sonyps4.ru

Моделирование технических систем в simulink. И.В.Черных

Subsystem – подсистемы.

Подсистема это фрагмент Simulink -модели, оформленный в виде отдельного блока. Использование подсистем при составлении модели имеет следующие положительные стороны:

  1. Уменьшает количество одновременно отображаемых блоков на экране, что облегчает восприятие модели (в идеале модель полностью должна отображаться на экране монитора).
  2. Позволяет создавать и отлаживать фрагменты модели по отдельности, что повышает технологичность создания модели.
  3. Позволяет создавать собственные библиотеки.
  4. Дает возможность синхронизации параллельно работающих подсистем.
  5. Позволяет включать в модель собственные справочные средства.
  6. Дает возможность связывать подсистему с каким-либо m -файлом, обеспечивая запуск этого файла при открытии подсистемы (нестандартное открытие подсистемы).

Использование подсистем и механизма их блоков позволяет создавать блоки, не уступающие стандартным по своему оформлению (собственное окно параметров блока, пиктограмма, справка и т.п.).

Количество подсистем в модели не ограничено, кроме того подсистемы могут включать в себя другие подсистемы. Уровень вложенности подсистем друг в друга также не ограничен.

Связь подсистемы с моделью (или подсистемой верхнего уровня иерархии) выполняется с помощью входных (блок Inport библиотеки Sources ) и выходных (блок Outport библиотеки Sinks ) портов. Добавление в подсистему входного или выходного порта приводит к появлению на изображении подсистемы метки порта, с помощью которой внешние сигналы передаются внутрь подсистемы или выводятся в основную модель. Переименование блоков Inport или Outport позволяет изменить метки портов, отображаемые на пиктограмме подсистемы со стандартных (In и Out ) на те, которые нужны пользователю.

Подсистемы могут быть виртуальными (Subsystem ) и монолитными (Atomic Subsystem ). Отличие этих видов подсистем заключается в порядке выполнения блоков во время расчета. Если подсистема является виртуальной, то Simulink игнорирует наличие границ отделяющих такую подсистему от модели при определении порядка расчета блоков. Иными словами в виртуальной системе сначала могут быть рассчитаны выходные сигналы нескольких блоков, затем выполнен расчет блоков в основной модели, а затем вновь выполнен расчет блоков входящих в подсистему. Монолитная подсистема считается единым (неделимым) блоком и Simulink выполняет расчет всех блоков в такой подсистеме, не переключаясь на расчеты других блоков в основной модели. Изображение монолитной подсистемы имеет более толстую рамку по сравнению с виртуальной подсистемой.

Подсистемы могут быть также управляемыми или неуправляемыми. Управляемые подсистемы всегда являются монолитными. Управляемые подсистемы имеют дополнительные (управляющие) входы, на которые поступают сигналы активизирующие данную подсистему. Управляющие входы расположены сверху или снизу подсистемы. Когда управляемая подсистема активизирована – она выполняет вычисления. В том случае если управляемая подсистема пассивна, то она не выполняет вычисления, а значения сигналов на ее выходах определяются настройками выходных портов.

Для создания в модели подсистемы можно воспользоваться двумя способами:

  1. Скопировать нужную подсистему из библиотеки Subsystem в модель.
  2. Выделить с помощью мыши нужный фрагмент модели и выполнить команду Create Subsystem из меню Edit окна модели. Выделенный фрагмент будет помещен в подсистему, а входы и выходы подсистемы будут снабжены соответствующими портами. Данный способ позволяет создать виртуальную неуправляемую подсистему. В дальнейшем, если это необходимо, можно сделать подсистему монолитной, изменив ее параметры, или управляемой, добавив управляющий элемент из нужной подсистемы находящейся в библиотеке. Отменить группировку блоков в подсистему можно командой Undo .

Рис. 9.9.1 иллюстрирует процесс создания подсистемы вторым способом. На рис. 9.9.2 показан результат этого процесса. В примере использована модель управляемого функционального генератора.

Рис. 9.9.1 Создание подсистемы

Рис. 9.9.2 Модель, использующая подсистему

Пример на рис. 9.9.4 отличается от предыдущего настройкой блока Enable подсистемы. В данном примере параметр States when enabling блока Enable имеет значение reset . На временных диаграммах видно, что при выключении подсистемы происходит ее сброс до начального состояния.

Рис. 9.9.4 Модель, использующая E -подсистему

ВВЕДЕНИЕ В SIMULINK

MATLAB (Matrix Laboratory) – это пакет прикладных программ, предназначенный для решения задач технических вычислений.

Рисунок 1.1 – Логотип MATLAB, выведенный на экран при помощи команды logo

Как язык программирования MATLAB был разработан в конце 1970-х годов Кливом Моулером в университете Нью-Мексико. MATLAB – это высокоуровневый интерпретируемый язык программирования, отличительной особенностью которого является оперирование с векторами и матрицами. На сегодняшний день насчитывается более одного миллиона пользователей

Simulink – это система имитационного блочного моделирования динамических систем, являющаяся подсистемой MATLAB. Средства моделирования Simulink основываются на программных средствах MATLAB, но позволяют обойтись без использования в явном виде языка MATLAB и создавать модели из стандартных блоков в графическом виде. При необходимости дополнительные блоки могут быть написаны пользователем как на языке MATLAB, так и на других языках (С, VHDL и др.). Визуальное представление дает возможность значительно упростить процесс создания модели, поиска ошибок, модификации модели другими пользователями, что в целом позволяет добиваться результатов гораздо быстрее, чем при использовании языка MATLAB в чистом виде. Кроме того, пользователю предоставляется возможность автоматической генерации кода на языках С, VHDL, Verilog по созданной модели, что позволяет переносить модель системы сразу после отладки на кристалл (микроконтроллеры, ПЛИС). Со многими другими возможностями MATLAB и Simulink можно познакомиться на сайте компании TheMathWorks (http://www.mathworks.com/).

1.1 Запуск Simulink

Запустив графический интерфейс MATLAB, выполните команду simulink или запустите Simulink при помощи кнопки на верхней панели (рис. 1.2).

Рисунок 1.2 – Запуск Simulink из MATLAB

При запуске Simulink откроется окно Simulink Library Browser (каталог библиотеки Simulink). В левой панели окна приведен список библиотек Simulink (рис. 1.3). Правая панель содержит три вкладки: Library (Содержание библиотеки),Search Results (Результаты поиска),Most Frequently Used Blocks

(Наиболее часто используемые блоки).

Во вкладке Library отображаются элементы библиотеки, выбранной в левой панели окна. В дальнейшем эти элементы могут быть использованы для создания новой модели.

