sonyps4.ru

Линейный интерфейс g 703 микросхема. Цифровые сети

20.11.2015

Инсоляция.

Инсоляцией (на латыни in solo – выставляю на солнце) называется облучение поверхности параллельных пучком лучей, которые берут свое начало с направления источника света. В нашем случае источником света всегда является Солнце. Инсоляция значительно отличается в разных точках поверхности Земли. В южных районах России инсоляция значительно выше чем в средней полосе или на севере страны. Для сравнения приведем суммарные годовые значения инсоляции для различных регионов земного шара: Европа 1000-1800кВт×ч/м2; Центральная Африка примерно 2300 кВт×ч/м2, Ближний Восток - 2000кВт*ч/м*2, Средняя Азия 1800кВт*ч/м*2, Москва 1000кВт*ч/м*2, Сочи 1300кВт*ч/м*2, Архангельск -850кВт*ч/м*2. Сезонные колебания значений месячной инсоляции увеличиваются, чем ближе к одному из полюсов Земли. Например в Москве разница между инсоляцией летом и зимой может отличаться более чем в 7-8 раз, а в Краснодаре лишь в 3-4 раза(хотя и это много). Подобные сезонные колебания инсоляции были бы мало ощутимы, будь ось Земли перпендикулярна орбите вращения Земли вокруг Солнца. И тогда такие колебания инсоляции зависели бы лишь от расстояния до Солнца. Но реально земная ось составляет угол в 23° с плоскостью орбиты Земли, и это вносит существенные сезонные колебания в инсоляцию конкретной области Земли.

Изображенные на рисунке выше потоки энергии солнечного света А, Б и В идентичны, но по причине кривизны земной поверхности и атмосферы, энергия потоков А и В после прохождения атмосферы уменьшается сильнее, чем энергия потока Б. На рисунке показано положение Земли для 21 июня, дня когда лучи Солнца на 23-й параллели попадают на поверхность перпендикулярно. Это день с максимальной долготой дня. Широта местности учитывается ориентацией «солнечных модулей» при монтаже солнечной установки.

Кроме того инсоляция зависит еще от нескольких важных факторов:

  • времени года, например зимнее время характеризуется малой освещенностью и коротким световым днем;
  • времени суток, т.к. освещенность в течении дня меняется, кроме того солнечные лучи, попадающие на поверхность солнечного модуля под очень острым углом практически не воспринимаются солнечным модулем;
  • рельефа местности, включая предметы загораживающие солнце: здания, деревья, горы и прочее);
  • конкретных погодных условий в режиме реального времени(снег, туман, облака).

Солнечная радиация на верхней границе атмосферы (Вт × ч/м 2 в сутки)

Широта, ºс.ш. 0 10 20 30 40 50 60 70 80 90
21 июня 370 410 440 460 475 471 465 481 502 512
21 декабря 401 344 288 214 152 85 24 0 0 0
Среднегодовое значение 404 399 384 354 318 275 222 195 176 168

Согласно таблице инсоляция летом и зимой отличается весьма значительно. Если сравнивать значения инсоляции на разных широтах 21 июня, то можно заметить, что инсоляция колеблется в пределах 370-512Вт*ч/м*2, т.е. не очень сильно. А вот 21 декабря ситуация совершенно иная-значения инсоляции колеблется от 0 до 401Вт*ч/м*2. Т.е. зимой, чем выше широта, тем значительней разница с летним значением инсоляции. В декабре между северными и южными широты имеет максимальное отличие. Вследствие этого инсоляция сильно различается в зависимости от времени года и географического положения. Об этом не стоит забывать при использовании ВИЭ на основе солнечных коллекторов. Годовые колебания инсоляции на экваторе совсем незначительны, но весьма сильно нарастают при перемещении к северу. Даже для южных регионов нашей страны, таких как Краснодарский край, из-за низкой облачности в зимний период солнечная радиация в 3-4 раза меньше, чем летом. Для Москвы же эта разница достигает 8-10 раз. Эти годовые колебания на территории России невелики для Восточной Сибири, Дальнего Востока, а также районов высокогорья. Здесь, кроме более менее равномерного распределения инсоляции в течении года, сказывается тот факт, что при одной и той же освещенности эффективность холодной солнечной батареи несколько выше, чем нагретой жарким летним солнцем. По этой причине при монтаже солнечных модулей на кровле следует обеспечить воздушный зазор для свободной циркуляции воздуха под солнечными модулями для охлаждения рабочей поверхности модуля. Небольшой компенсации влияния сезонности на работу солнечной станции добиваются летним и зимним положением солнечных модулей относительно горизонта - для летнего периода угол наклона на 15° меньше географической широты, а для зимнего периода на 15° больше. Это связано с высотой стояния светила.

