sonyps4.ru

Скорость вращения шпинделя 5400 или 7200. Методика тестирования скоростных показателей

Приветствую все, уважаемые читатели и посетители!!! 🙂

Продолжаем серию заметок о жестких дисках, и сегодня мне бы хотелось обратить внимание на такой параметр HDD, как скорость вращения шпинделя, на который насажены собственно пластины с данными. Важен ли этот параметр?

Конечно же да…

Жесткий диск — это сложное электромеханическое устройство. Оно сочетает в себе механическую и электронную часть. Механика обеспечивает вращение диска или пакета дисков (если жесткий диск построен на нескольких пластинах — как правило это диски большой емкости), обеспечивает сверхточное позиционирование головки над пластинами…Электроника — считывает, записывает и изменяет данные на диске непрерывно с очень большой скоростью.
Эти две составляющие должны работать слаженно и быть максимально надежными. В большей степени надежность зависит от механической части — примерно 80-90 процентов.

Один из главных составляющих механики диска — двигатель. Он должен обладать обязательным параметром — способностью очень долго поддерживать фиксированное число оборотов шпинделя.

Шпиндель должен вращаться заданное число оборотов. На сегодня есть несколько типов дисков, если смотреть на количество оборотов пластин:

5400 об/мин — В основном используются в ноутбуках, т.к. число оборотов низкое — значит выше надежность и ниже энергопотребление. А это критично для ноутбуков. Еще встречаются в настольных ПК в так называемых «зеленых» (экологичных) жестких дисках, которых отличает рекордно низкое потребление энергии.

7200 об/мин — 90% всех жестких дисков. Используются в основном в настольных ПК — они не критичны к потреблению энергии и им нужна высокая производительность. А производительность тем больше, чем больше оборотов делает шпиндель (это один из факторов). Можно сказать это золотая середина между скоростью и надежностью.

10 или 15 000 об/мин — Самые производительные диски, но и самые ненадежные… Высокое число оборотов приводит к сильному нагреву пластины — при этом угроза потери данных просто огромна! Ну и конечно — механический износ… Этот фактор, как говорится, никто не отменял. 😉

Итак, самыми приемлемыми на сегодня можно назвать диски с частотой вращения пластин 7200 оборотов в минуту. Нагрев приемлемый, и производительность выше, чем у дисков 5400 об/мин. Да и цена приемлемая. Высокооборотистые диски как правило очень дороги, а прирост производительности себя совершенно не оправдывает, из-за низкой надежности носителя.

А кому нужен жесткий диск, на котором опасно хранить информацию?

P.S. Напоминаю Вам, что очень скоро стартует мой новый проект, который целиком и полностью будет посвящен такому важному вопросу, как информационная безопасность. Подробности:

ВведениеДля того чтобы реально конкурировать с винчестерами привычного нам 3.5" форм-фактора их "ноутбучным" собратьям необходимо постоянно улучшать и объём и скорость.
Как производители будут увеличивать объём дисков, мы уже знаем . А вот что насчёт скорости?

Прошло уже больше двух лет с тех пор, как компания Hitachi предложила простой, но, как оказалось, довольно действенный способ увеличения производительности 2.5”- жёстких дисков – разгон шпинделя диска до 7200 оборотов в минуту. Да, способ не очень изящный, но, собственно, а почему бы и нет. Надо только позаботиться о низком энергопотреблении диска, низком тепловыделении и тому подобных ограничениях, накладываемых сферой применения диска.
За прошедшее время в число производителей, посягнувших на планку в 7200 оборотов в минуту для 2.5”-дисков вступила компания Seagate,выпустившая диск Momentus 7200.1 , но компания Hitachi отнюдь не собиралась почивать на лаврах…

После долгой паузы на смену диску Travelstar 7K60 пришёл Travelstar 7K100!
Как легко догадаться из его названия, максимальный объём диска в линейке теперь составляет 100ГБ. Всего в линейке Travelstar 7K100 насчитывается шесть моделей дисков.
Емкость накопителей может составлять 60, 80 или 100 Гб. Объем буфера у всех дисков в линейке равен 8 Мб. Заявленное среднее время поиска составляет 10 мс на чтение и 11 мс на запись, а латентность равна 4.2 мс.

Жесткие диски данного семейства отличаются низким энергопотреблением и поддерживают ряд фирменных технологий, доказавших свою эффективность в приводах других линеек жёстких дисков Hitachi. Речь в данном случае идет о TrueTrack, Ramp Load/Unload, Femto Slider, Enhanced ABLE, FDB spindle motors, PRML, Adaptive Formatting, GMR head, Hitachi GST and HDD Reliability.
В нашем тестировании, вдобавок к ранее рассмотренным дискам, приняли участие два винчестера из семейства Travelstar 7K100 и один диск Seagate из линейки Momentus 7200.1 с интерфейсом SATA. Таким образом, сегодня у нас будут соревноваться в скорости следующие диски:


60ГБ Hitachi Travelstar 7K60 (ATA)
60ГБ Hitachi Travelstar 7K100 (ATA)
100ГБ Hitachi Travelstar 7K100 (SATA)
100ГБ Seagate Momentus 7200.1 (ATA)
100ГБ Seagate Momentus 7200.1 (SATA)


По результатам тестирования мы сможем оценить разницу в быстродействии двух поколений дисков Hitachi (на примере 60ГБ-моделей) и, само собой, сравнить между собой новейшие диски от Hitachi и Seagate.

Настала пора познакомиться с «новичками» поближе:

Hitachi Travelstar 7K100 HTS721060G9AT00

Один из накопителей имеет объем 60 Гб и традиционный ATA интерфейс. Кстати, на примере этого устройства дадим пояснения к маркировке приводов компании Hitachi. Первые две цифры после буквенного индекса HTS говорят о скорости вращения шпинделя 72 =7200 об./мин. Две следующие цифры информирует о максимальном объеме накопителей данного семейства, в нашем случае 10 = 100 Гб. Две цифры идущие следом указывают на емкость конкретной модели. У нас 60 = 60 Гб. Из остальных символов при идентификации приводов стоит обратить внимание на последнюю пару букв. «AT» означает наличие интерфейса Parallel-ATA, а «SA» – SerialATA.
Ориентировочная розничная стоимость винчестера составляет 160 у.е.

Hitachi Travelstar 7K100 HTS721010G9SA00


Другой привод, помимо того, что имеет объем 100 Гб, поддерживает более перспективный интерфейс SATA.
Ориентировочная розничная стоимость винчестера составляет 220 у.е.

Seagate Momentus ST910021AS


Этот жесткий диск, фактически является близнецом накопителя ST910021A. Он также имеет емкость, равную 100 Гб, и скорость вращения шпинделя 7200 об./мин. Объем буфера составляет 8Мб. Среднее время поиска равно 10.5 мс, а латентность – 4.2 мс. Отличие кроется в интерфейсах. Интересующий нас винчестер поддерживает SATA. Как и во всех моделях данного семейства в приводе используется электромотор с гидроподшипником (Softsonic FDB) и технология QuietStep ramp load, обеспечивающие улучшенные акустические характеристики.
Ориентировочная розничная стоимость винчестера составляет 230 у.е.

Методика тестирования

Для тестирования использовались следующие программы:

WinBench 99 2.0;
FC-Test 1.0;
PCMark04;
IOMeter 2003.02.15.

Тестовая система была следующей:

Системная плата – Albatron PX865PE Pro;
Центральный процессор – Intel Pentium 4 2.4 ГГц;
Жесткий диск – IBM DTLA-307015 15 Гб;
Графический адаптер – Radeon 7000 32 Мб;
ОЗУ – 256 Мб;
Операционная система – Microsoft Windows 2000 с Service Pack 4.

Тестирование осуществлялось с "дефолтными" драйверами операционной системы. Накопители размечались под файловые системы FAT32 и NTFS одним разделом с размером кластера по умолчанию. В отдельных случаях, описанных ниже, для тестирования использовались логические разделы размером 32 Гб, размечаемые под FAT32 и NTFS также с размером кластера по умолчанию.
Объективное представление о рабочих характеристиках интересующих нас приводов нам поможет получить сравнение их с двумя другими винчестерами, протестированными ранее. Речь идет о жестких дисках Seagate ST910021A и Hitachi HTS726060M9AT00, которые также имеют скорость вращения шпинделя 7200 об./мин. и буфер объемом 8 Мб. Более подробно технические характеристики устройств можно посмотреть по .

IOMeter: Sequential Read & Write

С помощью низкоуровневого теста IOMeter проводилось изучение скоростных характеристик накопителей во время выполнения ими операций линейного чтения и записи. В процессе тестирования на них подавался поток запросов на чтение/запись с глубиной очереди команд, равной четырём, и раз в минуту изменялся размер блока данных. В результате этих действий мы получили зависимость скорости линейного чтения/записи приводов от размера блока данных.






На первой из представленных диаграмм отражены результаты измерения линейной скорости чтения. Мы видим, что оба накопителя компании Seagate, несмотря на разные интерфейсы, демонстрируют практически одинаковые результаты. Винчестер объемом 60 Гб семейства K7100 заметно превосходит по скорости чтения привод одинаковой с ним емкости семейства K760, начиная с размера блока данных в 16 Кб. В то же время мы можем отметить, что Hitachi HTS721060G9AT00 заметно отстает по быстродействию от обоих жестких дисков Seagate. Максимальной скорости чтения добился привод Hitachi HTS721010G9SA00. Свое абсолютное преимущество над оппонентами он реализует, начиная с размера блока размером 32 Кб.