Для ускоренного поиска нужного блока необходимо использовать поисковую систему (Enter search term ). Результаты поиска отображаются во второй вкладке правой панели (Search Results ).

В процессе работы в Simulink формируется набор наиболее часто используемых блоков, который будет отображаться в третьей вкладке правой панели (Most Frequently Used Blocks ).

Рисунок 1.3 – Каталог библиотеки Simulink

Главное меню окна каталога библиотеки Simulink содержит следующие элементы:

File (Файл) – работа с файлами моделей Simulink:

New (Новый) – создание нового файла модели (Model ) или библиотеки (Library );

Open (Открыть) – открыть ранее созданный файл;

Close (Закрыть) – закрыть окно каталога библиотеки Simulink;Preferences (Настройки по умолчанию) – общие настройки Simulink (параметры шрифтов, настройки отображения графического интерфейса пользователя, начальные настройки вновь создаваемых проектов и другие).

Edit (Редактирование) – добавление в модель выделенного блока (Add Selected Block to a New Model ), поиск блока в библиотеке (Find ).

View (Вид) – настройки отображения элементов библиотеки (размер шрифта, вид значков элементов и др.).

Help (Помощь) – справочная система MATLAB Simulink.

Необходимо отметить, что MATLAB имеет очень хорошую встроенную систему документации, которая постоянно совершенствуется и дополняется новой информацией. Знание технического английского языка и чтение документации MATLAB – это лучший способ разобраться во всем многообразии функций и блоков.

Рисунок 1.4 – Описание элемента стандартной библиотеки Simulink

При двойном нажатии левой кнопкой мыши по интересующему блоку открывается окно параметров, в котором приведено краткое описание блока и перечислены его параметры (рис. 1.4). На данном этапе параметры блока доступны только для чтения. После перемещения блока в модель появится возможность их изменения. При необходимости можно воспользоваться кнопкой Help для открытия подробного описания блока в системе документации

1.2 Создание модели

Для создания новой модели выполните команду главного меню File ,

New ,Model (рис. 1.5) или нажмитеCtrl+N .

Рисунок 1.5 – Создание новой модели

По команде откроется новое безымянное окно (Untitled ) модели (рис.

Рисунок 1.6 – Пустое окно новой модели Simulink

Прежде чем приступать к созданию модели, необходимо настроить параметры моделирования. Выполните команду главного меню Simulation ,Configuration Parameters (Моделирование, Параметры конфигурации) или на-

жмите Ctrl+E .

Рисунок 1.7 – Параметры конфигурации

Процесс настройки заключается в задании параметров решающего мо-

дуля (Solver ):

Simulation time (Время моделирования) – задается временной интервал моделирования в секундах. Левая граница по умолчанию равна нулю, правая может принимать любое значение, в том числе и бесконечность (inf ). В случае, если начальное и конечное значения совпадают, будет выполнен только один шаг моделирования.

Solver Options (Параметры решающего модуля) – параметры модуля, реализующего один из методов численного интегрирования обыкновенных дифференциальных уравнений. Выделяются два типа (Type ) решающих модулей: с фиксированным шагом моделирования (Fixed-step ) и с переменным шагом моделирования (Variable-step ). Выбор второго варианта позволяет системе адаптивно изменять временной шаг моделирования в процессе работы. При этом можно задать величины минимального и максимального шага мо-

делирования, а также начального шага моделирования в секундах (Max step size, Min step size иInitial step size ). При необходимости можно задать относительную и абсолютную погрешности численного метода решения дифферен-

циальных уравнений (Relative tolerance иAbsolute tolerance ). В выпадающем спискеSolver имеется возможность задать тип решающего модуля для моделирования аналоговых систем (ode … ) или выбрать решающий модуль для моделирования дискретных систем (Discrete (no continuous state) ).

На первое время рекомендуется оставить параметры конфигурации по умолчанию, изменяя лишь правую границу времени моделирования. При необходимости можно более подробно ознакомиться с параметрами конфигурации в справочной системе MATLAB Simulink.

Рисунок 1.7 – Результаты поиска по слову «Scope»

Сохраните настройки системы и перейдите к окну библиотеки Simulink. Введите в строке поиска (Enter search term )Scope (осциллограф) и нажмите клавишуEnter. Во вкладкеFound: ‘Scope’ отражаются результаты поиска, сгруппированные по библиотекам (рис. 1.7). В базовой библиотекеSimulink блокScope найден дважды: в разделеCommonly Used Blocks (наиболее часто используемые блоки) иSinks (средства анализа сигналов). Разумеется, это один и тот же блок осциллографа. В списке найденных блоков также присут-

ствует часто используемый блок Spectrum Scope (Анализатор спектра), находящийся в библиотеке цифровой обработки сигналов (Digital Signal Processing ).

Добавить выбранный блок в модель можно несколькими способами: перетащив его на лист модели или выбрав пункт Add To Untitled контекстного меню, нажав правой кнопкой мыши на блоке. Аналогичным образом добавьте блокSine Wave из разделаSources (Источники сигнала).

Соединение блоков между собой может осуществляться двумя способами. Ручной способ: наведя курсор мыши на выход источника сигнала, зажмите левую кнопку мыши и проведите линию до входа осциллографа. Автоматический способ: выделив блок источника сигнала однократным нажатием левой кнопки мыши, зажмите кнопку Ctrl и нажмите левой кнопкой мыши на второй блок, соединение будет выполнено автоматически.

Для настройки параметров генератора синусоидального сигнала двойным щелчком мыши откройте окно параметров блока (рис. 1.9.).

Рисунок 1.9 – Настройка параметров блока Sine Wave

Установите значение параметра Sine type Sample based (Метод формирования сигнала – Дискретное представление). ПараметрSample time определяет период дискретизации сигнала, для примера установим его равным одной секунде. Таким образом, при 10 выборках на один период синусоиды (Samples per period ) и при периоде дискретизации в 1 секунду, период гармонического колебания составит 10 секунд.

Запустите процесс моделирования Simulation, Start (Ctrl+T ) на временном промежутке 0…10 сек. Двойным щелчком мыши откройте окно осциллографа (рис. 1.10).

Рисунок 1.10 – Пример моделирования источника дискретного синусоидального сигнала

Как видно на рисунке 1.10, осциллограмма сигнала соответствует заданным параметрам гармонического колебания в настройках блока Sine Wave . При необходимости можно увеличить участок с требуемым фрагментом сигнала при помощи кнопок управления окнаScope . КнопкаAutoscale позволяет автоматически подобрать масштаб по двум осям для отображения всего накопленного сигнала. При помощи кнопокZoom X – axis иZoom Y – axis имеется возможность изменения масштаба только по одной из координат. В настройках блокаScope можно задать количество входов осциллографа (Number of axis ), параметры децимации входного сигнала (Decimation , прореживание выборок), настройки объема буфера хранения информации (History, Limit data points to last ) и другие.

