sonyps4.ru

Служебные символы c. Литералы

Анализ литературы последних лет по технологии программирования показывает , что новой ветвью в технологии промышленной разработки и реализации сложных и значительных по объему систем программного обеспечения является CASE-технология (Computer Aided Software Engineering).

CASE-технология явилась ответом на ряд серьезных трудностей, возникших при разработке и эксплуатации компьютерных систем. Учитывая неудачу многих проектов, заказчики стремились получить хорошо проработанное обоснование проекта с тестированным программным обеспечением. Однако они не всегда предоставляли разработчикам необходимую информацию, справедливо относя ее к разряду коммерческой тайны, да и сама организация информационных потоков постоянно менялась по мере расширения деятельности предприятия. В результате осуществление проектов затягивалось, и созданные программно-аппаратные комплексы начинали работать в условиях, когда требования предприятия к ним изменялись. Применялся и иной подход. Компьютерный комплекс разрабатывался и вводился в эксплуатацию в короткие сроки специализированной фирмой при полном взаимодействии с заказчиком. Это обеспечивало создание работоспособного комплекса, но из-за отсутствия необходимой документации, задержки с обучением персонала и многочисленных «недоделок», особенно в программном обеспечении, эксплуатация комплекса попадала полностью в зависимость от разработчиков и происходила в условиях постоянных сбоев и потребности в дополнительных затратах на переделки и усовершенствования.

Для выхода из сложившейся ситуации была разработана CASE-технология, поддерживающая проектирование, выбор технологии, архитектуры и написание программного обеспечения. CASE (Computed Aided Software Engineering) - система конструирования программ с помощью компьютера.

Первоначально CASE-технология появилась в проектах создания промышленных систем обработки данных. Это обстоятельство наложило свой отпечаток и на инструментальные средства CASE-технологии, где самое серьезное внимание уделялось, по крайней мере в ранних CASE-системах, поддержке проектирования информационных потоков. В настоящее время наблюдается отход от ориентации на системы обработки данных, и инструментальные средства CASE-технологии становятся все более универсальными. Все средства поддержки CASE-технологии делятся на две большие группы :

САSE-ToolKits и CASE-WorkBenches . Хороших русских эквивалентов этим терминам нет. Однако первые часто называют «инструментальными сундучками» (пакетами разработчика, технологическими пакетами), а вторые - «станками для производства программ» (технологическими линиями).

По определению. CASE-ToolKit - коллекция интегрированных программных средств, обеспечивающих автоматическое ассистирование в решении задач одного типа в процессе создания программ.

Такие пакеты используют общее «хранилище» для всей технической и управляющей информации по проекту (репозиторий), снабжены общим интерфейсом с пользователем и унифицированным интерфейсом между отдельными инструментами пакета. Как правило, CASE-ToolKit концентрируются вокруг поддержки разработки одной фазы производства программ или на одном типе прикладных задач,

Все вышесказанное справедливо и по отношению к CASE-Workbench. Но здесь, кроме того, обеспечивается автоматизированная поддержка анализа решаемых задач по производству программного обеспечения, которая базируется на общих предположениях о процессе и технологии такой деятельности; поддерживается автоматическая передача результатов работ от одного этапа к другому, начиная со стадии проектирования и кончая отчуждением созданного программного продукта и его сопровождением.

Таким образом, CASE-WorkBench является естественным «замыканием» технологии разработки, реализации и сопровождения программного обеспечения.

В настоящее время «типовая» система поддержки CASE-технологии имеет функциональные возможности, представленные на рис. 14.

Рис. 14. Функциональные возможности типовой системы поддержки CASE-технологии

Как следует из рис. 14, в CASE-среде должны поддерживаться все основные этапы разработки и сопровождения процессов создания программных систем. Однако уровень такой поддержки существенно различен. Так, например, если говорить об этапах анализа и проектирования, большинство инструментальных пакетов поддерживает экранные и отчетные формы, создание прототипов, обнаружение ошибок. Значительная часть этих средств предназначена для ПЭВМ. Многие поддерживают такие широко используемые методологии, как структурный анализ DeMarco или Gane/Sarson, структурное проектирование Yourdan/Jackson и некоторые другие. Существуют специализированные пакеты разработчиков для создания информационных систем, например AnaTool (Advanced Logical Software) для Macintosh; CA-Universe/Prototype (Computer Associates International) для ПЭВМ. Имеются CASE-среды и для поддержки разработки систем реального времени.

С помощью CASE-технологии описывают предметную область; входящие в нее объекты, их свойства; связи между объектами и их свойствами. В результате формируется модель, описывающая основных участников системы, их полномочия, потоки финансовых и иных документов между ними. В ходе описания создается электронная версия проекта, которая распечатывается и оперативно передается для согласования всем участникам проекта как рабочая документация.

В процессе создания проекта выделяют следующие этапы:

Формирование требований, разработка и выбор варианта концепции системы;

Разработка и утверждение технического задания на систему;

Эскизный и технический проекты с описанием всех компонентов и архитектуры системы;

Рабочее проектирование, предполагающее разработку и отладку программы; описание структуры базы данных; создание документации на поставку и установку технических средств;

Ввод в действие, предусматривающий установку и включение аппаратных средств, инсталлирование программного обеспечения, загрузку баз данных, тестирование системы, обучение персонала;

Эксплуатация системы, включающая сопровождение программных средств и всего проекта, поддержку и замену аппаратных средств.