При круглогодичном использовании солнечного коллектора с целью получения максимума энергии в целом за год без сезонной регулировки наклона угол должен быть равен географической широте местности. Фактор времени суток можно учитывать проводя слежение за солнцем. Слежение по азимуту даст прибавку в 20% к снимаемой с солнечной батареии энергии, а дополнительное слежение за светилом по высоте еще 10%. Устройства, обеспечивающие подобное слежение называются трекерами. "Слежение" осуществляется при помощи поворотной платформы на которой закреплены солнечные модули. Платформа непрерывно или дискретно "следит" за Солнцем. Но прежде всего необходимо сопоставить количество дополнительно полученной энергии со стоимостью трекера, его монтажа и обслуживания. В обычной практике ограничиваются стационарной установкой солнечных батарей.
В статье - опубликованы среднестатистические нормы инсоляции на территории основных территорий РФ и бывшего СССР с градацией по месяцам и ориентации плоскости светоприемника в пространстве. Необходимо учитывать,что в таблице 2 значения солнечной радиации выражены в МДж/м2 и для горизонтальной поверхности. Перевод МДж/м2 в кВт/м2 производится делением на 3.6 значения в МДж/м2.

ЗАКАЗАТЬ РАСЧЁТ

Если выбор гелиосистемы вызывает у Вас затруднение, оставьте заявку на расчёт и квалифицированные специалисты нашей компании помогут подобрать солнечную водонагревательную установку удовлетворяющую Вашим потребностям.

Основные принципы

В технологии ПЦИ в качестве входного используется сигнал основного цифрового канала (ОЦК), а на выходе формируется поток данных со скоростями n × 64 кбит/с. К группе ОЦК, несущих полезную нагрузку, добавляются служебные группы бит, необходимые для осуществления процедур синхронизации и фазирования, сигнализации, контроля ошибок (CRC), в результате чего группа приобретает форму цикла.

В начале 80-х годов было разработано 3 таких системы (в Европе, Северной Америке и Японии). Несмотря на одинаковые принципы, в системах использовались различные коэффициенты мультиплексирования на разных уровнях иерархий. Описание стыков этих интерфейсов и уровней мультиплексирования дано в рекомендации G.703 . Потока E5 не существует согласно рекомендации G.702 (11/88) .

Уровень цифровой иерархии Скорости передачи, соответствующие различным системам цифровой иерархии, кбит/с
Американский стандарт (Tx ) Японский стандарт (DSx ) Jx Европейский стандарт (Ex )
1, первичный 1544 1544 2048
2, вторичный 6312 6312 8448 (4x2048 + 256)
3, третичный 44736 32064 34368 (4x8448 + 576)
4, четвертичный 274176 97728 139264 (4x34368 + 1792)
5, пятеричный не используется 397200 не используется

Таким образом, к недостаткам ПЦИ можно отнести: затрудненный ввод-вывод цифровых потоков промежуточных функций, отсутствие средств автоматического сетевого контроля и управления, а также наличие трех различных иерархий. Данные недостатки привели к разработке в США иерархии синхронной оптической сети SONET , а в Европе аналогичной иерархии СЦИ, которые были предложены для использования на автоматических линиях связи. Из-за неудачно выбранной скорости передачи было принято решение отказаться от создания сети SONET и построить на её основе сеть SONET/SDH .

Структура потока E1 (2048 кбит/с)

Цикл потока Е1 состоит из 32 канальных интервалов, нумеруемых от 0 до 31. Тридцать канальных интервалов (1-15 и 17-31) используются для передачи трафика (например голоса), а два - нулевой и шестнадцатый - для передачи служебной информации, таких как синхронизации и сигнальные сообщения вызовов. Аппаратура уплотнения, объединяющая 30 ОЦК и получающая на выходе первичный цифровой поток E1, называется ИКМ-30.

G.703

Электрические характеристики стыков цифровых интерфейсов передачи голоса или данных через цифровые каналы типа , или DS-1 описываются рекомендацией-стандартом G.703 (ITU-T Recommendation G.703.Physical/Electrical Characteristics of Hierarchical Digital Interfaces. 1972 last amended in 1991).