Вторая диаграмма демонстрирует скорость линейной записи винчестеров. Сразу заметно, что общая картина не претерпела никаких принципиальных изменений по сравнению с предыдущим графиком. Вновь очень близки по показанным результатам накопители Seagate. Среди двух "шестидесятигигабайтников" компании Hitachi снова заметно быстрее выглядит привод семейства 7K100, который опережает по скорости записи своего родича при работе с блоками данных большого размера. А самым быстрым опять оказался винчестер HTS721010G9SA00 с интерфейсом SATA, который убедительно доказал свое превосходство над конкурентами при работе с большими блоками данных.

WinBench 99

На нижеприведенных графиках отражены скорости внутреннего чтения пяти интересующих нас жестких дисков.
Сразу бросается в глаза то, что скорость чтения у накопителя Hitachi HTS721010G9SA00 заметно выше, чем у двух других приводов.
Теперь взглянем на быстродействие винчестеров, продемонстрированное ими в случае использования файловой системы FAT32. В этом вопросе, как обычно, мы в первую очередь будем ориентироваться на показатель High-End Disk WinMark. В данном случае для удобства размещения данных в таблицах мы воспользовались условными названиями приводов, смысл которых можно понять из ссылочной таблицы.








На диаграмме мы видим, что безоговорочную победу в подобной ситуации одерживает винчестер Hitachi HTS721010G9SA00 с интерфейсом SATA. Следом за ним идут в тесной связке жесткие диски компании Seagate. Разница в их результатах незначительна. Немного отстал от них накопитель Hitachi HTS721060G9AT00. Замыкает колонну участников соревнования HTS726060M9AT00. Его результаты заметно хуже, чем у остальных приводов.
Как повлияло на быстродействие винчестеров использование файловой системы NTFS?






Приведенные на графике результаты позволяют в данном случае присудить победу жесткому диску компании Seagate с классическим ATA интерфейсом. На второй позиции обосновался винчестер Hitachi HTS721010G9SA00, у которого, кстати, оказался самый высокий показатель Business Disk WinMark. Третье место досталось накопителю Seagate Momentus ST910021AS. Следом за ним идет накопитель Hitachi HTS721060G9AT00. На последнем месте оказался самый старый винчестер – Hitachi HTS726060M9AT00. И в этой ситуации его результаты заметно ниже, чем у его оппонентов.


Диаграмма со скоростью внутреннего трансфера в начале и конце жестких дисков говорит о том, что высокие результаты накопителя Hitachi HTS721010G9SA00 в предыдущих тестах вполне обоснованы. Скорость чтения поверхности этого винчестера значительно выше, чем у остальных приводов. Следом за ним идут два жестких диска компании Seagate, причем накопитель с интерфейсом ATA выглядит предпочтительнее своего собрата с SATA. Предпоследнее место достается винчестеру Hitachi HTS721060G9AT00. На последний позиции, как и следовало ожидать, "закрепился" жесткий диск Hitachi HTS726060M9AT00 – годы берут свое.


Наконец, последний график этого раздела дает возможность познакомиться с результатами измерения среднего времени доступа. Хотя, по понятным причинам разброс в показателях довольно небольшой, но все равно можно выделить винчестер Hitachi HTS726060M9AT00. Немного удивительно, но в данном тесте он оказался лучшим.

FC-Test

Пришло время обратить внимание на реальное быстродействие интересующих нас жестких дисков, которое мы как обычно определяли с помощью утилиты FC-Test. По традиции вкратце напомним о принципе действия данной утилиты, обеспечивающей прозрачность тестирования и достоверность итоговых результатов.
В процессе работы производится измерение времени, необходимого на проведение операций создания (записи), чтения и копирования определенных наборов файлов, которые отличаются между собой размерами и количеством входящих в них файлов. Затем на основе зафиксированного времени осуществляется вычисление практической скорости работы накопителей.
Отметим, что наборы Windows и Programs включают в себя большое количество мелких файлов, а в остальные три паттерна (ISO, MP3 и Install) входит ограниченное количество файлов более крупного размера. Во время операций копирования диски разбиваются на два равных логических раздела объемом по 32 Гб (либо пополам, если объем винчестера небольшой). Паттерны копируются либо внутри одного раздела, либо из одного раздела в другой.
Начнем рассмотрение результатов тестирования со случая, когда использовалась файловая система FAT32.




На первой диаграмме представлена скорость записи (создания) файлов. На трех паттернах с ограниченным количеством крупных файлов уверенно лидирует винчестер Seagate ST910021A. Лишь при работе с наборами мелких файлов он уступает пальму первенства жесткому диску Hitachi HTS721010G9SA00, который в свою очередь оказался третьим по скорости при использовании других паттернов. Можно отметить также, что при использовании файлов большого размера на втором месте по быстродействию оказался второй накопитель компании Seagate. Самые низкие результаты в данном тесте оказались у наиболее возрастного привода - Hitachi HTS726060M9AT00.


В случае чтения файлов абсолютным победителем по скорости становится Hitachi HTS721010G9SA00. У него самые высокие показатели при работе со всеми пятью паттернами. Второе место по скорости чтения занимает винчестер Seagate ST910021A, вновь сумевший обойти своего собрата. Последний продемонстрировал примерно одинаковые результаты с жестким диском Hitachi HTS721060G9AT00. Во всех пяти "заездах" худшим оказался накопитель старого семейства 7K60.


Копирование файлов в пределах одного раздела позволяет считать победителем "по очкам" винчестер Hitachi HTS721010G9SA00. Он оказался самым быстрым при работе с тремя паттернами из пяти, да и в остальных двух случаях был весьма неплох. Второе место по скорости копирования файлов можно отдать жесткому диску Seagate ST910021A. Он снова смог превзойти своего родственника – на этот раз в четырех случаях из пяти. Как ни странно, самое низкое быстродействие в этот раз оказалось не у более старого винчестера HTS726060M9AT00, а у нового Hitachi HTS721060G9AT00.


В случае копирования файлов из одного раздела в другой мы становимся свидетелями нелегкой победы в упорной борьбе накопителя Hitachi HTS721010G9SA00, сумевшего показать самую высокую скорость при работе с тремя паттернами из пяти. Второе место по суммарным результатам завоевал Seagate ST910021A. Опять его "реинкарнация" с интерфейсом SATA оказалась менее быстрой. Противостояние двух винчестеров емкостью 60 Гб вновь закончилось победой более старой модели.
Теперь посмотрим, каковы успехи у винчестеров в случае, когда использовалась файловая система NTFS.




При выполнении операции записи (создания) файлов безоговорочную победу одерживает привод Seagate ST910021A. Это устройство добилось самых высоких результатов при работе со всеми пятью паттернами. Его родственник оказывается вторым на трех паттернах с файлами большого размера, но уступает эту позицию жесткому диску Hitachi HTS721010G9SA00 в двух других ситуациях. Четвертое место по скорости записи оказывается у привода Hitachi HTS721060G9AT00. Очень сильно отстал от него более старый винчестер Hitachi HTS726060M9AT00.


Изучение диаграммы с результатами измерения скорости чтения файлов позволяет прийти к выводу, что в этом случае привод Hitachi HTS721010G9SA00 уверенно обходит всех своих оппонентов и занимает первое место по скорости. На второй позиции расположился Seagate ST910021A, совсем незначительно обогнав еще один жесткий диск той же компании. Четвертое и пятое места занимают соответственно Hitachi HTS721060G9AT00 и Hitachi HTS726060M9AT00. Мы можем отметить, что разброс в показателях винчестеров в данном тесте не носит глобального характера.


В случае копирования файлов в пределах одного раздела победителем по скорости становится накопитель Hitachi HTS721010G9SA00. Он самый быстрый в трех случаях из пяти. Совсем немного проигрывает ему Seagate ST910021A. Следом за ним идет второй накопитель с интерфейсом SATA - Seagate ST910021AS. Четвертое место достается Hitachi HTS721060M9AT00. Замыкает список Hitachi HTS726060M9AT00, имеющий очень низкие показатели при работе с паттернами, состоящими из мелких файлов.


Диаграмма с результатами измерения скорости копирования файлов из одного раздела в другой показывает, что в данной ситуации предпочтительней других приводов выглядит Seagate ST910021A. При работе с тремя паттернами из пяти он оказался самым быстрым. Второе место достается Hitachi HTS721010G9SA00. На третьей позиции обосновался диск Seagate ST910021AS. Следом за ним по скорости копирования идет винчестер Hitachi HTS721060M9AT00, сумевший заметно опередить своего более пожилого коллегу - Hitachi HTS726060M9AT00.

PCMark04

В очередной раз при тестировании нами была использована программа PC Mark04. Она позволяет расширить наше представление о рабочих возможностях жестких дисков. С помощью данной программы снимались показатели работы винчестеров в пяти различных режимах. Windows XP Startup отражает обращение к накопителям во время загрузки операционной системы. Application Loading демонстрирует дисковую активность при последовательном открытии и закрытии шести популярных приложений. File Copying показывает деятельность винчестера при копировании набора файлов. Hard Disk Drive Usage отражает дисковую активность при работе ряда часто встречающихся приложений. На основе этих четырех параметров определяется итоговый индекс производительности дисков по формуле HDD Score= (XP Startup Trace x 120) + (Application Load trace x 180) + (File Copy Trace x 28) + (General Usage x 265) . Более подробно можно познакомиться с данной программой в следующей статье .
В нашем случае для всех накопителей проводилось десять замеров. Затем на их основе были вычислены среднеарифметические показатели, которые приведены в итоговой таблице, и далее были построены соответствующие диаграммы.
К сожалению, в свое время при тестировании жесткого диска Hitachi HTS726060M9AT00 данный тест не проводился. Поэтому мы сможем познакомить Вас только с результатами для четырех приводов.