1.3 Библиотеки Simulink

Формирование сигналов в Simulink осуществляется при помощи генераторов сигналов Sources (рис. 1.11).

Рисунок 1.11 – Библиотека источников сигнала

В библиотеку входят следующие блоки:

Band-Limited White Noise – генератор нормального белого шума с равномерной финитной спектральной плотностью мощности и заданным временем корреляции для аналоговых систем;

Chirp signal – генератор синусоидального колебания с линейно возрастающей мгновенной частотой;

Clock – формирователь аналогового сигнала текущего времени моделирования (в соответствии с шагом моделирования);

Constant – источник постоянного сигнала;

Counter Free-Running – формирователь сигнала на основе N -разрядного счетчика и со сбросом по переполнению;

Counter Limited – формирователь сигнала на основе счетчика с произвольным значением сброса;

Digital Clock – формирователь дискретного сигнала текущего времени моделирования (в соответствии с шагом моделирования);

ВВЕДЕНИЕ

Настоящие методические указания служат пособием для студентов института, выполняющих лабораторные и курсовые работы по теории линейных систем автоматического управления и автоматизированному электроприводу. Целью практикума является закрепление теоретического материала по дифференциальным уравнениям, передаточным функциям, временным и частотным характеристикам звеньев и автоматических систем, их устойчивости, влиянию параметров и структуры систем на показатели качества процессов управления в переходном и установившемся режимах функционирования, исследованию систем с запаздыванием.

Особенностью данного практикума является его выполнение на персональных компьютерах с использованием системы MATLAB - Simulink, позволяющей автоматизировать процесс анализа систем управления, представленных в виде структурных динамических схем.

Практикум предусматривает выполнение шести лабораторных работ для приобретения практических навыков при анализе основных свойств линейных систем управления во временной и частотной областях.

ЛАБОРАТОРНАЯ РАБОТА № 1 ИЗУЧЕНИЕ СИСТЕМЫ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

MATLAB - SIMULINK

Цель работы

Ознакомление с системой MATLAB, приобретение практических навыков исследования систем автоматического управления (САУ) с помощью приложения MATLAB – системой имитационного моделирования Simulink.

1.1. Основные сведения

MATLAB - это язык программирования сверхвысокого уровня, предназначенный для технических вычислений. Он включает в себя вычисления, визуализацию и программирование в легкой для использования среде, где задачи и решения представлены в общей математической форме. MATLAB является интерактивной системой, в которой основные элементы данных представлены массивами, не требующими предварительного задания размерности. Это позволяет решать множество технических задач, особенно в матричной и векторной форме, а также писать программу на традиционных скалярных языках, таких как Си или Фортран.

Название "MATLAB" произошло от сокращения слов "matrix laboratory". Система MATLAB состоит из пяти основных частей:

1. Язык программирования MATLAB. Это матрично-массивный язык высокого уровня с управлением состоянием, функциями, структурами данных, входом/выходом, и объектно-ориентированным программированием.

2. Рабочая среда MATLAB. Это графический интерфейс, с которым работает пользователь. Включает рабочий стол MATLAB, командное окно, редактор и отладчик файлов MATLAB, справочный броузер.

3. Графическая система MATLAB. Содержит команды высокого уровня для двухмерного и трехмерного представления данных, обработки изображений, анимации. Также содержит набор команд низкого уровня, позволяющих пользователю построить собственный интерфейс.

4. Библиотека математических функций MATLAB. Содержит набор вычислительных алгоритмов, начиная с элементарных арифметических функций (сложение/вычитание, тригонометрические функции) и заканчивая сложными функциями, такими как обращение матриц и преобразования Фурье.

5. Интерфейс прикладных программ MATLAB. Эта библиотека позволяет писать программы на языках Си и Фортран, взаимодействующие с MATLAB. Включает в себя устройства вызова из MATLAB (динамической связи), вызова MATLAB как вычислительного механизма, и для работы с MAT-файлами.

Simulink является программой для имитационного моделирования и анализа динамических систем, входящей в состав пакета MATLAB. Simulink позволяет производить построение модели в виде унифицированных блоков на экране компьютера и может работать с линейными, нелинейными, непрерывными, дискретными моделями или их сочетаниями с большим числом переменных.

1.2. Порядок выполнения работы

1. Включите компьютер.

2. Находясь в ОС Windows, запустите MATLAB двойным щелчком левой кнопки "мыши" по соответствующей иконке на рабочем столе. В результате открывается основное окно MATLAB.

3. Для запуска Simulink нажмите в основном окне MATLAB на кнопку с всплывающей подписью Simulink Library Browser . В результате

открывается окно библиотеки блоков Simulink.

4. Для построения новой модели в окне Simulink Library Browser нажмите на кнопку с всплывающей подписьюNew model . Программа откроет

окно с "чистым листом" без имени (untitled). Для открытия существующей модели в окне библиотеки блоков или в командном окне нажмите на кнопку с всплывающей подписью Open a model , и в появившемся окне выберите

требуемый файл (файлы, созданные в Simulink, имеют расширение .mdl ).

5. Создайте структурную схему, приведенную на рис. 1.1 и задайте указанные преподавателем значения ее параметров.

Рис. 1.1. Структурная схема (а) и модель в Simulink (б) исследуемой системы

Набор структурной схемы осуществляется путем выбора требуемых блоков в окне Simulink Library Browser и перетаскивания их при

помощи мыши в окно, где осуществляется построение модели. Для удобства пользования все блоки разделены на группы. В данной лабораторной работе использованы блоки группы Simulink с подгруппамиContinuous

(непрерывные звенья), Math Operations (математические блоки),Sinks (приемники данных),Sources (источники сигналов). Имена блоков указаны

на рис. 1.1,б.

Редактирование параметров блока осуществляется двойным щелчком левой кнопки мыши по требуемому блоку. При этом открывается окно параметров блока, вид которого зависит от вида блока.

Для соединения блоков достаточно указать курсором мыши на выход блока-источника сигнала и затем при нажатой кнопке мыши протянуть соединение на вход блока-приемника сигнала. Соединение блоков можно также осуществлять выделением левой кнопкой мыши требуемых блоков при нажатой клавишеCtrl . Для создания отвода необходимо указать правой

кнопкой мыши на место отвода соединения и при нажатой кнопке протянуть отвод на вход требуемого блока.