CASE-технология сформировалась в процессе интеграции опыта и новых возможностей, появившихся у разработчиков компьютерных систем. Начало этому процессу положили компиляторы и интерпретаторы с алгоритмических языков, затем к ним добавились средства тестирования программ, их отладки и средства генерации отчетов. Для обмена информацией в проектных организациях и обеспечения оперативного доступа к создаваемой документации были разработаны средства информационной поддержки и управления проектом. С появлением инструментария описания концепции проектов в моделируемом учреждении была создана система проектирования, которая поддерживает все технологические этапы проекта, обеспечивает его документирование и согласованную работу групп разработчиков как со стороны заказчика, так и со стороны исполнителя.

В настоящее время существует множество CASE-систем, различающихся по степени компьютерной поддержки этапов разработки проектов. Часть из них обеспечивает только графическое представление функций подразделений учреждения и потоков информации между ними, в других - автоматизирован процесс описания баз данных и составления некоторых программ или их частей.

В основе CASE-технологии лежит процесс выявления функций отдельных элементов систем и информационных потоков.

Каждое рабочее место описывается как технологический модуль, в котором происходит преобразование информации. Каждому модулю устанавливается механизм, в соответствии с которым он изменяет находящиеся в нем данные и функции в зависимости от управляющих параметров и информации, получаемых от оператора или других модулей. Модуль системы может передавать информацию, может управлять функциями другого модуля. Для связанных между собой функциональных блоков устанавливают механизм, описывающий правила их взаимодействия. В конечном итоге составляется полная модель системы, которая может быть рассчитана на бумаге с внесением всех необходимых пояснений и спецификаций.

Описание информационных потоков в учреждении во многих CASE-системах производится с помощью ER-модели (Entiti-Relationship - модель «сущность - связь»). Порядок построения такой модели и используемые при этом абстракции определяются CASE-методом, без освоения которого CASE-технология не может быть применена в полном объеме. Учитывая дороговизну CASE-систем, российские специалисты, усвоив CASE-метод, создают свои инструментальные средства для описания ER-моделей и баз данных.

В процессе построения ER-моделей CASE-система проверяет соответствующие программы на непротиворечивость, что позволяет на разных этапах проектирования выявлять ошибки и не допускать некачественное моделирование баз данных и написание программ, исправление чего на последующих этапах затруднительно и требует значительных материальных затрат.

С помощью средств описания ER-модели создаются графическое изображение информационных потоков, а также словарь проекта, который включает в себя упорядоченную информацию о функциях и связях участников системы. Проектировщик-системщик может использовать для описания «своих» объектов атрибуты, уже содержащиеся в словаре. Информация словаря может быть распечатана и превращена в часть документации проекта.

Инструменты CASE-технологии позволяют на основе ER-модели генерировать описание (таблицы), диалоговые процедуры, а также средства вывода данных и довести проект до стадии тестирования и опытной эксплуатации. Этот инструмент применяется и в дальнейшем для внесения изменений в проект.

Основные достоинства CASE-технологии:

Повышение производительности труда программистов на несколько порядков,

Возможность формализовать документирование и администрирование проектов,

Минимизация ошибок и несовершенства программного обеспечения конечных пользователей,

Ускорение обучения персонала и использование программного обеспечения в полном объеме,

Постоянное обновление и модернизация пользовательских программ.

Наиболее известной в России в настоящее время является CASE-система Oracle, позволяющая создавать приложения на базе одноименной СУБД. В ее основе лежит CASE-метод проектирования сети «сверху вниз» - от наиболее общих решений к частным. Этапы в Oracle выглядят следующим образом :

Выработка стратегии;

Анализ объекта;

Проектирование;

Реализация;

Внедрение;

Эксплуатация.

ER-модель строится на этапе анализа объекта, а СУБД -на этапе проектирования.

CASE-система Oracle состоит из инструментальных средств CASE*Dictionary (для графического представления модулей предметной области); CASE*Generator (для автоматического генерирования программных модулей).

Ожидается, что средства компьютерной поддержки процесса проектирования будут быстро развиваться, обеспечивая генерацию все большего объема инструкций программ конечных пользователей, повысятся производительность труда программистов и проектировщиков, качество самих продуктов.

В среде разработчиков программного обеспечения существуют две оценки данного подхода: часть из них считает, что CASE-технология кардинально меняет процессы разработки и эксплуатации ПО, другие отрицают это и оставляют за инструментальными средствами CASE лишь функцию автоматизации рутинных работ. Однако анализ литературы показывает, что CASE средства все-таки «сдвигают» технологии разработки ПО с управления выполнением проектов в сторону метода прототипизации. И этот сдвиг, на наш взгляд, чрезвычайно важная тенденция в современной технологии программирования.

Современные методы и средства проектирования информационных систем

Введение

Целью данного обзора является введение в особенности современных методов и средств проектирования информационных систем, основанных на использовании CASE-технологии.

Несмотря на высокие потенциальные возможности CASE-технологии (увеличение производительности труда, улучшение качества программных продуктов, поддержка унифицированного и согласованного стиля работы) далеко не все разработчики информационных систем, использующие CASE-средства, достигают ожидаемых результатов.

Существуют различные причины возможных неудач, но, видимо, основной причиной является неадекватное понимание сути программирования информационных систем и применения CASE-средств. Необходимо понимать, что процесс проектирования и разработки информационной системы на основе CASE-технологии не может быть подобен процессу приготовления пищи по поваренной книге. Всегда следует быть готовым к новым трудностям, связанным с освоением новой технологии, последовательно преодолевать эти трудности и последовательно добиваться нужных результатов.