По показателю Windows XP Startup в противостоянии накопителей двух компаний победителем выходит Seagate ST910021A. Следом за ним идет Hitachi HTS721010G9SA00, обогнавший своего конкурента с аналогичным интерфейсом SATA. Самый низкий результат оказался у Hitachi HTS721060M9AT00.


На диаграмме, отражающей параметр Application Loading, мы видим, что победителем становится жесткий диск Hitachi HTS721010G9SA00, сумевший в этот раз обойти своего заклятого соперника - Seagate ST910021A. На третьем месте оказался HTS721060M9AT00, и последним стал Seagate ST9100821AS.


На графике с результатами измерения показателя File Copying видно, что упорная борьба в этот раз закончилась возвращением на первую позицию винчестера Seagate ST910021A. Накопитель Hitachi HTS721010G9SA00 оказался в этот раз на втором месте. Правда, он заметно обогнал следующий за ним Seagate ST910021AS. Самый низкий показатель и существенное отставание от других приводов у HTS721060M9AT00.


Диаграмма, отражающая показатель Hard Disk Drive Usage, свидетельствует о превосходстве накопителей Hitachi над приводами Seagate. Первое место досталось винчестеру HTS721010G9SA00, а второе - HTS721060M9AT00. Ощутимо отстали от них: Seagate ST910021AS – третья позиция и Seagate ST9100821AS, который оказался последним.


На последнем графике показан интегральный индекс производительности HDD Score. Мы становимся свидетелями безоговорочной победы винчестера Hitachi HTS721010G9SA00. Его главный оппонент Seagate ST910021A занимает итоговое второе место. Следом за ним расположился еще один накопитель компании Seagate – c SATA интерфейсом. На последнем месте - Hitachi HTS721060M9AT00.

Подведение итогов

Нам представилась хорошая возможность сравнить между собой самые быстрые жесткие диски 2.5" форм-фактора. Накопители данного типа со скоростью вращения 7200 об./мин. являются престижными устройствами, отражающими технические возможности производителей. Можно сказать, что это своеобразное лицо фирм.

Винчестеры, оказавшиеся у нас на тестировании, позволяют провести несколько любопытных параллелей. Во-первых, это сравнить, как совершенствуются технологии со временем, и какое влияние они оказывают на рабочие характеристики на примере приводов компании Hitachi объемом 60 Гб семейств 7K60 и 7K100. Здесь налицо заметный прогресс в быстродействии. Увеличенная плотность записи на пластину привела к ощутимому приросту скоростей линейного чтения и записи, а это в свою очередь привело к улучшению ряда показателей в тестах, отражающих производительность накопителей. В большинстве рассмотренных нами ситуациях видно преимущество винчестера Hitachi HTS721060M9AT00 над Hitachi HTS726060M9AT00, хотя были и исключения.

Во-вторых, мы можем сравнить влияние интерфейса на быстродействие приводов. Речь идет о том, что интерфейс Ultra ATA, которым оснащено большинство современных накопителей 2.5" форм-фактора, имеет теоретическую пропускную способность в 100 Мб/с против 150 Мб/с у SATA, но это вовсе не говорит о том, что данное обстоятельство обязательно выльется на практике в большую эффективность последнего. Максимальный внутренний трансфер рассматриваемых нами винчестеров пока еще очень далек от загрузки внешних интерфейсов на "полную катушку", и фактор интерфейса не имеет решающего значения. Очередное подтверждение этого мы получили в ходе нашего тестирования. Накопитель Seagate ST910021A с традиционным ATA интерфейсом в подавляющем большинстве случаев уверенно побеждал своего родственника - Seagate ST910021AS с более современным SATA.

Так мы плавно подошли к главной цели нашего тестирования – выявлению абсолютного чемпиона по быстродействию. Поставленная задача оказалась не очень простой. Достойными конкурентами друг другу оказались винчестеры Seagate ST910021A и Hitachi HTS721010G9SA00. В подавляющем большинстве тестов именно эти жесткие диски добились наиболее высоких результатов. После долгого и внимательного изучения всех показателей мы пришли к выводу, что лидером по скорости все же стоит признать новый винчестер Hitachi HTS721010G9SA00 с интерфейсом SATA. Он стал первым в наибольшем количестве рассмотренных нами тестах.
Именно на этот накопитель стоит обратить внимание пользователям, нуждающимся в самом производительном приводе. Если Вам не подходит интерфейс SATA, то достойной альтернативой станет Seagate ST910021A. Увы, винчестер Seagate ST910021AS, который также был в центре нашего внимания, не смог оказать достойной конкуренции двум вышеупомянутым устройством и проиграл в очном споре своему конкуренту от компании Hitachi с интерфейсом SATA. Но все же и его быстродействие находится на высоком уровне, заслуживающем того, чтобы не исключать его из списка потенциальных приобретений.

Добрый день уважаемые читатели, сегодня я хочу затронуть вот такую тему, что такое скорость вращения шпинделя жесткого диска , как ее определить, и понять какая скорость хорошая, а какая нет. Думаю это будет интересно начинающим инженерам систем хранения данных, так как от понимания данной темы будет зависеть производительность СХД систем, а именно сколько ваш дисковый массив сможет на себе тащить, без тормозов и аварий. Мне в момент начала моей трудовой деятельности не хватала данной информации в русскоязычном сегменте и чтобы все было структурировано, так что прошу любить и жаловать.

Скорость вращения шпинделя

Каждый из нас хочет, чтобы все его сервисы и оборудование быстро работало, и поставить в свои системы хранения данных, не у всех есть возможность по втыкать быстрые SSD диски , и единственным решением остаются жесткие диски. При оценке производительности жестких дисков наиболее важной характеристикой является скорость передачи данных. При этом на скорость и общую производительность влияет целый ряд факторов:

  • Первый фактор это через какой интерфейс вы подключите жесткий диск, на выбор SATA/IDE/SCSI/SAS, логично, что каждый из них имеет свою скорость передачи данных. SCSI могут передавать данные до 80 мегабайт / сек, IDE последние версии могут иметь поддержку скорости передачи данных до 133 МБ/с, SATA до 6 Гбит / сек, SAS до 12 Гбит.
  • Объем кэша или буфера жесткого диска. Увеличение объема буфера позволяет увеличить скорость передачи данных.
  • Поддержка NCQ, TCQ и прочих алгоритмов повышения быстродействия
  • Объем диска, чем больше данных можно записать, тем больше времени нужно на чтение информации.
  • Плотность информации на пластинах.
  • И даже файловая система влияет на скорость обмена данных.

Но есть еще один фактор влияющий на производительность винтов и это скорость вращения шпинделя жесткого диска. Если взять два одинаковых HDD, но с разной скоростью вращения шпинделя, то вы увидите разницу в производительности, и при чем существенную

Устройство HDD

Давайте рассмотрим физическое устройство жестких дисков, чтобы понять из каких деталей он состоит.

  • Считывающая головка
  • Соленоидный привод
  • Шпиндель
  • Пластины
  • Питание
  • Интерфейс подключения

  • Головка чтения/записи
  • Постоянный магнит
  • Поворотная рамка позиционера
  • Коммутатор-предусилитель блока головок

Что такое шпиндель

Винчестер представляет собой набор из одной или нескольких герметизированных пластин в форме дисков, покрытых слоем ферромагнитного материала и считывающих головок в одном корпусе. Пластины приводятся в движение при помощи шпинделя (вращающегося вала). Пластины жесткого диска закреплены на шпинделе на строго определенном расстоянии. При вращении пластин расстояние должно быть таким, чтобы считывающие головки могли читать и записывать на диск, но при этом не касались поверхности пластин.

Двигатель шпинделя должен обеспечивать стабильное вращение магнитных пластин на протяжении тысяч часов, чтобы диск нормально функционировал. Неудивительно, что иногда проблемы с диском связаны с заклиниванием шпинделя, и вовсе не являются ошибками в файловой системе.

Двигатель отвечает за вращение пластин, и это позволяет работать жесткому диску. Благодаря отсутствию контакта, жесткий диск можно перезаписать в среднем 100 тысяч раз. Также на продолжительность работы диска влияет герметический корпус (гермозона), благодаря которому внутри корпуса HDD создается пространство, очищенное от пыли и влаги.

Вот как выглядят шпиндели, у каждого производителя они немного внешне могут отличаться. Это вот шпиндели от винтов Samsung.

или вот еще подборочка.

spindle speed или по русски скорость вращения шпинделя, определяет насколько быстро вращаются пластины в нормальном режиме работы жесткого диска. Она измеряется в RpM, то есть оборотах в минуту. От RpM скорости, будет зависеть на сколько быстро будет работать ваш компьютер, а именно как быстро компьютер может получить данные от жесткого диска.