В качестве физического канала передачи может использоваться симметричная витая пара (Z = 100-120 Ом) или коаксиальный кабель (R = 75 Ом), амплитуда импульса = 1-3 В.

Синхронизация сетей ПЦИ

В случае небольшой сети ПЦИ, например сети города, синхронизация всех устройств сети из одной точки представляется достаточно простым делом. Однако для более крупных сетей, например, сетей масштаба страны, которые состоят из некоторого количества региональных сетей, синхронизация всех устройств сети представляет собой проблему. Общий подход к решению этой проблемы описан в стандарте ITU-T G.810 (1988, 1996 годы) . Он заключается в организации в сети иерархии эталонных источников синхросигналов, а также системы распределения синхросигналов по всем узлам сети.

Организация распределения синхросигналов по узлам сети ПЦИ

Каждая крупная сеть должна иметь, по крайней мере, один первичный эталонный генератор (ПЭГ) синхросигналов (англ. Primary Reference Clock , PRC ). Это очень точный источник синхросигналов, способный вырабатывать синхросигналы с относительной точностью частоты не хуже 10 -11 (такую точность требуют стандарты ITU-T G.811 и ANSI Т1.101, в последнем для описания точности ПЭГ применяется название Stratum 1 ). На практике в качестве ПЭГ используют либо автономные атомные (водородные или цезиевые) часы, либо часы, синхронизирующиеся от спутниковых систем точного мирового времени, таких как GPS или ГЛОНАСС . Обычно точность ПЭГ достигает 10 -13 . Стандартным синхросигналом является сигнал тактовой частоты уровня DS1, то есть частоты 2048 кГц для международного варианта стандартов PDH и 1544 кГц для американского варианта этих стандартов. Синхросигналы от ПЭГ непосредственно поступают на специально отведенные для этой цели синхровходы магистральных устройств сети PDH. В том случае, если это составная сеть, то каждая крупная сеть, входящая в состав составной сети (например, региональная сеть, входящая в состав национальной сети), имеет свой ПЭГ. Для синхронизации немагистральных узлов используется вторичный задающий генератор (ВЗГ) синхросигналов, который в варианте ITU-T называют Secondary Reference Clock (SRC), а в варианте ANSI - генератор уровня Stratum 2 . ВЗГ работает в режиме принудительной синхронизации, являясь ведомым таймером в паре ПЭГ-ВЗГ. Обычно ВЗГ получает синхросигналы от некоторого ПЗГ через промежуточные магистральные узлы сети, при этом для передачи синхросигналов используются биты служебных байтов кадра, например нулевого байта кадра Е-1 в международном варианте PDH. Точность ВЗГ меньше, чем точность ПЭГ: ITU-T в стандарте G.812 определяет её как «не хуже 10 -9 », а точность генераторов Stratum 2 должна быть не «хуже 1,6 х 10 -8 ». Иерархия эталонных генераторов может быть продолжена, если это необходимо, при этом точность каждого более низкого уровня естественно понижается. Генераторы нижних уровней, начиная от ВЗГ, могут использовать для выработки своих синхросигналов несколько эталонных генераторов более высокого уровня, но при этом в каждый момент времени один из них должен быть основным, а остальные - резервными; такое построение системы синхронизации обеспечивает её отказоустойчивость. Однако в этом случае нужно приоритизировать сигналы генераторов более высоких уровней. Кроме того, при построении системы синхронизации нужно гарантировать отсутствие петель синхронизации.

Ограничения технологии ПЦИ

Как американский, так и международный варианты технологии ПЦИ обладают недостатками, основным из которых является сложность и неэффективность операций мультиплексирования и демультиплексирования пользовательских данных. Применение техники бит-стаффинга для выравнивания скоростей потоков приводит к тому, что для извлечения пользовательских данных из объединенного канала необходимо полностью демультиплексировать кадры объединенного канала. Например, чтобы получить данные одного абонентского канала 64 Кбит/с из кадров канала Т-3, требуется произвести демультиплексирование этих кадров до уровня кадров Т-2, затем - до уровня кадров Т-1, а в конце концов демультиплексировать и сами кадры Т-1. Если сеть ПЦИ используется только в качестве транзитной магистрали между двумя крупными узлами, то операции мультиплексирования и демультиплексирования выполняются исключительно в конечных узлах, и проблем не возникает. Но если необходимо выделить один или несколько абонентских каналов в промежуточном узле сети ПЦИ, то эта задача простого решения не имеет. Как вариант предлагается установка двух мультиплексоров уровня ТЗ/ЕЗ и выше в каждом узле сети. Первый призван обеспечить полное демультиплексирование потока и отвод части низкоскоростных каналов абонентам, второй - опять собрать в выходной высокоскоростной поток оставшиеся каналы вместе с вновь вводимыми. При этом количество работающего оборудования удваивается.