Тенденции развития современных информационных технологий приводят к постоянному возрастанию сложности информационных систем (ИС), создаваемых в различных областях экономики. Современные крупные проекты ИС характеризуются, как правило, следующими особенностями:

· сложность описания (достаточно большое количество функций, процессов, элементов данных и сложные взаимосвязи между ними), требующая тщательного моделирования и анализа данных и процессов;

· наличие совокупности тесно взаимодействующих компонентов (подсистем), имеющих свои локальные задачи и цели функционирования (например, традиционных приложений, связанных с обработкой транзакций и решением регламентных задач, и приложений аналитической обработки (поддержки принятия решений), использующих нерегламентированные запросы к данным большого объема);

· отсутствие прямых аналогов, ограничивающее возможность использования каких-либо типовых проектных решений и прикладных систем;

· необходимость интеграции существующих и вновь разрабатываемых приложений;

· функционирование в неоднородной среде на нескольких аппаратных платформах;

· разобщенность и разнородность отдельных групп разработчиков по уровню квалификации и сложившимся традициям использования тех или иных инструментальных средств;

· существенная временная протяженность проекта, обусловленная, с одной стороны, ограниченными возможностями коллектива разработчиков, и, с другой стороны, масштабами организации-заказчика и различной степенью готовности отдельных ее подразделений к внедрению ИС.

Для успешной реализации проекта объект проектирования (ИС) должен быть прежде всего адекватно описан, должны быть построены полные и непротиворечивые функциональные и информационные модели ИС. Накопленный к настоящему времени опыт проектирования ИС показывает, что это логически сложная, трудоемкая и длительная по времени работа, требующая высокой квалификации участвующих в ней специалистов. Однако до недавнего времени проектирование ИС выполнялось в основном на интуитивном уровне с применением неформализованных методов, основанных на искусстве, практическом опыте, экспертных оценках и дорогостоящих экспериментальных проверках качества функционирования ИС. Кроме того, в процессе создания и функционирования ИС информационные потребности пользователей могут изменяться или уточняться, что еще более усложняет разработку и сопровождение таких систем.

В 70-х и 80-х годах при разработке ИС достаточно широко применялась структурная методология, предоставляющая в распоряжение разработчиков строгие формализованные методы описания ИС и принимаемых технических решений. Она основана на наглядной графической технике: для описания различного рода моделей ИС используются схемы и диаграммы. Наглядность и строгость средств структурного анализа позволяла разработчикам и будущим пользователям системы с самого начала неформально участвовать в ее создании, обсуждать и закреплять понимание основных технических решений. Однако, широкое применение этой методологии и следование ее рекомендациям при разработке конкретных ИС встречалось достаточно редко, поскольку при неавтоматизированной (ручной) разработке это практически невозможно. Действительно, вручную очень трудно разработать и графически представить строгие формальные спецификации системы, проверить их на полноту и непротиворечивость, и тем более изменить. Если все же удается создать строгую систему проектных документов, то ее переработка при появлении серьезных изменений практически неосуществима. Ручная разработка обычно порождала следующие проблемы:

· неадекватная спецификация требований;

· неспособность обнаруживать ошибки в проектных решениях;

· низкое качество документации, снижающее эксплуатационные качества;

· затяжной цикл и неудовлетворительные результаты тестирования.

С другой стороны, разработчики ИС исторически всегда стояли последними в ряду тех, кто использовал компьютерные технологии для повышения качества, надежности и производительности в своей собственной работе (феномен "сапожника без сапог").

Перечисленные факторы способствовали появлению программно-технологических средств специального класса - CASE-средств, реализующих CASE-технологию создания и сопровождения ИС. Термин CASE (Computer Aided Software Engineering) используется в настоящее время в весьма широком смысле. Первоначальное значение термина CASE, ограниченное вопросами автоматизации разработки только лишь программного обеспечения (ПО), в настоящее время приобрело новый смысл, охватывающий процесс разработки сложных ИС в целом. Теперь под термином CASE-средства понимаются программные средства, поддерживающие процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного ПО (приложений) и баз данных, генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. CASE-средства вместе с системным ПО и техническими средствами образуют полную среду разработки ИС.

Появлению CASE-технологии и CASE-средств предшествовали исследования в области методологии программирования. Программирование обрело черты системного подхода с разработкой и внедрением языков высокого уровня, методов структурного и модульного программирования, языков проектирования и средств их поддержки, формальных и неформальных языков описаний системных требований и спецификаций и т.д. Кроме того, появлению CASE-технологии способствовали и такие факторы, как:

· подготовка аналитиков и программистов, восприимчивых к концепциям модульного и структурного программирования;

· широкое внедрение и постоянный рост производительности компьютеров, позволившие использовать эффективные графические средства и автоматизировать большинство этапов проектирования;

· внедрение сетевой технологии, предоставившей возможность объединения усилий отдельных исполнителей в единый процесс проектирования путем использования разделяемой базы данных, содержащей необходимую информацию о проекте.

CASE-технология представляет собой методологию проектирования ИС, а также набор инструментальных средств, позволяющих в наглядной форме моделировать предметную область, анализировать эту модель на всех этапах разработки и сопровождения ИС и разрабатывать приложения в соответствии с информационными потребностями пользователей. Большинство существующих CASE-средств основано на методологиях структурного (в основном) или объектно-ориентированного анализа и проектирования, использующих спецификации в виде диаграмм или текстов для описания внешних требований, связей между моделями системы, динамики поведения системы и архитектуры программных средств.