Сколько раз я видел тормозные ноутбуки, в которых было по 4 ГБ оперативной памяти, там стоял процессор Intel core i3 или даже i5, но стоял блин hdd со скоростью вращения 5400 оборотов в минуту, и это был полный трешь, такие винты нужно сразу вытаскивать и ставить ssd иначе работать было не возможно

Время, которое требуется для блока магнитных головок, чтобы перейти к запрошенной дорожке/цилиндру называется время поиска (seek latency или задержкой ) . После того как считывающие головки переместятся в нужную дорожку/цилиндр, мы должны дождаться поворота пластин, чтобы нужный сектор оказался под головкой - это задержки на вращение (rotational latency time). И это является прямой функцией скорости шпинделя. То есть, чем быстрее скорость шпинделя, тем меньше задержки на вращение.

Общие задержки на время поиска и задержки на вращение и определяют скорость доступа к данным. Во многих программах для оценки скорости hdd это будет параметр access to data time. Более подробно о s.m.a.r.t показателях вы можете почитать по ссылке слева.

Влияние скорости вращения шпинделя жесткого диска

Винчестеры бывают двух форматов LFF и SFF , если рассказать в двух словах, то один имеет формат 2,5 дюйма, а второй 3,5. Формат 2,5 чаще всего идет либо в серверах или в ноутбуках, а второй так же в серверах и обычных системных блоках.

Если посмотреть среднюю скорость стандартных 3,5 " жестких дисков, то это скорость вращения шпинделя 7200 оборотов в минуту. Время совершения половины оборота в среднем (Avg. Rotational Latency) для таких дисков 4,2 мс. Эти диски обычно имеют среднее время поиска около 8,5 мс, что дает средний доступ к времени данным около 12,7 мс.

Есть диски, которые имеют скорость вращения магнитных пластин 10000 оборотов в минуту. Это уменьшает среднее время задержки на вращение до 3 мс. У Рапторов также и пластины меньшего диаметра, что позволило сократить среднее время поиска до ~5,5 мс. Итоговое среднее время доступа к данным примерно 8,5 мс.

Есть несколько моделей SCSI (например, Seagate Cheetah), у которые скорость вращения шпинделя 15 000 оборотов в минуту, и еще меньшие пластины. Среднее время Rotational Latency 2 мс (60 сек / 15 000 RPM / 2), среднее время поиска - 3,8 мс, и среднее время доступа к данным - 5,8 мс.

Диски с высокой частотой вращения шпинделя имеют низкие значения времени поиска и Rotational Latency даже при произвольном доступе. Жесткие диски с частотой шпинделя 5600 и 7200 обладают меньшей производительностью.

При этом при последовательном доступе к данным большими блоками разница будет несущественна, так как не будет задержки на доступ к данным, поэтому для жестких дисков рекомендуется регулярно делать дефрагментацию.

У 2,5 коллег, скорость так же скачет от 5400 до 15 000 оборотов в минуту.

Определяем скорость вращения шпинделя жесткого диска

Тут я для вас америку не открою, скорость вращения шпинделя жесткого диска определить, не то что просто, а очень просто, тут два варианта. Если у вас есть возможность физически посмотреть на этикетку расположенную на диске, то вы сможете увидеть вот такой показатель RPM в данных примерах это 7200RPM.

Если же у вас жесткий диск стоит в устройстве или сервере, то скорость вращения шпинделя жесткого диска будем смотреть в специальных программах, коих куча, могу посоветовать

  • crystalmark
  • aida64
  • speccy

Конечно, чем выше скорость вращения шпинделя, тем быстрее диск, но есть и обратная сторона медали, с увеличением скорости вращения пластин диск сильнее нагревается и становится более шумным. Это может компенсироваться технологией, WD IntelliPower, которая уменьшает энергопотребление и шум за счет снижения скорости вращения шпинделя. А потерю производительности частично компенсируют оптимизацией алгоритмов кэширования. Похожая технология у HGST с целью сокращения энергопотребления называется CoolSpin.

Выводы

Думаю, вы в очередной раз убедились, что по возможности нужно переходить на твердотельные диски, так как они имеют много приимуществ

  • Не нагреваются
  • Нет механических деталей, если упадет, то ничего ему не будет
  • Скорость в разы быстрее
  • Долговечнее
  • Но к сожалению имеют меньший объем и стоят пока дороже, хотя эта грань каждый год уменьшается.

Всем пламенный привет Жесткий диск, это наверно одно из самых не то чтобы главных устройств в компьютере, а вот так бы сказать одно из самых важных устройств. Ведь именно на жестком диске у вас хранятся файлы, игры, программы, картинки, видео, да все в общем там хранится. Все что у вас есть на компе, все это хранится на жестком диске.

Жесткие диски пока что для меня остаются наиболее надежными устройствами, это я имею ввиду по сравнению с SSD. Но если жесткие диски в плане технологий потенциал свой исчерпали, то у SSD еще все впереди, как мне кажется. На сегодняшний день, то есть на 2016-тый год, я уверен, что у SSD большое будущее и что придет день, когда даже я сам буду считать, что по надежности, SSD (я имею ввиду не только самые дорогие) не будут уступать обычным жестким дискам.

Но, извините, немного это я отошел от темы. Просто SSD чем хороши? Конечно скоростью. У жестких дисков именно скорость вращения шпинделя влияет на быстроту жесткого диска, но тут не все так просто. Но скорости эти давно уже установлены и выше их уже не перепрыгнуть, это просто физически невозможно. Нет, может быть и можно перепрыгнуть, но во-первых такой диск будет страшно дорогой, во-вторых он будет шумный, и в третьих неизвестно как долго сможет работать диск на таких скоростях. Стандартная скорость жесткого диска, обычного, не самого медленного, это 120-140 мб/с, это я имею ввиду не новый. Новый может будет работать и на скорости 150-170 мб/с.

Но что вообще такое шпиндель? Это ось в жестком диске, на которую установлены пластины жесткого диска. Закреплены пластины жестко, так, чтобы выдерживали большие обороты так бы сказать, и при этом считывающие головки могли с них данные считать или записать. Как узнать скорость шпинделя? Ну, такую информацию показывают думаю что многие программы, я просто, честно говоря, особо эту инфу не смотрел, ибо и так всегда знал сколько оборотов. Но, тем не менее, есть прога CrystalDiskInfo, в интернетах скачать ее легко можно, ибо прога популярная, вот она и показывает количество оборотов в Rotation Rate:


Обороты как правило всегда помечаются такой меткой как RPM

Значит так, что у нас по скоростям? Обычные жесткие диски имеют скорость шпинделя в 5400 или 7200 оборотов в минуту. Те что имеют скорость в 5400, то это считаются тихие и не очень быстрые жесткие диски (скорость где-то 80-100 мб/с), они не очень греются и все такое, поэтому они часто встречаются в ноутбуках. 7200 оборотов, это уже обычный жесткий диск для обычного компа, по скорости он неплохой, хотя со временем конечно скорость чтения/записи данных падает, но незначительно и зависит от условий работы диска. Скорость падает потому что сектора на диске начинают медленнее работать, почему так я не знаю, врать не стану, но это обычное явление что для новых дисков, так и для старых. То есть если у нового диска скорость была 150 мб/с, то за пару лет она может опустится до 100 мб/с, это если грубо говоря. Те сектора которые уже вообще не работают, то они автоматически заменяются на новые, из специальной резервное области.

Есть вообще крутые диски, и поверьте мне, они реально крутые, но я не знаю выпускаются ли они сейчас, это я имею ввиду серию дисков от Western Digital, называется серия VelociRaptor. Это очень быстрые диски, работают на 10 000 оборотах в минуту, немного шумные, но реально быстрые и реально дорогие. Слишком дорогие на сегодня, можно взять SSD за ту же цену, это я вам честно говорю. Кстати о дисках VelociRaptor я еще писал вот , можете глянуть

Итак, я немного написал о скоростях, теперь давайте подумаем, на что влияет скорость вращения шпинделя то? Ну понятное дело что на скорость работы диска.. Однако смотрите, даже если у диска скорость вращения шпинделя 5400 оборотов в минуту, то он сможет считывать файл примерно на скорости в 100 мб/с, это грубо говоря. Но прикол в том, что не все знают, что это имеется ввиду скорость ЛИНЕЙНАЯ, то есть он реально будет считывать или записывать файл на этой скорости, при условии что файл будет ОДНИМ КУСКОМ. Если он будет состоять из множества частей, то скорость будет в десятки раз меньше, вот в чем прикол! Файл из множества частей, это тоже самое что и записывать или считывать кучу мелких файликов, именно это и есть слабое место любого жесткого диска, это скорость СЛУЧАЙНОГО ЧТЕНИЯ, она у SSD в десятки раз выше!

Вот в чем прикол, понимаете? Поэтому даже серия высокопроизводительных дисков VelociRaptor от Western Digital не будут быстрее самых первых SSD дисков. Современные диски VelociRaptor имеют линейную скорость около 200 мб/с, это примерно как у первых SSD. Однако это линейная скорость, у первых SSD скорость случайного доступа была в несколько раз выше, чем у современных дисков VelociRaptor!

Ну и напишу вам уже так чтобы вы понимали точно, скорость вращения шпинделя влияет на запуск программ, чем выше скорость, тем быстрее будут запускаться проги, игры. Но опять же, огромной разницы между 5400 и 7200 не будет, ибо скорость случайного чтения у жестких дисков все равно остается очень низкой. Диски серии Black от Western Digital имеют в себе два специальных процессора, увеличенный кэш, они работают на оборотах 7200, но все таки серия Black оптимизирована на скорость, поэтому мое мнение, что это лучшие диски на сегодняшний день в плане цены/скорости.