Основным стыком, используемым для взаимного подключения блоков и систем ЦСП, является интерфейс по рекомендации G.703 МСЭ-Т.

Формально данный стандарт основан на следующих рекомендациях МСЭ-Т: G.702 "Скорости передачи цифровой иерархии" (ПЦИ); G.704 "Структура синхронных кадров, основанных на первичном (1544 кбит/с) и вторичном (2048 кбит/с) уровнях"; I.430 "Основной интерфейс ISDN сети пользователя - первый уровень спецификации (протокол сигнализации D-канала)".

Интерфейс G.703 предназначен для обслуживания сетей с обеими цифровыми иерархиями - ПЦИ и СЦИ. Рассмотрим основные физические и электрические характеристики интерфейса, регламентируемые рекомендацией G.703:

1.Схема взаимодействия аппаратуры . Предусмотрены три схемы взаимодействия аппаратуры:

· Сонаправленный интерфейс (СНИ) (codirectional interface). Информационный и синхросигнал передаются от одного терминала к другому, причем терминалы равноправны и симметричны (Рис. 6.54);

· Разнонаправленный интерфейс (РНИ) (contradirectional interface). Терминалы неравноправны. Синхросигнал предается от управляющего к управляемому. Информационные сигналы симметричны (Рис. 6.55).

Рис. 6.55. Разнонаправленный интерфейс

· Интерфейс с центральным тактовым генератором (ЦГИ) (centralized clock interface). Синхросигналы поступают от центрального тактового генератора, информационные сигналы симметричны (Рис. 6.56).

Рис. 6.56. Интерфейс с центральным тактовым генератором

2.Скорость передачи и частота синхронизирующего сигнала . Данные параметры в основном соответствуют ПЦИ. Синхросигнал может поступать от отдельного источника или формируется из информационного сигнала. Частота синхросигнала может совпадать со скоростью передачи или может быть в два, четыре или восемь раз меньше. Например, для скорости 64 кбит/с номинальной является тактовая частота 64 кГц, но может применяться и частота 8 кГц.

3.Тип кода и алгоритм его формирования . Зависит от скорости передачи и схемы взаимодействия. Виды используемых кодов:

· AMI (Alternate Mark Inversion code) - двоичный код с изменением полярности сигнала на каждой единице, нуль соответствует отсутствию сигнала.

· B3ZS (Bipolar with 3 Zero Substitution code) - биполярный код с подстановкой альтернативных блоков вместо блоков из трех нулей. Аналог кода HDB2.

· B8ZS (Bipolar with 8 Zero Substitution code) - биполярный код с подстановкой альтернативных блоков вместо блоков из восьми нулей.



 CMI (Coded Mark Inversion code) - двухуровневый двоичный код без возвращению к нулю с изменением полярности на полный интервал на каждой единице и в середине каждого интервала "0".

 HDB2 / HDB3 (High-Density Bipolar code of order 2/3) - двухполярный код высокой плотности единиц порядка 2 или 3.

Следует отметить, что указанные типы кодов относятся только к интерфейсу , а не к линии в целом. Если применяются кабели с металлическими проводниками, то коды могут совпадать. Для ВОЛС тип кода заменяют двухуровневым.

4. Форма (маска) импульса и соответствующие поля допуска. Специфицируются для каждой скорости передачи и схемы взаимодействия.

5. Тип используемой кабельной пары для каждого направления передачи. Обычно применяются КК, СК или их сочетание.

6. Волновое сопротивление .

7. Максимальное напряжение импульса, уровень сигнала в паузе, длительность импульса .

В Табл. 6.8 приведены основные параметры интерфейса для различных скоростей передачи.

Обычно производители цифровых систем передачи ограничиваются частичной реализацией интерфейса G.703, например, только скорости 2048 кбит/с в случае канала СЦИ со скоростью 2 Мбит/с. Для скорости 64 кбит/с часто указывается схема взаимодействия аппаратуры. Для сигналов со скоростями ряда n64 кбит/с, характерного для ISDN, передаваемых через оборудование европейской ПЦИ при n=2..31, интерфейс G.703 должен иметь те же физические и электрические характеристики, что и интерфейс для скорости 2048 кбит/с.