Согласно обзору передовых технологий (Survey of Advanced Technology), составленному фирмой Systems Development Inc. в 1996 г. по результатам анкетирования более 1000 американских фирм, CASE-технология в настоящее время попала в разряд наиболее стабильных информационных технологий (ее использовала половина всех опрошенных пользователей более чем в трети своих проектов, из них 85% завершились успешно). Однако, несмотря на все потенциальные возможности CASE-средств, существует множество примеров их неудачного внедрения, в результате которых CASE-средства становятся "полочным" ПО (shelfware). В связи с этим необходимо отметить следующее:

· CASE-средства не обязательно дают немедленный эффект; он может быть получен только спустя какое-то время;

· реальные затраты на внедрение CASE-средств обычно намного превышают затраты на их приобретение;

· CASE-средства обеспечивают возможности для получения существенной выгоды только после успешного завершения процесса их внедрения.

Ввиду разнообразной природы CASE-средств было бы ошибочно делать какие-либо безоговорочные утверждения относительно реального удовлетворения тех или иных ожиданий от их внедрения. Можно перечислить следующие факторы, усложняющие определение возможного эффекта от использования CASE-средств:

· широкое разнообразие качества и возможностей CASE-средств;

· относительно небольшое время использования CASE-средств в различных организациях и недостаток опыта их применения;

· широкое разнообразие в практике внедрения различных организаций;

· отсутствие детальных метрик и данных для уже выполненных и текущих проектов;

· широкий диапазон предметных областей проектов;

· различная степень интеграции CASE-средств в различных проектах.

Вследствие этих сложностей доступная информация о реальных внедрениях крайне ограничена и противоречива. Она зависит от типа средств, характеристик проектов, уровня сопровождения и опыта пользователей. Некоторые аналитики полагают, что реальная выгода от использования некоторых типов CASE-средств может быть получена только после одно- или двухлетнего опыта. Другие полагают, что воздействие может реально проявиться в фазе эксплуатации жизненного цикла ИС, когда технологические улучшения могут привести к снижению эксплуатационных затрат.

Расшифровка аббревиатуры CASE: Computer Aided Software Engineering, что можно перевести на русский, примерно, как разработка программного обеспечения с помощью компьютера .

В соответствии с ГОСТ 19781-90 Программное обеспечение (ПО) – совокупность программ системы обработки информации и программных документов, необходимых для их эксплуатации.

Очевидно, что программное обеспечение бывает разное. В частности, оно может быть прикладным и системным.

Когда речь идет о ПО, то его можно подразделить на простое и сложное. Чтобы не спорить о терминах, договоримся о следующем: простым будем называть ПО, которое задумывается, разрабатывается, сопровождается и используется одним и тем же человеком. Ну, а сложное программное обеспечение разрабатывается коллективом разработчиков. В литературе сейчас уже практически общепризнано, что применение CASE-средств оправдано (целесообразно) именно при разработке сложного ПО, когда в одной и той же работе задействованы несколько человек, и когда ставится задача повысить производительность труда, улучшить качество программных продуктов, поддержать унифицированный и согласованный стиль работы и т. д., и т. п.

Для того чтобы упростить процесс разработки программного обеспечения информационных систем, в 70-х и 80-х годах была создана и достаточно широко применялась структурная методология , предоставляющая в распоряжение разработчиков строгие формализованные методы описания ИС и принимаемых технических решений. Методология эта основана на наглядной графической технике: для описания различного рода моделей ИС используются схемы и диаграммы. Наглядность и строгость средств структурного анализа позволяла разработчикам и будущим пользователям системы с самого начала неформально участвовать в ее создании, обсуждать и закреплять понимание основных технических решений.

Однако широкое применение этой методологии и следование ее рекомендациям при разработке конкретных информационных систем встречалось достаточно редко, поскольку при неавтоматизированной (ручной) разработке это практически невозможно. Действительно, вручную очень трудно разработать и графически представить строгие формальные спецификации системы, проверить их на полноту и непротиворечивость, и тем более изменить. Если все же удается создать строгую систему проектных документов, то ее переработка при появлении серьезных изменений практически неосуществима. Ручная разработка обычно порождала следующие проблемы:

Ø неадекватная спецификация требований;

Ø неспособность обнаруживать ошибки в проектных решениях;

Ø низкое качество документации, снижающее эксплуатационные качества;



Ø затяжной цикл и неудовлетворительные результаты тестирования.

Еще одна проблема разработки заключалась в следующем: разработчики информационных систем исторически всегда стояли последними в ряду тех, кто использовал компьютерные технологии для повышения качества, надежности и производительности в своей собственной работе (феномен "сапожника без сапог").

Перечисленные факторы способствовали появлению программно-технологических средств специального класса - CASE-средств, реализующих CASE-технологию создания и сопровождения ИС.

Термин CASE используется в настоящее время в весьма широком смысле. Первоначально значение термина CASE было ограничено вопросами автоматизации разработки только лишь программного обеспечения (ПО), но в настоящее время оно приобрело новый смысл, охватывающий процесс разработки сложных информационных систем в целом.

Теперь под термином CASE-средствапонимаются программные средства, поддерживающие процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного ПО (приложений) и баз данных, генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. CASE-средства вместе с системным ПО и техническими средствами образуют полную среду разработки ИС.

Появлению CASE-технологии и CASE-средств предшествовали исследования в области методологии программирования. Программирование обрело черты системного подхода с разработкой и внедрением языков высокого уровня, методов структурного и модульного программирования, языков проектирования и средств их поддержки, формальных и неформальных языков описаний системных требований и спецификаций и т.д. Кроме того, появлению CASE-технологии способствовали и такие факторы, как:

Ø подготовка аналитиков и программистов, восприимчивых к концепциям модульного и структурного программирования;

Ø широкое внедрение и постоянный рост производительности компьютеров, позволившие использовать эффективные графические средства и автоматизировать большинство этапов проектирования;

Ø внедрение сетевой технологии, предоставившей возможность объединения усилий отдельных исполнителей в единый процесс проектирования путем использования разделяемой базы данных, содержащей необходимую информацию о проекте.

