega с новой памятью

Pascal от nVidia и Polaris от AMD, вышедшие в 2016 году, - это переход с техпроцесса 28 нм на 14 нм и большой скачок в производительности. Если флагманов AMD пока еще нет в продаже, то в феврале мы ждем появления NVIDIA GeForce 1080 Ti по цене более 50 000 рублей, которая пополнит коллекцию быстрых видеокарт. Что же планирует AMD, пока еще неясно. На наш вопрос о релизе мощного RX 490 на базе Polaris в обозримом будущем мы получили от AMD отрицательный ответ.

Тем не менее, в Интернете уже появились бенчмарки Pro 490. C другой стороны, может быть, и хорошо, что следующий этап развития карт топового уровня совпадет с реализацией новой микроархитектуры графических процессоров AMD Vega, ожидающейся летом. Появление Vega не только означает внедрение второго поколения памяти с высокой пропускной способностью (High Bandwidth Memory – HBM2), которая заметно быстрее GDDR5, но и является предпосылкой для появления компактных высокопроизводительных карт.

В конце года AMD планирует снабдить процессоры Ryzen графическим чипом Vega и памятью HBM2. Эти процессоры с интегрированным графическим ядром для ноутбуков и планшетов под названием Raven Ridge призваны значительно повысить производительность графической системы и своими компактными размерами станут примером того, как может выглядеть ПК будущего: процессор, графика и память на одном чипе. В то же время Intel перейдет на очередной 10-нанометровый «тик» - Cannon Lake, что тоже повысит энергоэффективность.


ФОТО: Компании-производители; CHIP Studios; Robert Viglasky/Netflix

Для нового поколения CPU AMD вновь использовала архитектуру Zen, которой теперь исполняется один год, но она была оптимизирована во многих областях. Поэтому AMD назвала новую архитектуру Zen+. Добавьте к этому и немного уменьшенный техпроцесс, то есть новое поколение Ryzen по терминологии Intel "тик-так" нельзя отнести ни к "тику", ни к "таку".

12 нм вместо 14 нм, DDR4-2933 вместо DDR4-2666

Еще после представления APU Raven Ridge стало понятно, что AMD перейдет на более скоростную память. Как и в случае APU, новые процессоры Ryzen поддерживают DDR4-2933 вместо DDR4-2666 первого поколения. Впрочем, на самом деле это не так и важно, поскольку неофициально процессоры работают и с более скоростной памятью. Что положительно сказывается на производительности, но об этом мы поговорим чуть позже. Впрочем, следует помнить, что некоторые комбинации режимов либо невозможны, либо ограничены. Стоит обращать внимание не только на частоту памяти, но и на структуру планок (одно- или двуранговые) и число модулей. Как и раньше, процессоры поддерживают двухканальный режим работы.

AMD почти не раскрывает детальные отличия между Zen (Summit Ridge)/Zen 1.5 (Raven Ridge) и Zen+ (Pinnacle Ridge). Разве что упоминаются "целевые улучшения", направленные на уменьшение задержек. Для кэша L1 задержки снизились примерно на 13%, для кэша L2 - на 34%, для кэша L3 - на 16%. Задержки при работе DRAM снижены на 11%. Также увеличился рейтинг IPC (Instructions per Cycle), то есть число выполняемых инструкций за такт. Zen+ показывает прирост на 3%.

Переход с 14-нм на 12-нм техпроцесс (12LP) привел к увеличению производительности транзисторов. AMD указывает прирост на 10-15%. Что позволило повысить тактовые частоты на 300 МГц с одновременным снижением напряжения ядер CPU на 50 мВ. По сравнению с Summit Ridge это должно привести к 10-15% снижению энергопотребления при равных тактовых частотах. Как видим, и здесь революционных изменений ждать не приходится, все же переход с 14 на 12 нм не такой существенный. Серьезные изменения нас ждут в следующем году с поколением Zen 2.

Но AMD приготовила кое-что еще. По крайней мере, в случае процессоров Ryzen 7 2700X и Ryzen 5 2600X: если все ядра нагружаются одновременно, тактовые частоты все равно остаются около планки 4 ГГц. В случае предшественников такой подход работал только с нагрузкой на одно ядро. В наших тестах мы действительно наблюдали подобное поведение, частоты во многих случаях были около планки 4 ГГц. Уже одно это приводит к тому, что вычислительная производительность оказывается выше, чем у предшественников.