Для вывода результатов моделирования к выходам требуемых блоков необходимо присоединить блоки-приемники сигналов (см. п. 9).

Удаление ненужных блоков и соединений происходит путем выделения соответствующего объекта и нажатия клавиши Delete клавиатуры.

Дополнительную информацию по построению моделей, а также по работе с MATLAB в целом можно найти в меню Help Desk , а также в .

6. Сохраните созданную модель.

7. Задайте параметры для процесса численного интегрирования модели. Для этого в меню окна модели откройте Simulation -Parameters . В

появившемся окне выставляются указанные преподавателем время начала и окончания расчета, точность расчета и метод.

8. Рассчитайте полученную модель. Запуск расчета (интегрирования) модели в меню Simulation кнопкойStart . Процесс расчета модели

отображается прогрессивной шкалой в нижней части окна. При необходимости

вернитесь на предыдущий этап и поменяйте время окончания расчета так, чтобы обеспечить стабилизацию выходной переменной (окончание переходного процесса).

9. По окончании расчета получите требуемые результаты с помощью блоков-приемников данных. Просмотр и печать графиков переходных процессов осуществляется с помощью блокаScope . Просмотр численных

значений переменной в ходе моделирования осуществляется блоком Display .

Для редактирования полученных графиков или сохранения их в формате графического файла, необходима установка выходных блоков То Workspace .

В параметрах этих блоков указывается имя выводимой переменной Variable name и формат данныхSave format (Array) . Далее в командном окне MATLAB или редакторе М-файлов, вызываемого командой менюNew M- file , записывается команда построения графиков. В простейшем случае она

имеет вид: plot(x,y);

где x ,y – имена выводимых переменных.

При построении нескольких графиков в одних осях команда примет вид: plot(x,y,x,z,..);

где x – имя общей (независимой) переменной,y,z – зависимые переменные.

Примечание: команды, набранные в командной строке, выполняются после нажатия клавиши Enter . Для выполнения команд, набранных в редакторе М-

Вывод нескольких переменных в один блок-приемник данных, осуществляется с помощью блока объединения сигналов в общую шинуMux .

Переменная времени в MATLAB обозначена как tout . После сохранения (редактор генерирует файл с расширением.m ) и запуска программы (командаRun менюTools редактора), последняя строит график в окнеFigure ,

который может быть обработан имеющимися в меню окна инструментами. Сохранение графика происходит либо как файла с расширением .fig (команда

Save менюFile окна графика), в этом случае он будет доступен только из MATLAB, либо как графического файла с расширениями.bmp ,.jpg и прочими по выбору (командаExport менюFile окна графика). В последнем

случае график может быть вставлен в документ отчета по лабораторной работе, написанного, например, в редакторе Word.

10. Для построения логарифмических частотных и амплитудно-фазовых частотных характеристик (ЛЧХ и АФЧХ) по полиному передаточной функции необходимо в командном окне или в М-файле ввести соответственно команды

знаменателя передаточной функции системы, записываемые через пробел. В

случае наличия двух и более коэффициентов в полиноме, последние записываются в квадратных скобках через пробел. Например, для построения

ЛЧХ колебательного звена с передаточной функции W (p ) = 0,01 p 2 + 5 0,2 р + 1 ,

необходимо набрать следующую команду: bode(tf(5,));

Для построения частотных характеристик по модели, в Simulink с помощью блоков In иOut необходимо указать соответственно вход и выход

линеаризация исследуемой модели и построение её ЛЧХ или АФЧХ. Синтаксис

Linmod("имя файла модели")

bode(A,B,C,D) или nyquist(A,B,C,D) grid

где A ,B ,C ,D – матрицы пространства состояний системы, полученные при выполнении командыlinmod ;grid – команда нанесения на график координатной сетки.

11. После окончания работы выйдите из MATLAB, закрыв все окна.

1.3. Содержание отчета по работе

1. Цель работы.

2. Схема исследованной системы с числовыми значениями параметров.

3. Экспериментально полученные графики переходного процесса, ЛЧХ, АФЧХ.

4. Ответы на контрольные вопросы.

1.4. Контрольные вопросы

1. Что из себя представляет система MATLAB и какова область его применения?

2. С какими видами моделей может работать Simulink?

3. Каким образом осуществляется построение структурной схемы в Simulink?

4. Как в Simulink осуществляется ввод и редактирование параметров блоков?

5. Как в MATLAB осуществляется построение ЛЧХ и АФЧХ системы?

6. Как осуществляется печать графиков переходных процессов?

ЛАБОРАТОРНАЯ РАБОТА № 2 ИССЛЕДОВАНИЕ ОСНОВНЫХ ХАРАКТЕРИСТИК ТИПОВЫХ

ДИНАМИЧЕСКИХ ЗВЕНЬЕВ

Цель работы Исследование переходной функции, амплитудно-фазовых и

логарифмических частотных характеристик апериодического, реального дифференцирующего и колебательного звеньев.

2.1. Основные сведения Типовыми динамическими звеньями САУ являются звенья, процессы в

которых описываются линейными дифференциальными уравнениями первого и второго порядков с постоянными коэффициентами и в общем случае имеют следующий вид:

d 2 y

a0 y= b2

d 2 x

B0 x,

где x (t ) ,y (t ) - соответственно входной и выходной сигналы звена;a 0 ,a 1 ,a 2 ;b 0 ,b 1 ,b 2 - постоянные коэффициенты.

Данное уравнение дает возможность определить передаточную функцию типового звена в виде

W (p )=

y (p )

b p2 + b p+ b

x (p )

a p2

a p +

Анализ возможных вариантов задания коэффициентов передаточной функции (2.2) показывает, что к типовым звеньям нулевого и первого порядка,

т.е. к звеньям, описываемым уравнениями вида (2.1) при a 2 = b 2 = 0 , относятся следующие

1. Безынерционное звено (при a 1 = b 1 = 0)

W (p) = b 0 = k. a0

2. Дифференцирующее звено (при a 1 = b 0 = 0)

W (p )=

b 1 p =

kp ,

где k =

3. Форсирующее звено (при a 1 =

W (p )=

b1 p+

b 0 =

k (Tp + 1) , гдеk =

b 1 .

4. Интегрирующее звено (при a 0

B 1 =0)

W (p )=

где k =

b 0 .