CASE-технология представляет собой методологию проектирования ИС, а также набор инструментальных средств, позволяющих в наглядной форме моделировать предметную область, анализировать эту модель на всех этапах разработки и сопровождения ИС и разрабатывать приложения в соответствии с информационными потребностями пользователей. Большинство существующих CASE-средств основано на методологиях структурного (в основном) или объектно-ориентированного анализа и проектирования, использующих спецификации в виде диаграмм или текстов для описания внешних требований, связей между моделями системы, динамики поведения системы и архитектуры программных средств.

CASE-системы появились во второй половине 80-х годов на рынке и стали быстро завоевывать популярность. Основные положения этих методологии можно сформулировать следующим образом:

1. Основополагающей концепцией является построение логической (не физической) модели системы при помощи графических методов, которые дали бы возможность пользователям, аналитикам и проектировщикам получить ясную и общую картину системы, уяснить, как сочетаются между собой компоненты системы и как будут удовлетворены потребности пользователя.

2. Эта методология предполагает построение системы сверху вниз за счет последовательной детализации: вначале получают диаграмму потоков данных всей системы, далее разрабатывают детализированные диаграммы потоков данных, затем определяют детали структур данных и логики процессов, вслед за этим переходят к проектированию модульной структуры и т.д.

3. Анализ производится сверху вниз, проектирование производится сверху вниз, разработка производится сверху вниз и тестирование производится сверху вниз.

4. Хорошая разработка включает итерацию, то есть следует быть готовыми уточнить логическую модель и физический проект с учетом информации, получаемой при использовании первой версии модели или проекта.

В современных CASE-пакетах используются практически все известные методологии проектирования (свыше 90 методов, при этом наибольшее распространение получили методологии SADT, структурного системного анализа, структурного системного анализа Гейна-Сарсона, структурного проектирования Йордана, методологии моделирования данных, структурного анализа Де Марко). Существуют CASE-пакеты, не поддерживающие ни одной методологии (строго ориентированные средства управления проектом), а также средства, независимые от методологий (способные к адаптации к любым методам).

CASE - технологии

Программные средства для разработки ПО постоянно развиваются и совершенствуются. В истории их эволюции начиная с программирования в машинных кодах последовательно появлялись: ассемблер, компиляторы, интерпретаторы, трассировщики, отладчики, интегрированные оболочки. С развитием методов проектирования ПО неизбежно стали появляться программы, компьютезирующие и эту область деятельности.

CASE (Computer Aided Software Engeneering)-технологии являются естественным продолжением эволюции всей отрасли разработки ПО.

CASE-1: анализ требований, проектирование спецификаций и структуры, редактирования интерфейсов.

CASE-2: генерации исходных текстов и реализация интегрированного окружения поддержки полного ЖЦ разработки ПО.

Таким образом, CASE-средства являются результатом естественного эволюционного развития отрасли инструментальных (или технологических) средств. CASE-технологии начали развиваться с целью преодоления ограничений методологии структурного программирования. Некоторые исследователи считают, что появление этих технологий связано с достаточно развитым уровнем формализации структурного программирования, что позволяет автоматизировать выполнение рутинных работ.

Как бы то ни было, разработка моделей предметных областей с помощью программных средств довольно быстро привела к созданию программ, позволяющих моделировать разнообразные области человеческой деятельности, не связанные с программированием. Прежде всего это бизнес-проекты, позволяющие моделировать структуру предприятий с различными компонентами и их взаимосвязями. Так что в настоящее время CASE-технологии используются не только для производства ПО, но и как мощный инструмент решения исследовательских и проектных задач (структурный анализ предметной области, моделирование деловых предложений с целью решения задач оперативного и стратегического планирования и управления ресурсами).

Нас прежде всего интересует суть CASE-систем, которые предназначены для помощи в создании ПО. Назначение этих CASE-cистем:

· поддержка разработки моделей анализа и проектирования ПО;

· автоматизация процесса построения ПО;

· обеспечение функций реверсивного проектирования;

· обеспечение функций сопровождения ПО.

Реверсивное программирование : от текста программы или структуры БД к проекту и идее используется для модификации программ.

Истоками CASE вероятно является жажда разработчиков ПО и вообще проектировщиков всегда и всюду использовать различные схемы и рисунки. Визуальные изображения для многих людей играют роль опорных точек, за которые можно мысленно цепляться при анализе или конструировании сложных систем. К тому же с помощью рисунка гораздо проще передать свои мысли другому человеку. Вероятно графический “язык” по своей природе не слишком разнообразен. По сути – это всего лишь какие-то блоки типа прямоугольников или кругов и линиии между ними. Не удивительно, что возникла идея создать компьютерное средство, помогающее рисовать различные диаграммы. Неизбежная систематизация графических средств далее приводит к созданию “графических” языков, которые могут рассматриваться как языки более высокого уровня по отношению к текстам программ. Одно из наиболее важных достоинств таких языков – с одной стороны, их формальный характер, а с другой – интуитивная ясность для постановщиков задач в данной предметной области.

Основными задачами , решаемыми с помощью CASE-систем, являются следующие:

1. Разработка моделей предметной области, функциональной структуры системы, структур данных на графических языках.

2. Хранение моделей в единой базе данных – репозитории, доступном всем участникам разработки.

3. Формальный анализ разрабатываемых моделей, позволяющий избегать некоторых семантических ошибок.

4. Автоматизированная генерация структур баз данных, приложений, текстов программ.

5. Автоматизированная генерация документации на программные системы.