В играх скорость жесткого диска особо ничего не сделает, от скорости будет зависеть загрузка уровней, ну и еще некоторые моменты, все что связано с чтением данных. Куда более лучше, когда много оперативы и мощный процессор, видеокарта, в общем в игровом компьютере жесткий диск я бы поставил на последнее место. Если нужен хороший жесткий диск, то тут лучше посмотреть в сторону SSD, мой вам совет

Чтобы понять разницу между жестким диском и SSD, посмотрите вот эту картинку с тестом:


Внимательно посмотрите на третью колонку, ну то есть там где 4К, видите какая разница? Вот эта разница является ГЛАВНЫМ отличием! Это работа с блоками по 4 кб, и вот это и есть самым жирным минусом жестких дисков! Как видите, у SSD тут намного ситуация лучше. Но это так бы сказать грубые тесты, это примерно чтобы понять разницу. Есть жесткие диски побыстрее, есть SSD помедленнее, ну, надеюсь вы поняли что я имею ввиду

Знатоки или просто продвинутые юзеры подумают, ну а как же массив RAID0? Да, это хороший вопрос! RAID0 это знаете что? Ну например вы купили 4 жестких диска WD Black, все новенькие и быстрые и вот всех их соединили в один, создали массив RAID0 и теперь они все работают как один диск. Скорость также увеличиться в 4 раза. Они будут работать параллельно, то есть файлы будут записываться СРАЗУ на 4 диска и считываться потом тоже СРАЗУ с 4-х дисков, из-за этого мощь диска будет увеличена в 4 раза. Файлы вы сможете копировать намного быстрее, особенно большие. Мелкие файлы конечно будут тоже копироваться быстрее, запуск программ тоже будет быстрее, но все равно это ну ОООЧЕНЬ далеко до SSD! Понимаете в чем прикол? Скорость случайного чтения или скорость случайного доступа у жестких дисков очень мала. У SSD она не в два и не в три раза выше, а в десятки, так что как не крути, но даже 10 жестких дисков если поставить в RAID0 (честно говоря не знаю можно ли столько поставить), то полученный массив дисков все равно будет медленнее чем один SSD в плане скорости случайного чтения.

Но какими бы не было хороши SSD, у них есть свои жирные минусы, это цена, обьем и долговечность. Жесткий диск серии WD Blue, это обычный середнячок, 7200 оборотов в минуту, стоит он примерно.. ну $60, грубо говоря. И вот этот жесткий диск по надежности будет куда лучше любого SSD до $120, ну это мое мнение. Я уже молчу что жесткий диск за $60 будет иметь обьем 1 Тб, а хороший SSD за $120 будет объёмом примерно в 250 Гб. И то, жесткий диск лет пять точно сможет прослужить, ну если он будет работать в хороших условиях, а вот SSD за $120, я не знаю сможет ли прожить 5 лет. Учтите, что при этом жесткий диск куда более вынослив в плане записываемой информации, чем SSD! Поэтому цена SSD, который по надежности как жесткий диск, по прежнему высока

В общем вот такие дела ребята, надеюсь что все вам тут было понятно, а если что-то не так, то прошу простить. Удачи вам в жизни и чтобы все было хорошо

10.11.2016

Несмотря на то, что компания Hitachi Global Storage Technology уже анонсировала мобильные 2,5-дюймовые диски с пластинами емкостью 50 Гбайт и скоростью вращения шпинделя 5400 об./мин. (серия Travelstar 5K100), такие диски пока до нас не дошли, поэтому на данный момент старшими 2,5-дюймовыми дисками в арсенале компании являются появившиеся зимой-весной 2004 года накопители серий Travelstar 5K80 и Travelstar 7K60. С первыми мы уже частично ознакомились , а со вторыми ближе познакомимся в этой статье. Благо, повод для этого весьма значительный - исторически это первые мобильные диски компании (и индустрии вообще) со скоростью вращения 7200 об./мин. А кроме того, в дисках 7K60 впервые применяется ряд новых интересных технологий.

Прежде всего - несколько слов о том, зачем потребовалось в очередной раз поднимать скорость вращения шпинделя мобильных жестких дисков. Вкратце - это, конечно, больше производительности в различных задачах и приложениях. Поскольку ноутбуки все чаще стали выполнять работу, более характерную для настольных ПК (например, мобильные процессоры Intel Pentium M по производительности порой не хуже настольных Pentium 4, а мобильные AMD Athlon XP/64 - это по сути те же настольные процессоры с уменьшенным тепловым пакетом), то и дисковая подсистема ноутбука нуждается в ускорении. Вместе с тем, традиционные 2,5-дюймовые накопители имеют скорость вращения лишь 4200 и 5400 об./мин. (на столе уже де-факто установилась 7200 об./мин.), среднее время доступа, которое раза в полтора хуже, и примерно вдвое меньшую скорость чтения/записи данных на пластинах, чем 3,5-дюймовые диски того же поколения. Поэтому выпуск ноутбучных дисков со скоростью вращения пластин 7200 об./мин. выглядит, в общем, вполне логичным. Хотя, конечно, из-за меньшего диаметра пластин и других конструкционных ограничений они все же не смогут догнать настольные семитысячники по производительности.

Кроме того, 2,5-дюймовые жесткие диски в последнее время все чаще стали использоваться в составе профессиональных систем - хабов и роутеров, блэйд-серверов, малогабаритных сетевых серверов и RAID-систем и пр. А это накладывает дополнительные обязательства на производительность накопителей. Собственно, по пути наращивания скорости вращения уже много десятилетий неуклонно развиваются как мобильные, так настольные и серверные диски. И будут продолжать развиваться, преодолевая очередные технические проблемы.

Например, по данным аналитической компании IDC, мобильные накопители со скоростью вращений 5400 об./мин. в этом году займут более 30% от всех поставок 2,5-дюймовых жестких дисков (еще недавно практически все мобильные диски были со скоростью 4200 об./мин.), а к 2006 году их доля поднимется до 60%. Более того, доля мобильных накопителей со скоростью вращения 7200 об./мин., ничтожная в этом году, поднимется до десятка процентов к 2006 году (см. график выше).

Примерно то же самое можно сказать и о емкости мобильных накопителей, которая также неуклонно растет - в нынешнем году наиболее востребованные емкости - 40, 60 и 80 Гбайт, дальше - больше (см. слайд). Видимо, поэтому Hitachi посчитала ненужным делать «мелкие» модели своего семитысячника и в серии 7K60 оставила только одну модель - емкостью 60 Гбайт (а в упрощенной серии E7K60 оставила еще и 40-гигабайтную модель).

В общем, как мы уже подчеркивали в предыдущей статье , бизнес малогабаритных накопителей на жестких магнитных дисках сейчас растёт куда быстрее настольного и серверного сегментов и в ближайшие годы станет таким же крупным (и уже стал более прибыльным).

Hitachi Travelstar 7K60 и E7K60

Первая серия мобильных жестких дисков со скоростью вращения 7200 об./мин. замышлялась в недрах IBM еще несколько лет назад, и вот эти идеи получили, наконец, свое воплощение в рыночном продукте Hitachi, вышедшем на прилавке в этом году. Теоретически, при неизменной линейной плотности записи (BPI) простое увеличение скорости вращения до 7200 об./мин. должно дать прирост скорости записи-чтения данных на 71% или 33% по сравнению с дисками на 4200 и 5400 об./мин. соответственно, а латентность доступа к данным при этом улучшится на 42% и 25%. Кроме того, дополнительное повышение производительности в новых дисках может быть достигнуто за счет улучшения префетча данных (другими словами - лучшего кэширования в буфере диска). Насколько эта теория совпадает с практикой, нам и предстоит выяснить.

Основные характеристики дисков Hitachi серий Travelstar 7K60 и E7K60 в сравнении с пятитысячниками Travelstar 5K80 (того же поколения) представлены в таблице 1.

Таблица 1. Основные характеристики дисков Hitachi Travelstar 7K60 и E7K60 в сравнении с Hitachi Travelstar 5K80.

Производитель 7K60 E7K60 5K80
7200 7200 5400
Емкость моделей, Гбайт 60 40 и 60 20, 40, 60, 80
Количество головок/пластин 4/2 4/2 и 4/2 4/2 макс.
Размер буфера, Мбайт 8 8 8
Среднее время поиска, мс 10 10 12
Интерфейс UATA/100 UATA/100 UATA/100
Ударостойкость в работе, G 200 (2 мс) 200 (2 мс) 200 (2 мс)
Ударостойкость при хранении, G 1000 (1 мс) 1000 (1 мс) 800 (1 мс)
Акустически шум вращения, дБА, тип.(макс.) 27 (30) 27 (30) 21-25
(24-27)
Акустически шум поиска, дБА,
тип.(макс.)
33 (35) 33 (35) 26-29
(28-31)
Температура, С, вкл.(выкл.) +5…55
(-40…+65)
+5…40
(-40…+65)
+5…55
(-40…+65)
Потребление энергии, ватт, при:
запуске-раскрутке
поиске/записи-чтении
в покое (idle)/выкл. (standby)

5,5
2,6/2,5
0,85/0,25

5,5
2,6/2,5
2,0/0,36

5
2,6/2,5
0,85/0,25

Прежде всего, отмечу, что максимальная плотность записи у серий 7K60 и 5K80 отличается - 50 и 70 гигабит на квадратный дюйм соответственно! Иными словами, диски одного поколения с разной скоростью вращения используют пластины разной емкости - 30 и 40 Гбайт. То есть при переходе на большую скорость вращения в диске того же поколения разработчикам пришлось пожертвовать именно плотностью записи. Впрочем, это отчасти компенсировалось уменьшением среднего времени поиска на 2 мс (при этом минимальное время поиска упало с 2,5 до 1,0 мс, а максимальное - с 23 до 18 мс), что вкупе с понизившейся на 1,6 мс средней задержкой вращения должно дать ощутимый результат - около 3,5 мс снижения среднего времени доступа к диску. Несмотря на измененную емкость пластин, у семитысячников Hitachi такое же количество зон записи, что и у ее пятитысячников -16 (это же количество зон заявлено и для 40-гигабайтной модели серии E7K60 с урезанной до 20 гигабайт пластиной).