Апериодическое звено первого порядка (при b 1 = 0)

W (p )=

где k =

a p +

Tp + 1

Реальное дифференцирующее звено (при b 0 = 0)

W (p )=

где k =

a p +

Tp + 1

Из типовых

звеньев второго

наибольшее применение нашло

колебательное звено при b 1 =b 2 = 0 с передаточной функцией следующего вида:

W (p )=

Где k =

; T =

; ξ =

a p + a

2ξ Tp +1

Рассмотренная совокупность типовых динамических звеньев первого и второго порядков оказывается достаточной для построения структуры практически любой линейной САУ. При этом сложные реальные звенья могут заменяться последовательным или параллельным соединением нескольких типовых звеньев.

Временными характеристиками являются взаимосвязанные переходная h (t ) и весовая ω(t ) функции, представляющие собой реакции исследуемых звеньев на типовые воздействия в виде единичной ступенчатой функции 1(t ) и δ –функции δ(t ) . При этом переходная функция дает возможность оценить устойчивость и качество процессов управления, происходящих в исследуемых звеньях при скачкообразных входных воздействиях.

Частотные характеристики, основанные на использовании преобразования Фурье, позволяют оценить происходящие в звеньях процессы управления не только при скачкообразных, но и при любых других входных сигналах, действующих в реальных условиях.

При этом любой входной сигнал x (t ) представляется в виде суммы гармоник различных частот с определенными, соответствующими данному сигналу амплитудами и фазами, а реакция на сумму входных гармоник, т.е. выходной сигналy (t ) равен сумме реакций на каждую из них.

Для отдельной гармоники на входе линейного звена x (t ) = x 0 (ω) × e j ω t

реакцией будет совокупность вынужденной и переходной составляющих, последняя из которых по истечении некоторого времени затухает, и на выходе звена установится синусоидальный сигнал той же частоты, что и на входе, т.е.

y (t ) = y 0 (ω ) × e j (ωt + ϕ(ω)) .

Реакция звена на гармоники различных частот характеризуется его комплексным коэффициентом передачи, который представляет собой амплитудно-фазовую частотную характеристику (АФХ) звена определяется следующим образом.

Для моделирования поведения динамических систем, к которым относятся экипажи подвижного состава, используются ЭВМ. Существует большое количество алгоритмических языков, на которых может быть выполнено решение задачи. Выбор того или иного языка программирования зависит от многих условий. Часто решающую роль оказывает удобство программирования, наличие проверенных математических методов, легкость представления результатов моделирования. Такими особенностями обладает пакет MATLAB, содержащий в своем составе инструмент визуального моделирования SIMULINK.

SIMULINK сочетает в себе наглядность аналоговых машин и точность цифровых вычислительных машин. SIMULINK обеспечивает пользователю доступ ко всем возможностям пакета MATLAB, в том числе к большой библиотеке численных методов.

Подготовка задачи для моделирования в SIMULINK проводится в следующей последовательности:

Выбор расчетной схемы.
Составление системы уравнений, описывающих исследуемый процесс.
Приведение системы к виду, удобному для решения (разрешение относительно старших производных).
Определение начальных условий.
Составление структурной схемы.
Моделирование возмущающих функций.
Определение исходных данных.
Составление модели в среде SIMULINK.
Включение средств визуализации.
Тестирование.
Решение.
Анализ результатов.
Отчет.

Ниже рассмотрены примеры моделирования в среде SIMULINK на простых примерах.

Вертикальные колебания экипажа ЭПС

Математическая модель вынужденных колебаний двухмассовой системы

Для исследования влияния основных параметров экипажа на вертикальные колебания используют упрощенную модель с двумя степенями свободы, в которой две массы связаны упругими и диссипативными связями (рис.1). Такая модель описывает вертикальные колебания рельсовых экипажей с двухъярусным подвешиванием: магистральных локомотивов (электровозов и тепловозов) и пассажирских вагонов.

Рис.1. Расчетная схема

Уравнения движения рассматриваемой системы при наличии возмущения со стороны пути описывается следующими дифференциальными уравнениями:

В уравнениях (1) введены следующие обозначения:

m 1 – обрессоренная масса тележки;

m 2 – масса кузова, приведенная к одной тележке;

с 1 , b 1 – жесткость и демпфирование в первом ярусе подвешивания;

с 2 , b 2 – жесткость и демпфирование во втором ярусе подвешивания;

h (t ) – возмущение со стороны пути;

– обобщенные координаты и их производные по времени:

Преобразуем уравнения движения к виду:

В качестве возмущения используем неровность проф. Н.Н.Кудрявцева. Неровность хорошо описывает изменение прогиба вдоль рельсового звена. Модель неровности представляет собой сумму полуволны синусоиды частотой w и трех полуволн синусоиды частотой 3w , уложенные на длине рельсового звена L . Амплитуды неровностей A 1 A 2 выбираются в зависимости от типа и состояния пути.

Частота возмущения;

V - скорость движения.

Построим описанную выше модель в среде SIMULINK.

Модель вынужденных колебаний двухмассовой системы в системе Simulink

При запуске SIMULINK открываются два окна:

Пустое рабочее окно – заготовка для создания новой модели (untitled );

Окно библиотеки SIMULINK, содержащей наборы основных разделов (Library : simulink ).

Рис. 2. Пример начала работы в SIMULINK

Поскольку моделируемая система довольно проста, покажем реализацию модели одного уровня (без вложенных подсистем).

Процесс построения модели в системе Simulink представляет последовательность выбора необходимых блоков из соответствующих библиотек, и соединение их связями.

Обычно для моделирования динамической системы используют уравнения движения в виде (2).

Построение модели каждого уравнения начинаем с сумматора, имеющего столько входов, сколько членов содержит правая часть уравнение. Для первого уравнения это сумматор Sum 1 (рис. 3). Входы сумматора могут иметь как положительное значение, так и отрицательное (рис. 4). Используемые блоки рекомендуется именовать для облегчения последующей проверки и анализа.

Рис. 11. Подсистема, описывающая колебания первого тела

Рис. 12. Подсистема, описывающая колебания второго тела

Рис. 13. Настройка запускающей программы

Подпрограмма задания начальных значений – обычный m -файл. Для данного примера в файле MDYN 21. m задаются следующие значения:

%MDYN21
%Start programm
%
echo on
A1=0.005;
A2=0.002;
L=25;
p=pi/L;
M1=8.82;
C1=7000;
B1=60;
M2=25.8;
C2=2600;
B2=125;
echo off
x0 = ;
=sim("mdyn21",10,simset("InitialState",x0));

В приведенном тексте подпрограммы знак "точка с запятой" в конце строки запрещает вывод значений переменных.

Для отображения введенных данных применены операторы «echo on – echo off ». Выделенный фрагмент подпрограммы выводится в управляющее окно MATLAB (рис14).