6. Обеспечение повторного использования наработок при модернизации, перепроектировании системы.

Для того, чтобы более конкретно разобраться в сути современных CASE-систем, бросить на них взгляд сверху вниз, попробуем представить в несколько абстрактном виде структурный анализ - ту область деятельности, для работы с которой предназначены CASE-средства.

В методологии структурного анализа наиболее часто и эффективно используются следующие средства:

DFD (Data Flow Diagrams ) - диаграммы потоков данных;

ERD (Entity-Relationship Diagrams ) - диаграммы ‘сущность - связь’;

STD (State Transition Diagrams ) - диаграммы переходов состояний.

Сами структурные методологии анализа и проектирования классифицируются по следующим признакам:

· по отношению к школам - Software Engineering (SE ) и Information Engineering (IE );

· по порядку построения моделей - процедурно-ориентированные, ориентированные на данные и информационно-ориентированные;

· по типу целевых систем - для систем реального времени и для информационных систем .

SE является нисходящим подходом к проектированию функций разрабатываемого ПО. Основой являются классические модели жизненного цикла: водопадная , итерационная, циклическая. Применяется при разработке как информационных систем, так и систем реального времени. По сравнению с IE появилась раньше и более апробирована.

IE - более новая дисциплина. Она имеет более широкую область применения, поскольку является дисциплиной построения систем вообще, а не только систем ПО. Включает этапы более высокого уровня (например, стратегическое планирование).

Во всех структурных методологиях используется одна и та же концепция: данные входят в систему, обрабатываются и выходят из системы (вход – обработка - выход). Отличаются технологии порядком построения модели ПО (как бы по разному решается вопрос: что раньше яйцо или курица?). Традиционный процедурно-ориентированный подход регламентирует первичность проектирования функциональных компонентов по отношению к проектированию структур данных: требования к данным раскрываются через функциональные требования. При подходе, ориентированном на данные, вход и выход являются наиболее важными - структуры данных определяются первыми, а процедурные компоненты являются производными от данных. Информационно-ориентированный подход, как часть IE-дисциплины, отличается от предыдущего подхода тем, что позволяет работать с неиерархическими структурами данных.

Исходя из приоритетов, которых придерживается разработчик CASE, получаются по разному ориентированные CASE-системы.

Типовая CASE-система включает в свой состав средства разработки различных моделей:

Диаграммеры,

Средства для конструирования пользовательского интерфейса,

Генераторы приложений,

Генераторы документации,

Систему программирования,

Центральную базу данных проекта – репозиторий

ERD-диаграммер - средство построения диаграмм «сущность – связь», генерирует SQL-скрипты и экранные формы.

Репозиторий – БД, в которой содержится информация о проекте

DFD-диаграммер – графическое средство построения диаграмм потоковых данных.

SQL – язык управления данными, определяет структуру и операции, выполняемые над реляционными БД (БД табличного типа).

Необходимо отметить, что наиболее просто автоматизируемыми фазами в CASE-технологии оказались контроль проекта и кодогенерация, хотя все другие фазы ЖЦ также поддерживаются CASE-средствами. Кроме изменения содержания фаз, существенно изменилось распределение трудозатрат по фазам, как показано в таблице

Технология

Этапы разработки

Анализ

Проектирование

Кодирование

Тестирование

Традиционная

Основные CASE-средства:

ERWIN (разработка ER-моделей), BPWIN (разработка диаграмм потоков данных), POWER DESIGNER, DESIGNER 2000, RATIONAL ROSE, PARADIGM+

CASE-средства можно классифицировать по типам, отражающим функциональную ориентацию в технологическом процессе.

Анализ и проектирование . Средства данной группы применяют для создания спецификаций системы и ее проектирования, они поддерживают методологии SE и IE:

CASE - аналитик (Эйтекс);

POSE (Computer Systems Advisers);

Design/IDEF (Meta Software);

BPWin (Logic Works);

SELECT (Select Software Tools);

CASE/4/0 (micro TOOl GmbH)

и ряд других средств.

Проектирование баз данных и файлов . Средства данной группы обеспечивают логическое моделирование данных, автоматическое моделей данных в третью нормальную форму, автоматическую генерацию схем БД и описаний форматов файлов на уровне программного кода. К таким средствам относятся:

ERWin (Logic Works);

S-Designor (SPD);

Designtr/2000 (Oracle);

Sillverrun (Computer Systems Advisers)/

Программирование . Средства поддерживабют этапы программирования и тестирования, а также автоматическую кодогенерацию из спецификаций, получая полностью документированную выполняемую программу:

COBOL 2/Workbench (Mikro Focus);

NETRON/CAP (Netron);

APS (Sage Softwfre).

Эти средства включают генераторы кодов, анализаторы кодов, генераторы тестов, анализаторы покрытия тестами, отладчики и средства интегрирования с результатами выполнения предыдущих этапов (диаграммеры для анализа спецификаций, средства поддержки работы с депозитарием (хранилище описаний данных, потоков и т. п.)).

Сопровождение и реинжениринг . Сюда относят документаторы, анализаторы программ, средства реструктурирования:

Adpac CASE Tools (Adpac);

Scan/COBOL и SuperStructure (Computer Data Systems):

Inshtctor/Recoder (language Tecnologe).

Средства позволяют осуществлять поддержку всей системноц документации, включая коды, спецификации, наборы тестов, контролировать покрытие тестами для оценки полноты тестируемости, управлять функционированием смистемы. Особый интерес представляют средства обеспечения мобильности (в CASE они получили название: средства миграции), обеспечивающие перенос существующей системы в новое операционное или аппаратурное окружение.