Однако все имеет свою цену: Ryzen 7 2700X получили более высокий TDP 105 ВТ, хотя у Ryzen 7 1800X он был ограничен 95 Вт. В случае Ryzen 5 2600X тепловой пакет оставлен прежним - 95 Вт. Процессоры Ryzen 7 2700 и Ryzen 5 2600 более экономичны, они потребляют не более 65 Вт.

Максимальные тактовые частоты Ryzen 7 2700X и Ryzen 5 2600X
Модель 2 пот. 4 пот. 6 пот. 8 пот. 10 пот. 12 пот. 14 пот. 16 пот.
Ryzen 7 2700X 4,350 ГГц 4,200 ГГц 4,125 ГГц 4,050 ГГц 4,050 ГГц 4,025 ГГц 3,975 ГГц 3,925 ГГц
Ryzen 5 2600X 4,250 ГГц 4,075 ГГц 4,050 ГГц 4,050 ГГц 4,025 ГГц 4,025 ГГц - -

Как и в случае первого поколения, у новых процессоров распределитель тепла припаивается. AMD вновь использует припой на основе сплава индия. Если верить компании, такой подход увеличивает затраты, но обеспечивает более эффективное отведение тепла. По сравнению с другими решениями, температура ядер должна быть примерно на 10 °C ниже.

Zen+ использует знакомую архитектуру

Некоторое время назад утекла информация о том, что , что вызвало вопросы о номенклатуре CPU. Ясности с нумерацией пока нет, поскольку сама AMD в своей документации постоянно перескакивает с одной номенклатуры на другую. Первое поколение Ryzen опирается на архитектуру Zen 1, здесь вопросов нет. Но вот Raven Ridge иногда называются как Zen 1.5, а вышедшие сегодня процессоры Ryzen второго поколения - как Zen+. Между тем пользователи часто говорят о втором поколении как Zen 2. А процессоры Ryzen x 3xxx в таком случае вполне логично должны называться Zen 3.

Однако не следует забывать, что второе поколение процессоров Ryzen базируется на архитектуре Zen, представленной в прошлом году. Пусть и с упомянутыми выше оптимизациями. Что хорошо видно по числу транзисторов - оно осталось на прежнем уровне 4,8 млрд.

Конечно, отличия от предыдущей архитектуры Bulldozer можно назвать революционными. AMD перешла на классический дизайн процессора. Каждое ядро CPU использует четыре целочисленных блока, которые имеют 168 регистров и могут обрабатывать 192 инструкции одновременно. Два блока Load/Store отвечают за запись данных обратно в кэши после вычислений. Используются два блока работы с плавающей запятой, по 128 FMAC каждый (Floating Point Multiply Accumulators). Кэш инструкций имеет размер 64 кбайт 4-way, кэш данных - 32 кбайт с восемью одновременными обращениями (8-way). Кэш L2 имеет размер 512 кбайт, к нему тоже возможно одновременное обращение на чтение или запись по восьми каналам (8-way). Добавим к этому общий кэш L3.

Впрочем, кэш L3 для ядер доступен не в полном объеме, что связано со структурой CPU Complex (CCX). В случае Ryzen 7 2700X и Ryzen 7 2700 каждый из двух CCX содержит четыре ядра и 8 Мбайт кэша L3 - его могут использовать только четыре данных ядра. Ryzen 5 2600X и Ryzen 5 2600 содержат только три ядра в CCX, но для них все равно доступны те же 8 Мбайт L3. Кэш 8 Мбайт разделен на четыре раздела по 2 Мбайт, каждый раздел привязан к своему ядру CPU. И работа этих разделов зависит от частоты и нагрузки соответствующих ядер CPU. В результате при малой нагрузке напряжение и частота снижаются не только для ядра CPU, но и для соответствующего раздела кэша.

Добавьте к этому технологию SMT, позволяющую выполнять в два раза больше потоков, чем имеется ядер CPU. Впрочем, не стоит думать, что два потока на одном ядре будут выполняться с равной производительностью.

Infinity Fabric

Как и в первом поколении Zen, за связь между двумя CCX, оперативной памятью и различными контроллерами вновь отвечает интерконнект Infinity Fabric. AMD не приводит каких-либо изменений. В любом случае, мы по-прежнему получаем два уровня. Control Fabric обеспечивает связь разных блоков Engine Hubs, отвечая за задачи управления энергопотреблением, безопасностью, сбросом и инициализацией, тестированием.

Второй уровень - Data Fabric, здесь уже передаются данные с высокой скоростью и низкими задержками. В том числе и с оперативной памятью.

Структура CCX вместе с Infinity Fabric призвана обеспечить практически линейное масштабирование многопоточной производительности.



Загрузка...