Для изменения исходных данных используется текстовый редактор.

Запуск моделирующей программы в этом примере осуществляется двойным нажатием на блок START .


Рис. 14. Вывод в окне управляющей программы MATLAB

Добавим в модель информационный блок, содержащий краткое описание модели – блок Info , обозначенный символом «? ». Содержание блока показано на рис. 15.

Рис. 15. Информационный блок

Для отображения фазовой диаграммы введем блок отображения XY _ Graph , обозначенный на блок-схеме "фазовая диаграмма ". Результаты вывода показаны на рис. 16.

Рис. 16. Результаты моделирования – фазовая диаграмма

Использование подпрограмм пользователя

Для расширения возможностей моделирования в среде SIMULINK предусмотрена возможность подключения подпрограмм пользователя написанных на языке MATLAB. В предыдущей модели заменим функции неровности модулем "MATLAB Function " - "Неровность ". Модель определяет ссылку на подпрограмму пользователя, в которой описана функция неровности от пути и ее производная (рис. 17). Такой подход позволяет использовать проверенные модули как при программировании в пакете MATLAB, так и при моделировании в среде SIMULINK.

Рис. 17. Модель и настройка блока функции MATLAB

Рассмотренные примеры не претендуют на полноту описания возможностей пакета MATLAB и среду визуального моделирования SIMULINK. Для изучения рекомендуем специальную литературу и руководство пользователя.

Рубан В.Г. © 2000

Введение

Настоящие методическое пособие предназначено для изучения раздела «Автоматика» междисциплинарного комплекса МДК 03.01., дисциплин «Основы автоматика», «Системы автоматического управления»

В пособии рассматриваются методы цифрового моделирования систем автоматического управления и программные средства для их проведения, рассматриваются способы построения математических моделей.

В первой части инструкции (Часть 1) приведен способ описания систем дифференциальными уравнениями. В следующей части (Часть 2) инструкции будет представлен способ описания систем как совокупности множества передаточных функций.

Для иллюстрации примера использована версия 7.11 программы MATLAB.

Работа с другими версиями MATLAB аналогична, за исключением вида «окон».

Мы постарались максимально упростить инструкцию и в доступной форме показать как можно пользоваться Simulink

Часть 1. Общие сведения о системе Simulink

Программа Simulink является приложением к пакету MATLAB.

При моделировании с использованием Simulink реализуется принцип визуального программирования, в соответствии с которым, пользователь на экране из библиотеки стандартных блоков создает модель устройства и осуществляет расчеты. При этом, в отличие от классических способов моделирования, пользователю не нужно досконально изучать язык программирования и численные методы математики, а достаточно общих знаний требующихся при работе на компьютере и, естественно, знаний той предметной области, в которой он работает.

Основным понятием системы моделирования Simulink является сигнал. По умолчанию, сигналы – это скалярные безразмерные переменные, связывающие компоненты модели. Однако, существуют и специальные сигналы, например электрические, гидравлические, механические и т.д., которые определенным образом описывают конкретное физическое влияние одних элементов моделируемой системы на другие. Компоненты модели – это элементы библиотеки Simulink или другие модели, которые осуществляют изменения сигналов (например, интегрирование, усиление, сложение двух сигналов и т.д.).

Simulink является достаточно самостоятельным инструментом и при работе с ним совсем не требуется знать сам MATLAB и остальные его приложения. С другой стороны доступ к функциям MATLAB и другим его инструментам остается открытым и их можно использовать в Simulink. Часть входящих в состав пакетов имеет инструменты, встраиваемые в Simulink (например, LTI-Viewer приложения Control System Toolbox – пакета для разработки систем управления).

Имеются также дополнительные библиотеки блоков для разных областей применения (например, Power System Blockset – моделирование электротехнических устройств, Digital Signal Processing Blockset – набор блоков для разработки цифровых устройств и т.д).

При работе с Simulink пользователь имеет возможность модернизировать библиотечные блоки, создавать свои собственные, а также составлять новые библиотеки блоков.

При моделировании пользователь может выбирать метод решения дифференциальных уравнений, а также способ изменения модельного времени

(с фиксированным или переменным шагом). В ходе моделирования имеется возможность следить за процессами, происходящими в системе. Для этого используются специальные устройства наблюдения, входящие в состав библиотеки Simulink. Результаты моделирования могут быть представлены в виде графиков или таблиц.

Преимущество Simulink заключается также в том, что он позволяет пополнять библиотеки блоков с помощью подпрограмм написанных как на языке MATLAB, так и на языках С++, Fortran и Ada.

Для запуска программы необходимо предварительно запустить пакет MATLAB. Основное окно пакета MATLAB показано на рисунке 1. Там же показана подсказка, появляющаяся в окне при наведении указателя мыши на ярлык Simulink в панели инструментов.

После открытия основного окна программы MATLAB нужно запустить программу Simulink. Это можно сделать одним из трех способов:

Рисунок 1- Основное окно программы MATLAB

∙ Нажать кнопку (Simulink) на панели инструментов командного окна MATLAB.

∙ В командной строке главного окна MATLAB напечатать Simulink и нажать клавишу Enter на клавиатуре.

∙ Выполнить команду Open... в меню File и открыть файл модели (mdl - файл).

Последний вариант удобно использовать для запуска уже готовой и отлаженной модели, когда требуется лишь провести расчеты и ненужно добавлять новые блоки в модель. Использование первого и второго способов приводит к открытию окна библиотеки Simulink (рисунок 2).

Рисунок 2- Окно библиотеки Simulink.

Цифрами обозначены: 1 –строка поиска компонентов, 2 – дерево библиотек Simulink, 3 –содержимое библиотеки (разделы или компоненты библиотеки)

На рисунке 2 выделена основная библиотека Simulink (в левой части окна) и показаны ее разделы (в правой части окна). Библиотека Simulink в MATLAB 2010 содержит следующие основные разделы:

0. Commonly Used Blocks – часто используемые компоненты из различных разделов основной библиотеки Simulink.

1. Continuous – компоненты для моделирования систем в непрерывном времени.

2. Discontinuities – компоненты для моделирования негладких и разрывных нелинейных функций.

3. Discrete – компоненты для моделирования систем в дискретном времени.

4. Logic and Bit Operations – компоненты для моделирования ло-

гических (двоичных) операций.