Зато у семитысячников Hitachi закономерно возросла максимальная скорость чтения с пластины - до 518 Мбит/с. по сравнению с 450 Мбит/с. для 5K80; кстати, тоже НЕ пропорционально росту скорости вращения - последняя возросла на 33%, а скорость чтения - всего на 15%. То есть, держа в уме 40-процентное преимущество 5K80 над 7K60 по средней плотности записи (см. выше), получаем (в предположении, что полезная площадь пластин у них одинакова), что продольная, вдоль треков, плотность записи у 7K60 уменьшилась по сравнению с 5K80 примерно на 20% и поперечная - на столько же, то есть одинаково в обоих направлениях. И уменьшение поперечной плотности записи сопровождалось тем же 20-процентным снижением среднего времени поиска. В общем, все вполне логично.

Кроме того, у семитысячников выше шумность (хотя в мобильных накопителях Hitachi уже довольно давно применяются только жидкостные динамические подшипники, Fluid Dynamic Bearing), чуть больше стартовый ток, зато явно лучше ударостойкость при хранении, а у серии E7K60 - еще и более узкий температурный диапазон работы - всего до 40 градусов Цельсия вместо традиционных 55 и гораздо большее энергопотребление в режиме idle - до 2 ватт вместо 0,85 ватт у «полноценных» моделей серий 7K60 и 5K80.


Жесткий диск Hitachi Travelstar 7K60 HTS726060M9AT00

Некоторая информация по этой модели приведена на экране программы Hitachi Feature Tool.

Разумеется, диском поддерживается не только Power management, но и Acoustic Management - через соответствующий регистр. По умолчанию «акустика» этой модели была отключена (точнее - 254dec в регистре, громкий быстрый поиск). Но мы для полноты картины оттестировали модель в двух режимах - обычном и при тихом поиске (128dec в регистре, см. фото выше). Как мы увидим позднее, активирование тихого поиска практически не ухудшает скоростных показателей накопителя.

Среди интересных новаторских технологий, которые применяются в этих жестких дисках, стоит отметить, прежде всего, фемто-слайдеры, на которых, собственно, и находятся магнитные головки. Фемто-слайдеры впервые появились именно в 7K60/E7K60 и пришли на смену пико-слайдерам (см. рисунок).

Технология фемто-слайдеров позволяет не только повысить в перспективе плотность записи и скорость дисков (ведь их линейные размеры на 30% меньше, чем у предшественников, а вес - почти втрое меньше!), но и снизить энергопотребление мобильных жестких дисков, повысить их ударостойкость (помимо массы, вдвое снижаются и аэродинамические силы). В результате, диск 7K60 оказался практически таким же экономичным, как 5K80, и на четверть более ударостойким при хранении. Более того, меньшие размеры фемто-слайдеров позволяют размещать большее их количество на пластине кремния при производстве, что снижает их себестоимость.

Участники тестирования

В данном тестировании приняли участие три модели мобильных дисков HItachi - серий 7K60, 5K80 и 80GN (последняя - 4200 об./мин.). Все они используют технологию адаптивного форматирования (см. ниже).


Диски Hitachi: слева направо Travelstar 7K60 HTS726060M9AT00, Travelstar 5K80 HTS 548080M9AT00 и Travelstar 80GN IC25N040ATMR04 (модель со скоростью вращения 4200 об./мин., буфером 2 Мбайт и емкостью 40 Гбайт)



Они же, вид снизу в том же порядке

Для сравнения мы также используем ранее полученные данные по накопителям Seagate Momentus ST94811A и Samsung SpinPoint MP0402H со скоростью вращения 5400 об./мин. и 40-гигабайтными пластинами.

Методика тестирования скоростных показателей

Для тестов жестких дисков форм-фактора 2,5 дюйма применялся стенд в составе:

  1. Процессор Intel Pentium 4 3.0C
  2. Материнская плата ABIT IC7-G на чипсете i 875 P
  3. Системная память - 2×256 Мбайт DDR400 (тайминги 2.5-3-3-6)
  4. Видеокарта Matrox Millennium G400
  5. Основной жесткий диск - Seagate Barracuda SATA V
  6. Блок питания Zalman ZM400A-APF, 400 ватт
  7. Корпус Clio II

Мобильные винчестеры жестко закреплялись на металлическом шасси корпуса системного блока и при помощи переходника подключались к контроллеру интерфейса UltraATA/100 моста ICH5 на материнской плате. Основной винчестер был «мастером» на первом канале контроллера чипсета, а испытуемый диск подключался «мастером» на второй канал этого же контроллера. Все без исключения испытанные в данном обзоре диски без проблем проработали, по крайней мере, в течение трех дней активных тестирований без ухудшения характеристик и не перегревались. Никакого дополнительного отвода тепла от дисков (специальные кулеры и вентиляторы) не осуществлялось. Перед тестированием диски прогревались в течение 30 минут запуском программы с активным случайным доступом.

Испытания проводились под управлением операционной системы MS Windows XP Professional SP1. Винчестеры тестировались как неразмеченными на разделы (в тестах Intel Iometer, H2Benchw и AIDA32), так и разбивались и форматировались штатными средствами операционной системы в зависимости от вида теста: одним NTFS-разделом максимально возможной емкости для тестов среднего времени доступа и снятия графика скорости чтения в WinBench 99 и двумя равновеликими разделами NTFS или FAT32 для остальных тестов (WinBench Disk WinMark 99, копирования файлов различными паттернами, теста ATTO Disk Benchmark, теста многопотокового чтения/записи Nbench 2.4 и теста быстродействия дисков в программе Adobe Photoshop). Разделы NTFS имели размер в половину объема диска каждый (то есть второй раздел начинался ровно со второй половины диска), а разделы FAT32 имели размер по 32768 Мбайт, причем первый начинался в начале диска (на самых «быстрых» дорожках), а второй - ровно со второй половины диска. Размер кластеров NTFS и FAT32 выбирался по умолчанию - 4 и 16 Кбайт соответственно.

Для определения физических характеристик дисков (среднего времени доступа, скорости интерфейса и линейной скорости чтения/записи пластин) мы перешли на использование тестов AIDA32, H2benchw и WinBench 99 и почти полностью отказались от популярного теста HD Tach. Для оценки общей производительности мы используем многочисленные паттерны в Intel Iometer, неплохой тест C"T H2Benchw, работу с диском программы Adobe Photoshop, многопотоковые чтение и запись файлов и популярный WinBench 99. Диск Hitachi 7K60 тестировался в двух режимах поиска - быстром и медленном.

Результаты тестов физических параметров

Сперва - графики скорости линейного чтения дисков (кликните по иконкам, чтобы посмотреть полноразмерные графики).

Hitachi 7K60 HTS726060M9AT00

Зубчатый график скорости чтения у этого диска вместо привычного гладкого объясняется применением фирменной технологии адаптивного форматирования. Напомню, что адаптивное форматирование применяется пока только в мобильных накопителях Hitachi - дисках серий Travelstar 80GN, 5K80 и 7K60/E7K60 (представители всех трех присутствуют в данном обзоре и на этом сводном графике).

Суть технологии адаптивного форматирования заключается в том, что каждый экземпляр накопителя индивидуально настраивается на заводе таким образом, чтобы обеспечить лучшую производительность и надежность. Для этого каждая пара «головка-поверхность пластины» собранного диска тестируется на определение характеристик быстродействия, и затем каждая сторона магнитной пластины индивидуально форматируется (размечается на дорожки и сектора) так, чтобы обеспечить наилучшие характеристики при работе именно с данной головкой. В результате, линейная плотность записи на каждой стороне каждой пластины может не совпадать с соседними (быть ниже или выше), что и приводит к таком графику.

Чтобы продемонстрировать это нагляднее, ниже я привел участки графиков для 2-х и 4-х гигабайтного фрагментов каждой пластины всех испытанных здесь дисков (здесь - именно в пересчете на одну пластину, а не для диска в целом). Так, наглядно видно, что диски Hitachi 7K60 и 5K80, имеющие по 4 головки каждый, имеют четко прослеживающийся периодический рисунок с четырьмя участками с разной скоростью передачи данных в каждом из «периодов» («полочками», наиболее ясно они видны у 7K60). А у более «древнего» диска серии 80GN (у меня была модель с двумя головками) эти полочки сильно «зашумлены», хотя «периодичность» очевидна.