Обзор CASE- средств

Фирма Computer Associated

CASE-средства:

    AllFusion Process Modeler (ранее:BPwin) - моделирование бизнес-процессов AllFusion ERwin Data Modeler (ранее: ERwin) - моделирование данных AllFusion Data Model Validator (ранее: ERwin Examiner) - проверка моделей данных. AllFusion Model Manager (ранее: ModelMart) - сервер для совместной работы пользователей ERwin и/или Bpwin AllFusion Saphir Option - – средство просмотра структур данных широкого набора корпоративных информационных систем, включая PeopleSoft, SAP R/3, SAP BW и J. D. Edwards OneWorld, Siebel. AllFusion Saphir Option позволяет пользователям определять важные для бизнеса данные без необходимости изучения самих информационных систем. Продукт предоставляет возможность простой и интуитивно понятной навигации по детализированным метаданным систем. AllFusion Component Modeler (Paradigm Plus) - моделирование компонентов ПО

Поскольку генерация кода реализована на основе знаний предметной области, а не на основе реляционной структуры данных, полученный код более полно отражает бизнес-логику. Rational Rose и Paradigm Plus поддерживают не только прямую генерацию кода, но и обратное проектирование, т. е. создание объектной модели по исходному коду приложения.

ERwin имеет два уровня представления модели - логический и физический . Логический уровень - это абстрактный взгляд на данные, на нем данные представляются так, как выглядят в реальном мире, и могут называться так, как они называются в реальном мире, например "Постоянный клиент", "Отдел" или "Фамилия сотрудника". Объекты модели, представляемые на логическом уровне, называются сущностями и атрибутами. Логическая модель данных является универсальной и никак не связана с конкретной реализацией СУБД. Физическая модель данных, напротив, зависит от конкретной СУБД, фактически являясь отображением системного каталога. В физической модели содержится информация о всех объектах БД. Поскольку стандартов на объекты БД не существует (например, нет стандарта на типы данных), физическая модель зависит от конкретной реализации СУБД. Следовательно, одной и той же логической модели могут соответствовать несколько разных физических моделей. Если в логической модели не имеет значения, какой конкретно тип данных имеет атрибут, то в физической модели важно описать всю информацию о конкретных физических объектах - таблицах, колонках, индексах, процедурах и т. д. Разделение модели данных на логические и физические позволяет решить несколько важных задач.

Документирование модели. Многие СУБД имеют ограничение на именование объектов (например, ограничение на длину имени таблицы или запрет использования специальных символов - пробела и т. п.). Зачастую разработчики ИС имеют дело с нелокализованными версиями СУБД. Это означает, что объекты БД могут называться короткими словами, только латинскими символами и без использования специальных символов (т. е. нельзя назвать таблицу предложением - только одним словом). Кроме того, проектировщики БД нередко злоупотребляют "техническими" наименованиями, в результате таблица и колонки получают наименования типа RTD_324 или CUST_A12 и т. д. Полученную в результате структуру могут понять только специалисты (а чаще всего только авторы модели), ее невозможно обсуждать с экспертами предметной области. Разделение модели на логическую и физическую позволяет решить эту проблему. На физическом уровне объекты БД могут называться так, как того требуют ограничения СУБД. На логическом уровне можно этим объектам дать синонимы - имена более понятные неспециалистам, в том числе на кириллице и с использованием специальных символов. Например, таблице CUST_A12 может соответствовать сущность Постоянный клиент. Такое соответствие позволяет лучше задокументировать модель и дает возможность обсуждать структуру данных с экспертами предметной области.

Масштабирование. Создание модели данных, как правило, начинается с создания логической модели. После описания логической модели, проектировщик может выбрать необходимую СУБД и ERwin автоматически создаст соответствующую физическую модель. На основе физической модели ERwin может сгенерировать системный каталог СУБД или соответствующий SQL-скрипт. Этот процесс называется прямым проектированием (Forward Engineering). Тем самым достигается масштабируемость - создав одну логическую модель данных, можно сгенерировать физические модели под любую поддерживаемую ERwin СУБД. С другой стороны, ERwin способен по содержимому системного каталога или SQL-скрипту воссоздать физическую и логическую модель данных (Reverse Engineering). На основе полученной логической модели данных можно сгенерировать физическую модель для другой СУБД и затем сгенерировать ее системный каталог. Следовательно, ERwin позволяет решить задачу по переносу структуры данных с одного сервера на другой. Например, можно перенести структуру данных с Oracle на Informix (или наоборот) или перенести структуру dbf-файлов в реляционную СУБД, тем самым облегчив решение по переходу от файл-серверной к клиент-серверной ИС.

Наиболее удобным языком моделирования бизнес-процессов является IDEF0 , предложенный более 20 лет назад Дугласом Россом (SoftTech, Inc.) и называвшийся первоначально SADT - Structured Analysis and Design Technique. (Подробно методология SADT излагается в книге Дэвида А. Марка и Клемента Мак-Гоуэна "Методология структурного анализа и проектирования SADT" M.:Meтaтexнoлoгия, 1993.) В начале 70-х годов вооруженные силы США применили подмножество SADT, касающееся моделирования процессов , для реализации проектов в рамках программы ICAM (Integrated Computer-Aided Manufacturing). В дальнейшем это подмножество SADT было принято в качестве федерального стандарта США под наименованием IDEF0 .

Альтернативой структурному подходу стали объектно-ориентированные методы разработки ИС. В первой половине 90-х годов был предложен разработанный на основе наиболее популярных объектных методов ОМТ (Rumbaudh), Booch и OOSE (Jacobsom) универсальный язык объектного проектирования - Unified Modeling Language, UML (The Unified Method, Draft Edition (0.8). Rational Software Corporation, October 1995).