5. Lookup Tables – компоненты для моделирования функциональных и табличных зависимостей.

6. Math Operations – компоненты для моделирования математических операций.

7. Model Verification – компоненты для тестирования и верификации поведения моделей.

8. Model-Wide Utilities – вспомогательные компоненты для документирования и линеаризации моделей.

9. Ports & Subsystems – блоки построения иерархических моделей и подсистем.

10. Signal Attributes – компоненты для преобразования типов сигналов в моделях.

11. Signal Routing – компоненты для коммутации и объединения/разъединения сигналов.

12. Sinks – компоненты для отображения и сохранения сигналов.

13. Sources – источники сигналов и воздействий.

14. User-Defined Functions – компоненты для создания пользовательских функций, реализованных на языке MATLAB.

Список разделов библиотеки Simulink представлен в виде дерева, и правила работы с ним являются общими для списков такого вида:

∙ Пиктограмма свернутого узла дерева содержит символ+, а пиктограмма развернутого содержит символ −.

∙ Для того чтобы развернуть или свернуть узел дерева, достаточно щелкнуть на его пиктограмме левой клавишей мыши.

При выборе соответствующего раздела библиотеки в правой части окна отображается его содержимое (рисунок 3).

Рисунок 3- Компоненты библиотеки Simulink / Continuous.

Пример построения модели в Simulink

В качестве примера использования Simulink для моделирования систем рассмотрим отопление в жилом индивидуальном доме. Пусть для простоты, дом состоит из всего лишь одного помещения, в котором установлено отопление суммарной тепловой мощностью 𝑃 . Температура внутри этого дома 𝑇 𝑖 градусов, температура за окном – 𝑇 𝑜 градусов. Нас интересует каким образом изменяется температура 𝑇 𝑖 при изменении мощности 𝑃 (рисунок 4).

Рисунок 4- Модель отапливаемого помещения по входу-выходу.

Прежде чем составлять модель, рассмотрим интуитивно некоторые ее свойства. Во-первых, вполне очевидно, что если включить отопление, то сначала температура будет расти, а потом стабилизируется – наступит тепловое равновесие между подводимым теплом и рассеиваемым на улицу через щели в окнах, вентиляцию и т.д. Если печку выключить, то температура будет падать и в конце-концов дома будет также холодно, как и на улице. Существенными

параметрами модели является:

∙ температура за окном 𝑇 𝑜 – чем меньше она, тем больше тепла

уходит из дома и тем больше нужна мощность нагревателя, чтобы достичь заданной температуры внутри 𝑇 𝑖 ;

∙ качество теплоизоляции – чем хуже теплоизоляция, тем больше тепла выходит наружу;

∙ масса воздуха внутри дома – чем больше воздуха, тем дольше его нужно нагревать до заданной температуры и тем дольше будет остывать дом при отключении отопления.

В теплотехнике существуют множество моделей, с разной степенью точности моделирующие процессы нагревания и охлаждения тел. Далее мы рассмотрим самый простой из них. Для этого необходимо ввести понятие количества теплоты – энергии, необходимой для изменения термодинамического состояния тела (например, температуры). Из курса физики хорошо известно, что для того, чтобы нагреть тело массой 𝑚 и теплоемкостью 𝑐 от температуры 𝑇 1 до 𝑇 2 необходимо затратить количество теплоты 𝑄 , равное

𝑄 = 𝑐𝑚 (𝑇 2 − 𝑇 1)

Количество теплоты 𝑄 𝑖 , которое поступает от нагревателя мощностью 𝑃 за время 𝜏 – это просто интеграл по времени:

𝑄 𝑖 (𝜏 ) =

Для того, чтобы понять сколько тепла ушло на улицу, необходимо воспользоваться понятием теплового потока 𝑄 0 (t) – количество теплоты, проходящей через поверхность за единицу времени. Если считать, что теплопроводность внутри двух соприкасающихся сред больше, чем теплопроводность между ними, то тепловой поток пропорционален разности их температур:

𝑄 0 (t)= -k(T i (t)–T 0 )

𝑄 0 (𝜏 ) = (T i (t)–T 0 )dt

Запишем уравнение теплового баланса:

𝑄 = 𝑄 𝑖 + 𝑄 𝑜

продифференцировав обе части по времени, можно записать дифференциальное уравнение, связывающее динамику изменения температуры 𝑇 𝑖 (𝑡 ) от мощности нагревателя:

𝑐𝑚 = 𝑘 (𝑇 𝑜 − 𝑇 𝑖 (𝑡 )) + 𝑃 (𝑡 )

Обозначив коэффициент 𝑐𝑚 = a и разделив переменные для интегрирования, можно записать:

Последнее выражение – есть простейшая модель процесса теплообмена при отоплении помещения. Рассмотрим как осуществить моделирование этой системы с помощью Simulink.

Для создания модели в среде Simulink необходимо последовательно выполнить ряд действий.

Для начала необходимо создать новый файл модели с помощью команды File / New / Model, или используя кнопку на панели инструментов (здесь и далее, с помощью символа /, указаны пункты меню программы, которые необходимо последовательно выбрать для выполнения указанного действия). Вновь созданное окно модели показано на рисунке 5.

Рисунок 5- Пустое окно модели.

Далее расположим компоненты библиотеки Simulink в окне модели. Для этого необходимо открыть соответствующий раздел библиотеки (например, Sources – Источники). Далее, указав курсором на требуемый блок и, нажав на левую клавишу мыши, перетащить блок в созданное окно модели. Клавишу мыши нужно держать нажатой.

Рассматривая дифференциальное уравнение модели, можно составить следующий список компонентов, которые изменяют сигналы модели:

∙ в модель необходимо ввести параметр 𝑇 𝑜 , который в начале будет

константой – используем компонент библиотеки Simulink /Commonly Used Blocks / Constant или Simulink / Sources / Constant (это один и тот же компонент);

∙ чтобы получить разность температур 𝑇 𝑜 − 𝑇 𝑖 (𝑡 ) необходимо использовать сумматор (в режиме вычитателя) – компонент библиотеки Simulink / Commonly Used Blocks / Sum или Simulink /

Math Operations / Sum (также один и тот же компонент);

∙ для того, чтобы вычислить произведение разности температур на коэффициент 𝑘 ・ (𝑇 𝑜 − 𝑇 𝑖 (𝑡 )), необходимо использовать блок

усилитель, поскольку такое произведение равнозначно усилению сигнала разности в 𝑘 раз ставим компонент библиотеки Simulink/ Commonly Used Blocks / Gain или Simulink / Math Operations/ Gain;

∙ чтобы получить сумму мощностей 𝑘 (𝑇𝑜 − 𝑇𝑖 (𝑡 )) + 𝑃 (𝑡 ) под интегралом необходимо использовать сумматор – компонент библиотеки Simulink / Commonly Used Blocks / Sum или Simulink /Math Operations / Sum;