Напомню, что аналогичная технология «эластичной плотности записи» используется и в дисках Samsung - уже год, как в настольных и с этого года - в мобильных. Причем по графикам четко видно, что у Samsung «период» «полочек» в несколько раз больше. Вполне возможно, что скоро на такой путь повышения производительности дисков (и «выжимания» последних соков из текущих технологий магнитной записи) перейдут и остальные производители. Но в памяти-то народной останутся имена «первопроходцев»... :)

А диски тестировать станет все сложнее и сложнее - ведь если каждый накопитель форматируется индивидуально, то их производительность даже в пределах одной партии может заметно отличаться, то есть по одному-двум экземплярам уже будет сложно делать выводы обо всех моделях серии и даже об одной модели! Впрочем, как показывает практика, сейчас на первый план в борьбе за «попугаи» бенчмарков все чаще выступает не линейная скорость записи, а оптимизация микропрограммы дисков под те или иные задачи. Поэтому диски с немного разной скоростью чтения, но одинаковым firmware, вполне возможно, будут иметь и очень близкую производительность в приложениях...

Теперь переходим к более рутинным и традиционным вещам. По максимальной (усредненной за несколько «периодов» в начале диска), средней и минимальной скорости чтения данных с пластины диски расположились в следующем порядке:

Разумеется, семитысячник Hitachi лидирует, хотя его отрыв от пятитысячников с более «плотными», как выясняется, пластинами не такой и большой, и тот же Hitachi 5K80 почти наступает нашему герою на «ахиллесовы» пятки, уступая всего-то 7,7% в средней по пластине скорости чтения-записи.

По скорости работы интерфейса UltraATA/100 закономерно и традиционно лидируют диски Hitachi и конкурентам (и обозревателям;)) тут «ловить» нечего. Впрочем, повторюсь, при большом объеме кэш-памяти (а 8 Мбайт уже стал стандартом у дисков этого класса) и реальной скорости записи/чтения пластин как минимум вдвое меньше скорости интерфейса небольшой недобор Burst Read Speed вряд ли скажется на общей производительности накопителей в приложениях.

По среднему времени доступа, как и ожидалось из спецификаций, лидирует диск Hitachi 7K60, хотя Seagate Momentus почти так же быстр. Учитывая латентность вращения, получаем, что 7K60 даже немного «перебирает» заявленные 10 мс и уступает по скорости поиска Моментусу! Интересно также, что в режиме «тихого медленного» поиска (и действительно немного тише на слух) скорость поиска падает крайне незначительно - всего на доли миллисекунды. Так что от «тихого» 7K60 мы вправе ожидать практически такой же производительности в приложениях, что и от его «громкого» (дефолтного) варианта.

Дополнительную пищу для размышлений дает сопоставление среднего времени доступа, измеренного отдельно для чтения и записи. В данном случае мы демонстрируем результаты теста H2benchW, хотя аналогичные данные могут быть получены и в других программах (например, Iometer).

По тому, насколько меньше оказывается среднее время доступа при записи, можно судить, в частности, об эффективности работы алгоритмов отложенной записи и кэширования записываемых данных в буфере диска. И здесь, о чудо!, оказывается, что «тихий» 7K60, видимо, переходит на более эффективные алгоритмы отложенной записи! То есть в каких-то приложениях он может даже обгонять свой «громкий» аналог!

Другим показательным тестом «внутреннего устройства» дисков является тест на скорость чтения и записи файлов различного объема блоками разного размера - от 512 байт до 1 Мбайт. Для этого я традиционно использую тест ATTO Disk Benchmark. На скриншотах ниже показаны результаты для четырех размеров тестового файла - 128 Кбайт, 1 Мбайт, 4 Мбайт и 32 Мбайт. Если первый и второй, как правило, гарантированно кэшируются буфером диска (причем, кэширование записи и чтения для мегабайтного файла не так однозначно), то последний просто в него «не влезает», а кэширование предпоследнего зависит не только от объема буфера, но и от специфики работы firmware накопителя (кстати, результаты данного теста практически не зависят от выбора между FAT и NTFS).


Результаты теста ATTO Disk Benchmark для диска Hitachi 7K60 HTS726060M9AT00.



Результаты теста ATTO Disk Benchmark для диска Hitachi Travelstar 5K80.

По результатам этого теста можно констатировать, что алгоритмы firmware дисков Hitachi 7K60 и 5K80 очень сходны - обоим присуща не очень высокая скорость при работе малыми блоками. Вместе с тем, кэширование файлов объемом 1 Мбайт и выше у дисков Hitachi весьма эффективное - мегабайтные файлы они хорошо кэшируют и на запись, и на чтение, и даже 4-мегабайтные хорошо кэшируют на чтение.

Быстродействие в приложениях

Теперь посмотрим, как подмеченные выше преимущества и недостатки внутреннего устройства накопителей проявляются при работе в приложениях.

Первым делом, выясним, как хорошо диски оптимизированы для многопотоковой работы. Для этого мы используем тесты в программе NBench 2.4, где файлы размером 100 Мбайт записываются на диск и читаются с него несколькими одновременными независимыми потоками (в данном случае используется FAT32, хотя на NTFS результаты этого теста практически те же).

Данная диаграмма позволяет нам судить об эффективности алгоритмов отложенной записи жестких дисков в реальных (а не синтетических, как было на диаграмме со средним временем доступа) условиях при работе операционной системы с файлами (кэширование Windows здесь не задействовано). Кроме того, этот тест позволяет оценить оптимизацию этих алгоритмов для независимой многопотоковой работы. Как я и предвидел выше, «тихий» вариант Hitachi 7K60 оказался на этой задаче быстрее «громкого»! Хотя и не намного - в среднем лишь на 1,2%, что близко к погрешности измерений. Можно также видеть, что у дисков Hitachi последнего поколения великолепная отложенная запись - даже на четырех одновременных потоках, записываемых на пластине вблизи друг друга, скорость записи «проседает» относительно максимальной очень мало, да и при одновременной записи на удаленные участки диска (половина потоков - в начало диска, половина - в его середину) потери скорости на многопотоковости составляют менее 35%! Такими достижениями, к сожалению, не могут похвалиться ни их предшественники с меньшим буфером, ни соперники с такими же «большими буферами».

При многопотоковом чтении картина повторяется - снова тихий 7K60 в среднем чуточку быстрее громкого, хотя на «разнесенных» потоках, где в игру вступает меньшее время поиска, «громкий» все же вырывается вперед. Опережение семитысячником остальных менее «оборотистых» соперников, в принципе, удивления не вызывает. А вот что удивление вызывает - так это тот крайне несущественный отрыв, который семитысячник Hitachi имеет перед заведомо более медленными дисками Samsung и Seagate. «Тщательнее» надо бы программистам IBM/Hitachi...

Теперь посмотрим, как диски ведут себя в древних, он до сих пор популярных тестах Disk WinMark 99 из популярнейшего пакета WinBench 99. Напомню, что мы проводим эти тесты не только для «начала», но и для «середины» (по объему) физического носителя для двух файловых систем.

В офисной производительности (где, кстати, кэширование диском играет, порой, весьма существенную роль) снова «тихоня» Hitachi 7K60 лидирует на обеих файловых системах, а отрыв семитысячника от преследователей составляет от 5 до 10%.

В тестах профессиональной производительности High-End Disk WinMark 99 лидер тоже очевиден, а разницы между тихой и громкой реинкарнацией Hitachi 7K60, в общем-то, нет никакой.

Отрыв семитысячника от «пелотона» (в лице Hitachi 5K80) здесь возрастает до 15%.

Несмотря на мое недоверие к тестам Disk WinMark 99 (уж очень велико у производителей дисков и контроллеров искушение оптимизировать свои микропрограммы с целью получения лучшей производительности именно в данных самых популярных и маркетингово-значимых бенчмарках) преимущество семитысячника Hitachi тут не вызывает сомнений.

Для интересующихся приведем, без претензии на объективность отражения действительности, результаты дискового теста пакета PCMark04 - тут накопители расположились почти в полном соответствии с их ранжиром по скорости линейного чтения.

А в более «доверительном» тесте C"T H2benchW, который любят использовать немецкие коллеги из журнала C"T и сайта Tom"s Hardware Guide, выдал нам немного отличающиеся результаты - с огромным отрывом лидирует Hitachi Travelstar 7K60, более чем вдвое опережая прошлогодний Hitachi Travelstar 80GN со скоростью вращения 4200 об./мин. и буфером 2 Мбайт. Хотя отрыв от непосредственно соперника, Hitachi 5K80, в этом тесте - лишь 15%, что, впрочем, явно больше, чем 7-10% по линейной скорости чтения.

Еще одной вполне независимой мерой быстродействия дисков в приложениях может являться скорость работы с временным файлом программы Adobe Photoshop. В данном случае снова тихий вариант Hitachi 7K60 оказался чуть быстрее громкого, а преимущество над Hitachi 5K80 доходит до 13,5% (и до 35% - над Hitachi 80GN).

Тесты в Intel Iometer

Для имитации работы дисков в различных приложениях мы используем специальные паттерны в программе Intel IOmeter. Сперва - традиционные паттерны, предложенные Intеl и сайтом Storagereview.com:




Собственно, иного я и не ожидал - Hitachi 7K60 всегда с заметным (от 8 до 13%) отрывом впереди самых шустрых пятитысячников, причем вариант с меньшим временем поиска тут однозначно лучше, хотя разница и не фатальна - от 0 до 2,6%. Несмотря на немалую разницу в «ворклоаде» этих четырех паттернов, картина везде очень похожа. Так что для использования 2,5-дюймового семитысячника в разноплановых профессиональных системах и компактных серверах есть все предпосылки.