Аппаратура может не иметь интерфейса G.703. Для этих случаев используются конверторы с наиболее популярных типов интерфейсов V.24/RS232, V.35, V.36/V.11, X.21/V.11, RS-530.

В этой статье мы продолжаем наше знакомство со структурой и основными функциональными элементами пакетной сети оператора мобильной связи, которые мы начали в предыдущих двух статьях - GPRS изнутри. Часть 1 и GPRS изнутри. Часть 2 . В нашей сегодняшней заметке речь пойдет об основных интерфейсах сетевых элементов PS Core Network, а также стеках проколов, используемых на этих интерфейсах.

Intro

Стандартная схема подключения ключевых GSN элементов пакетной сети, которая обычно изображена во многих учебниках и курсах по PS Core Network выглядит примерно так:

Стек протоколов Iu-PS интерфейса изображен на схеме ниже:

Gr interface


Интерфейс между SGSN"ом и HLR "ом, который является очень нужным для пакетной сети оператора, т.к. именно через него проходят процедуры аутентификации и авторизации абонента при проведении процедур GPRS Attach, либо Combined IMSI&GPRS Attach, а т.к. этот интерфейс является «чисто» сигнальным, т.е. предназначен лишь для передачи служебной информации, то он базируется на модели SS7, в качестве основного протокола верхнего уровня используется MAP (см. схему справа), а если быть точным то специальная версия - MAP-H.

Gd interface

Это интерфейс между SGSN"ом и SMS-GMSC, т.е. центром отправки коротких сообщений, он является опциональным и не обязательным, но вносит в пакетную сеть дополнительную функциональность по отправке коротких сообщений через пакетные каналы. Стек протоколов для этого интерфейса ничем не отличается от стека на интерфейсе Gr (между SGSN"ом и HLR"ом), т.к. используются все те же процедуры SS7 MAP протокола (см. схему стека протоколов к Gr интерфейсу).

Более подробно услуга по отправке SMS через пакетную сеть (SMS over GPRS) рассмотрена в статье - Запасной путь для SMS . От себя могу добавить, что операторы очень не охотно идут на реализацию этого интерфейса и самой услуги по отправке сообщений через пакетную сеть.

Gf interface

Еще один опциональный интерфейс, между SGSN"ом и EIR "ом, позволяющий совершать проверку легитимности использования мобильного терминала абонента по его IMEI коду, выполняя запросы к базам данных IMEI кодов (Grey, Black, White Lists) оператора, находящиеся в базах данных сетевого элемента EIR. Стек протоколов аналогичен Gr, Gd интерфейсов - используется MAP (см. схему к Gr интерфейсу) протокол, а если быть точным - версия MAP-E.

Эффективность использования проверки IMEI кодов существенно повышается в случае использования центральной международной базы данных, либо же в стране должна существовать своя внутренняя база IMEI кодов, к которой будут подключены все мобильные операторы, что не всегда реализуется на практике. Поэтому многие операторы используют платформы EIR (к которым осуществляются запросы на проверку IMEI кодов) элементов в качестве платформ сопоставления пары значений IMSI /MSISDN и IMEI, т.е. в случае когда абонент меняет SIM карту или вставляет ее в другой аппарат - ему автоматически приходят «заботливые» и не разу не надоедливые настройки MMS/Internet/WAP/etc.

Gs interface

Еще один опциональный интерфейс между SGSN"ом и коммутатором MSC, который вносит функциональность по приему и возможности совершения CS (Circuit Services) сервисов во время активной GPRS/EDGE сессии. Это довольно нужный интерфейс, т.к. позволяет абоненту чувствовать себя более комфортно, не заморачиваясь по поводу своей доступности во время активной GPRS/EDGE сессии. По своему опыту могу сказать, что к сожалению, если сеть оператора построена на оборудовании разных вендоров, то порой не всегда удается совместить интерфейс с обоих сторон коммутатора (MSC) и SGSN"а, поэтому даже в одной сети оператора, возможно существование зон, где можно реализовать Gs интерфейс, а также тех зон где это невозможно.

За дополнительной информацией по возможности совершать и принимать звонки во время активной GPRS/EDGE сессии, я отправляю читателей к статье GPRS не помеха для звонков .

Ge interface

Интерфейс с помощью которого осуществляется передача биллинговых данных для проведения расчетных операций с абонентами, он реализуется между SGSN"ом и биллинг платформой - SCP. В качестве основного протокола используется приложение CAP модели SS7 (см. схему к Gr интерфейсу).