∙ чтобы получить количество теплоты из суммы мощностей с помощью интегрирования

𝑇 𝑖 (𝑡 )= (𝑘 (𝑇 𝑜 − 𝑇 𝑖 (𝑡 )) + 𝑃 (𝑡 )) dt

необходимо использовать интегратор – компонент библиотеки Simulink / Commonly Used Blocks / Integrator или Simulink / Continuous / Integrator;

∙ для формирования сигнала внутренней температуры 𝑇 𝑖 (𝑡 ) из интеграла мощности необходимо использовать блок усилитель, домножающий значение интеграла на 1/ 𝑎 – компонент библиотеки

Simulink / Commonly Used Blocks / Gain или Simulink / Math Operations / Gain;

Кроме того, нам необходимо визуализировать зависимость 𝑇 𝑖 (𝑡 ), для этого мы используем осциллограф – компонент библиотеки Simulink / Commonly Used Blocks / Scope или Simulink / Sinks / Scope. А также мы задаем зависимость мощности от времени 𝑃 (𝑡 ) как единичный ступенчатый сигнал с помощью компонента библиотеки Simulink /Sources / Step.

Рисунок 6- Окно модели, содержащее необходимые блоки

На рисунке 6 показано окно модели, содержащее установленные блоки.

Для удаления блока необходимо выбрать блок (указать курсором на его изображение и нажать левую клавишу мыши), а затем нажать клавишу Delete на клавиатуре.

Для изменения размеров блока требуется выбрать блок, установить курсор в один из углов блока и, нажав левую клавишу мыши, изменить размер блока (курсор при этом превратится в двухстороннюю стрелку).

Рисунок 7- Блок, моделирующий интегратор и окно редактирования параметров блока

Следующий шаг – настройка параметров каждого блока. Для этого необходимо дважды щелкнуть левой клавишей мыши, указав курсором на изображение блока. Откроется окно редактирования параметров данного блока. При задании численных параметров следует иметь в виду, что в качестве десятичного разделителя должна использоваться точка, а не запятая. После внесения изменений нужно закрыть окно кнопкой OK. На рисунке 7 в качестве примера показаны блок, моделирующий интегратор и окно редактирования параметров данного блока.

В рассматриваемой модели необходимо установить следующие параметры блоков:

∙ блок Integrator: параметр Initial condition = 20 – интегрирование осуществляется с начальной температуры в помещении 20 градусов;

∙ блок Sum1 (нижний из двух сумматоров): List of signs = |+- – превращает сумматор в вычитатель;

Параметры 𝑎 и 𝑘 модели пока не будем задавать, положив 𝑎 = 1 и 𝑘 = 1. После установки на схеме всех блоков из требуемых библиотек нужно выполнить соединение элементов схемы с помощью сигналов.

Для соединения блоков необходимо указать курсором на выход блока, а затем, нажать и, не отпуская левую клавишу мыши, провести линию к входу другого блока. После чего отпустить клавишу. В случае правильного соединения изображение стрелки на входе блока изменяет цвет. Для создания точки разветвления в соединительной линии нужно подвести курсор к предполагаемому узлу и, нажав правую клавишу мыши, протянуть линию. Для удаления линии требуется выбрать линию (так же, как это выполняется для блока), а затем нажать клавишу Delete на клавиатуре.

С целью удобства понимания модели, можно задать имена не только блокам, но и сигналам. Для этого необходимо дважды щелкнуть по сигналу и ввести имя. Обозначим сигналы, соответствующие переменным 𝑃 , 𝑇 𝑜 , 𝑇 𝑖 , P, T o и T i .

Схема модели, в которой выполнены все соединения между блоками и их настройка, показана на рисунке 8.

Рисунок 8- Окончательная схема модели.

После составления модели необходимо сохранить ее в виде файла на диске, выбрав пункт меню File/Save As... в окне схемы и указа папку и имя файла. При последующем редактировании схемы можно пользоваться пунктом меню File/Save. При повторных запусках программы Simulink загрузка схемы осуществляется с помощью меню File/Open... в окне обозревателя библиотеки или из основного окна MATLAB.

Запуск моделирования выполняется с помощью выбора пункта меню Simulation/Start или нажатием кнопки с треугольником (воспроизведение) на панели инструментов. Рядом в поле ввода указана продолжительность моделирования системы, по умолчанию моделирование останавливается при достижении модельного времени 𝑡 𝑠𝑡𝑜𝑝 = 10. Процесс расчета можно завершить досрочно, выбрав пункт меню Simulation/Stop или кнопку с квадратом (стоп). Расчет также можно остановить (Simulation/Pause) и затем продолжить (Simulation/Continue).

Запустим моделирование. После окончания, дважды щелкнем на блок осциллографа (Scope). На нем должна отображается зависимость 𝑇 𝑖 (𝑡 )

(рисунок 9). Если графика не видно, то необходимо щелкнуть правой кнопкой по черной зоне и выбрать из меню Autoscale, что приведет к автоматическому масштабированию осей графика.

Рисунок 9- Результат моделирования при 𝑃 = 1.

Видно, что температура внутри падает от 20 градусов до температуры, которая выше уличной 𝑇 𝑜 = 1, моделируемой блоком Constant.

Таким образом сказывается действие нагревателя.

Установим в параметрах блока Step, моделирующего зависимость 𝑃 (𝑡 ), большую мощность нагрева. Блок Step выдает на своем выходе константное значение, задаваемое его параметром Final value, и происходит это во время, задаваемое параметром Step time. До этого момента значение на выходе компонента Step равно 0. Установив параметр Final value = 10, запустим моделирование еще раз. Получим зависимость 𝑇 𝑖 (𝑡 ), показанную на рисунке 10.

Рисунок 10- Результат моделирования при 𝑃 = 10.

Отчетливо видно, что температура падает до включения нагревателя при 𝑡 = 1, после чего растет до достижения постоянного значения, соответствующего термодинамическому равновесию между теплом, подводимым нагревателем и отводимым наружу.

Литература

1. А. Борисевич, Теория автоматического управления: элементарное введение

с применением MATLAB , Изд. МГУ, 2011г.

2. А. Ф. Дащенко, В. Х. Кириллов, Л. В. Коломиец, В. Ф. Оробей

MATLAB В ИНЖЕНЕРНЫХ И НАУЧНЫХ РАСЧЕТАХ

Одесса «Астропринт» 2003

3. В. П. Дьяконов MATLAB 7.*/R2006/R2007 Самоучитель

Москва, ДМК, 2008




Загрузка...