При имитации чтения и записи крупных файлов HItachi 7K60 опередил 5K80 всего на 7% (примерно равно разнице в средней скорости чтения пластины), причем тихий вариант немного отстал от громкого только на чтении.

При имитации чтения и записи мелких файлов отрыв семитысячника куда более впечатляющ - на 20% от Seagate Momentus (в большей степени - за счет записи) и от Hitachi 5K80. Притом, что Hitachi 80GN отстал от лидера всего на 35%. И здесь, кстати, тихий вариант снова немного выходит вперед.

При имитации дефрагментации, где скорость поиска важна, «тихоня», конечно, чуть медленнее, но все равно отрыв от Hitachi 5K80 равен 23%, что существенно больше разрыва в линейной скорости чтения пластины (7-10%). Весьма неплохо!

Причем при имитации копирования крупных и даже мелких файлов этот разрыв в 23% сохраняется! В общем, семитысячник показывает явно выдающиеся результаты.

Наконец, паттерн потоковых чтения-записи файлов крупными или мелкими блоками, имитирующий, например, работу цифрового магнитофона с отложенной записью, ставит финальную точку - 18% в среднем отрыв от 5K80 и 35% - от 80GN. Не говоря уже о дисках конкурентов. Очевидно, все дело - именно в оптимизации firmware дисков для подобных задач (особенно в случае 4-килобайтных блоков), а не в простейших физических характеристиках накопителей. Впрочем, справедливости ради, замечу, что задачи такого плана чаще выполняются именно крупными блоками, поэтому результат для блоков 4 Кбайт представляет скорее академический интерес и лишь подтверждает общее концептуальное преимущество firmware от IBM/Hitachi и мои высказывания выше о «главенстве» именно микропрограмм в деле борьбы за производительность дисков.

Энергопотребление

Энергопотребление семитысячника заявлено на уровне пятитысячника. Производитель в этой связи особенно расхваливает технологии фемто-слайдера и Enhanced Adaptive Battery Life Extender 3.0 (интеллектуальное энергосбережение в режиме idle, ориентирующееся на определенные паттерны доступа к диску). Что же, проверим. Методика «проверки» уже описана мной подробно в предыдущей статье , поэтому безлишних слов переходим к результатам.

Результаты измерений среднего тока потребления дисков в основных режимах приведены в таблице 2. Здесь Idle - это режим простого вращения диска (без обращения к данным). Pre-idle - это режим активности, в котором диск находится примерно 2-3 секунды после окончания обращения к нему перед переходом в режим Idle (видимо, головки еще не припаркованы с краю пластины). ATA Transfer - это режим передачи данных по шине ATA без обращения к самой пластине. Seek - активный поиск (хаотическое перемещение головок по всей пластине). Start - максимальный ток в момент старта (усредненный с постоянной времени около 0,1 с). Результаты для записи и чтения приведены для диапазона тока потребления - первая цифра соответствует началу (внешним дорожкам) диска, последняя - концу диска. Все режимы, кроме Start, измерялись во время прохождения соответствующих этапов тестов HD Tach 2.61 (именно этой, а не более поздних версий) и AIDA32 Disk Benchmark (в скобках показаны результаты для теста AIDA32, если они не совпадают с таковыми для HD Tach 2.61).

Таблица 2. Ток потребления (в мА) жестких дисков от источника питания +5В, измеренный в различных режимах работы.

Модель диска / Режим работы диска Скорость вращения шпинделя, об./мин. Idle Pre-idle ATA transfer Write Read Seek Start
Hitachi 7K60 HTS726060M9AT00 7200 150 200 370 (230) 650-590 850-620 650 830
Hitachi 5K80 HTS548080M9AT00 5400 140 190 370 (250) 620-600 750-580 630 700
IBM/Hitachi IC25N040ATMR04 4200 105 140 280 (180) 520-460 630-490 540 700
Samsung SpinPoint M40 MP0402H 5400 150 300 330 (420) 480-410 470-400 480 750
Seagate Momentus ST94811A 5400 190 220 540 (400) 570-540 630-540 540 870
Toshiba MK4019GAX 5400 185 209> 500 650 730 680 870
Toshiba MK4018GAS 4200 130 155 440 550 630 590 720
Fujitsu MHR2020AT 4200 100 141 508 570 520 530

При анализе результатов этой таблицы интересно отметить, что ток потребления диском Hitachi 7K60 в покое меньше, чем у пятитысячников Samsung и Seagate и едва больше, чем у Hitachi 5K80. Зато при обращении к диску семитысячник оказался прожорливее почти всех. К сожалению, его максимальный пусковой ток тоже нельзя назвать малым, что может иногда помешать при использовании этого диска в качестве внешнего накопителя при питании от порта USB (без дополнительной подпитки - например, на старых материнских платах или PCI -контроллерах).

Чтобы привести цифры таблицы к общему и полезному для читателя знаменателю:), мы, как и ранее, вычислили два практически полезных параметра: усредненную потребляемую мощность мобильных дисков при типичной работе пользователя и при интенсивной (постоянной) работе с винчестером. Для вычисления этих оценочных показателей, не претендующих на какую-то «истину в конечной инстанции», я применил две характерные модели использования дисков. При типичной неспешной работе пользователя (например, офисной или при редактировании графики) модель среднего потребления диска описывается формулой:

Ptyp =5V*(Idle *85%+Preidle *4.9%+Start *0.1%+Write *2.5%+Read *7.5%)/100%,

где буквенные режимы означают ток потребления диском в соответствующих режимах обращения к нему, а цифры, на которые эти токи умножаются - процент по времени, в течение которого диск находится в этом режиме (для чтения и записи берутся максимальные значения тока потребления, соответствующие начальным участкам диска; режим Seek здесь фактически учитывается через чтение и запись). В основу этой модели положено, в частности, то, что при типичной работе ноутбука диск читает/пишет в течение примерно 10% от общего времени, а обращение к нему происходит в среднем раз в минуту. Аналогично, для интенсивной работы с диском (например, дефрагментация, сканирование поверхности, копирование файлов и пр.) среднее потребление численно описывается формулой:

Pmax =(Write +Seek +Read *3),

где ток приведен в амперах. По вычисленным данным потребляемой мощности построена следующая диаграмма.


Усредненная потребляемая мощность мобильных дисков при типичной работе пользователя ноутбука и при интенсивной (постоянной) работе с винчестером

Видно, что в режиме постоянной (активной) работы ноутбука с диском Hitachi Travelstar 7K60 оказался самым прожорливым - почти 4 ватта для некоторых ноутбуков (с суммарным тепловым пакетом 8-10 ватт) могут заметно повлиять на продолжительность жизни от батареи! Правда, в этом наш герой не настолько хуже ближайших соперников - Hitachi 5K80 и Toshiba MK4019GAX, пожирающих до 3,5 ватт в постоянной работе, - чтобы по этому поводу сильно сокрушаться. Зато в «неспешной» работе ноутбука семитысячник оказался лучше некоторых (но не всех) пятитысячников - 1 ватт благодаря технологиям, о которых так долго говорили «большевики», - это вполне приемлемо даже для тонкого и легкого ноутбука.

Акустический шум

Для субъективной оценки акустических свойств дисков проводилось сравнительное прослушивание. В звуке, издаваемом дисками в режиме вращения (без поиска), мы выделили две четко различимые компоненты, по которым отдельно оценивался каждый из дисков - это высокочастотный «звон» (подшипников и иных компонентов дисков) и низкочастотный «гул» (вибрации, характеризующие балансировку шпинделя с пластинами). По «звону» самым тихим оказался накопитель Samsung Magma, а следом за ним шли диски Hitachi в порядке возрастания их скорости вращения - 4200, 5400 и 7200 об./мин. По низкочастотному «гулу» самыми тихими оказались побывавшие у нас экземпляры накопителей Hitachi со скоростью 4200 и 7200 об./мин., Samsung и Hitachi 5400 rpm оказались громче. Что касается «шумности» поиска, то он примерно был одинаково тих у Magma и 4200-rpm-диска Hitachi и немного громче - у пятитысячника и семитысячника Hitachi. В целом, на фоне шума вращения шум поиска у 7K60 не очень заметен и уж точно неназойлив. Как и шум в режиме idle.

Выводы

Что же, можно констатировать, что первый мобильный семитысячник у IBM, пардон, у Hitachi получился вполне достойным - под стать знаменитым настольным семитысячникам этой компании в прошлом и настоящем. Конечно, напрямую сравнивать производительность Travelstar 7K60 с современными настольными семитысячниками не получится - у последних и скорость чтения данных, как минимум, раза в полтора выше, и время поиска заметно меньше. Хотя применение современных «больших буферов» и сходных алгоритмов firmware и делает их всё ближе. В целом, 7K60 примерно соответствует по производительности настольным семитысячникам IBM двухлетней давности. И заметно превосходит в большинстве тестов нынешние мобильные пятитысячники (но не во всех - действительно намного). При этом, почти не отличаясь от них в экономичности и шумности и даже превосходя - в ударостойкости. В общем, за такими дисками - мобильное будущее. И в свой «такой тонкий и легкий» ноутбук я бы его поставил не задумываясь. :)



Загрузка...