Здесь я бы хотел сделать небольшое отступление и рассказать как происходит процесс взаиморасчетов абонента с оператором по использованию пакетных услуг. Для начала вспомним, что существуют два типа абонентов:

  • Pre-paid - абоненты предоплаченного сервиса
  • Post-paid - контрактные абоненты
Для pre-paid абонентов биллинг осуществляется в режиме реального времени, т.е. при поднятии (а также перед активацией) PDP Context’ов от SGSN’a через Ge интерфейс происходит запрос по CAP протоколу на IN платформы (SCP) – платформы биллинга, о текущем остатке на балансе абонента, а затем (в случае наличия необходимого остатка на счету) через определенные интервалы времени (таймеры, которые устанавливает оператор) производятся повторные запросы на возможное продолжение активной PDP сессии абонента предоплаченного сервиса.

Для post-paid абонентов, т.е. контрактных абонентов, сбор биллинг данных в основном осуществляется на самом SGSN’е (хотя есть системы биллинга, осуществляющие сбор данных и на GGSN’е), т.е. на SGSN по каждому абоненту генерируются т.н. CDR файлы, которые затем по tftp/ftp протоколу передаются на системы биллинга и по которым происходит расчет счетов абонентов, хотя для post-paid абонентов также существуют системы online биллинга, но они не получили особого распространения у операторов, по крайней мере такова информация для большинства операторов на Украине.

Таким образом, главное отличие этих двух типов абонентов в том, что для pre-paid производится т.н. online биллинг, а для post-paid – offline биллинг.

Ga interface

Фактически интерфейс в его полной реализации сейчас является опциональным, т.к. многие операторы используют Ge интерфейс для pre-paid абонентов, а CDR файлы для контрактных абонентов генерируются на самом SGSN"е, но тем не менее с помощью Ga интерфейса возможно реализовать биллинговые расчеты на GGSN"е. В его истинной реализации, этот интерфейс связывает SGSN, либо GGSN с СG и в большинстве реализаций является пакетным интерфейсом (TCP/IP), использующим в качестве верхнего уровня GTP` протокол (см. схему ниже).

К слову, если сеть строиться на оборудовании одного вендора, т.е. SGSN/GGSN и CG поставляются одним вендором, то Ga интерфейс может быть использовать «на полную», при этом он будет основываться на собственных проприетарных разработках вендора, т.е. будет закрытым для самого оператора.

Gn, Gp interfaces

Два довольно похожих интерфейса, которые необходимы для реализации связности SGSN"а и GGSN"а. При чем Gn используется, если эти два сетевых элемента находятся в одной и той же PLMN (en), а Gp - если элементы находятся в различных PLMN, т.е. абонент пользуется услугами GPRS/EDGE в роуминге.

На интерфейсах используются две разновидности GTP протокола:

  • GTP-U - для передачи пользовательских данных
  • GTP-C - для передачи служебной информации*
* - например, при активировании PDP Context"а, SGSN передает запрос PDP Context Activation к GGSN"у с помощью как раз GTP-C протокола.

Gi interface

Один из самых простых, но в тоже время и самых важных интерфейсов для пакетной сети, т.к. именно через него у оператора есть выход на внешние сети Internet/Intranet. В основном интерфейс является полностью пакетным (IP) и часто представляет из себя гигабитные линки на роутеры мобильного оператора.


Вот такой вот список основных интерфейсов GSN элементов PS Core Network мобильного оператора.

Небольшой помощник:

ATM - Asynchronous Transfer Mode
BSC - Base Station Controller
BSS - Base Station Subsystem
EIR - Equipment Identity Register
GGSN - Gateway GPRS Support Node
GPRS - General Packet Radio Service
GTP - GPRS Tunnelling Protocol
HLR - Home Location Register
IMEI - International Mobile Equipment Identity
IMSI - International Mobile Subscriber Identity
MS - Mobile Station
MSC - Mobile Switching Center
MSISDN - Mobile Subscriber Integrated Services Digital Network Number
MT - Mobile Terminal
PCM - Pulse-Code modulation
PDN - Packet Data Network
PDP - Packet Data Protocol
PDU - Packet Data Unit
PLMN - Public Land Mobile Network
PS - Packet Switched
RNC - Radio Network Controller
SGSN - Serving GPRS Support Node
UMTS - Universal Mobile Telecommunications System
VLR - Visitor Location Register



Загрузка...