Существует несколько CASE-средств, поддерживающих язык UML. Наиболее известными являются:

CASE-средства, поддерживающие UML:

1. Paradigm Plus фирмы PLATINUM technology (Computer Associated).

2. Rational Rose фирмы Rational Software.

3. SELECT фирмы SELECT Software

Фирмы

Platinum Technology Incorporated (Платинум Текнолоджи Инкорпорейтед) - американская корпорация, разработчик программ для управления и усовершенствования информационных корпоративных систем. Кроме того, Platinum Technology занимается программами управления базами данных и информационными системами, построением хранилищ данных, разработкой аналитических средств и инструментария для разработчиков. Штаб-квартира корпорации находится в Экбрук-Террас (Иллинойс). Компания была основана в 1987 году в Чикаго. К концу 1990-х годов компания по объемам продаж занимала седьмое место в мире среди компаний-разработчиков компьютерного обеспечения.

Своей основной задачей Platinum Technology считает предоставление полного спектра программного обеспечения для нужд крупного предприятия . Компания активно взаимодействует с крупными разработчиками программного обеспечения - компаниями Oracle, Microsoft , Informix, Sybase, производителями аппаратных средств - IBM, Hewlett-Packard, Sun Microsystems, Digital Equipments. В 1997 году доходы корпорации составили 749 млн. долларов. Офисы Platinum Technology находятся в 40 странах мира, в 1995 году компания начала свою деятельность на территории России. В 1999 году компания была полностью приобретена корпорацией Computer Assotiations.

Computer Associates. (CA) (Компьютер Ассошиэйтс) - американский софтвер, лидер в области СУБД и т. п. Американская компания, специализирующаяся в области программного обеспечения (выпуск программных продуктов в области системного управления, СУБД, средств экономического и финансового управления). Основана в 1976 году Чарлзом Вонгом и Руссом Артцем. Штаб-квартира находится в г. Айсландия (шт. Нью-Йорк). CA, являясь крупнейшей (второй после Microsoft) компанией в мире по созданию программного обеспечения, осуществляет разработку, лицензирование и поддержку более 500 интегрированных продуктов, включающих системы управления информационными и вычислительными сетями предприятий, инструментальные средства, приложения финансового и производственного назначения. Первым успешным продуктом компании была программа сортировки данных (СA Sort). Тонко уловив конъюнктуру (пользователям приходилось около 25% времени тратить на сортировку), СА приобрела права на эту программу у швейцарской фирмы и осуществила ее выгодные продажи. Благодаря своим первым удачным шагам Computer Associates завоевала репутацию одного из ведущих участников рынка софтверной продукции. После удачных первых шагов фирма во главе с удачливым, но жестким исполнительным директором Вонгом стала интенсивно расширять поле своей деятельности. За более чем двадцатилетнюю историю своего существования CA приобрела свыше 60 компаний, сотрудники которых были безжалостно уволены - такова кадровая стратегия компании. Подбору персонала уделяется огромное внимание. С начала 1990-х годов компания становится лидером в области управления хранением и резервным копированием данных. Последним достижением в этой области является продукт ARCserve. Принадлежащая CA технология ARCserve обеспечивает сквозное управление средствами хранения данных для всех ресурсов информационных технологий , включая рабочие станции, серверы, базы данных, системы групповой работы и web-серверы. Эта технология позволяет осуществлять целостное управление хранилищами на любых платформах - от настольных ПК до мейнфреймов. Играя роль всеобъемлющего интегрированного решения по управлению средствами хранения, ARCserve обеспечивает не только простое резервное копирование, но также архивирование, восстановление после сбоев, сетевую миграцию данных, реплицирование и управление носителями и устройствами.

Начиная с 1996 года, продукция ARC-serve неоднократно отмечалась почетными наградами ведущих компьютерных изданий. В 1998 году в штате компании насчитывалось более 13 тыс. сотрудников, совокупный доход компании составил 4,7 млрд. долларов. Продукция CA распространяется в более чем 100 странах мира, в 40 странах функционируют зарубежные представительства СА. К 2002 году планируется, что годовой доход компании составит около $1,5 млрд., что превысит показагода более чем в три раза. Computer Associates сегодня является наиболее динамично развивающейся компьютерной компанией в мире.

В связи с развитием CASE-технологий в рамках спиральной модели жизненного цикла ПО широкое распространение получила методология быстрой разработки приложений RAD (Rapid Application Development). Процесс разработки при этом содержит три элемента:

· небольшую команду программистов (от 2 до 10 человек);

· короткий, но тщательно проработанный производственный график (от 2 до 6 мес);

· итерационный подход, при котором разработчики, по мере того как приложение начинает обретать форму, запрашивают и реализуют в продукте требования, полученные через взаимодействие с заказчиком.

Команда разработчиков представляет собой группу профессионалов, имеющих опыт в анализе, проектировании, генерации кода и тестировании ПО с использованием CASE-средств. Кроме того, разработчики должны уметь преобразовывать в рабочие прототипы предложения конечных пользователей.

Жизненный цикл ПО по методологии RAD состоит из четырех фаз:

· анализа и планирования требований;

· проектирования;

· реализации;

· внедрения.

На фазе анализа и планирования происходит определение требований к разрабатываемому ПО силами пользователей под руководством специалистов-разработчиков. Пользователи системы определяют функции, которые она должна выполнять, выделяют те, которые требуют проработки в первую очередь, описывают информационные потребности. Определяется возможность реализации данного проекта в установленных рамках финансирования, на данных аппаратных средствах и т. п. Затем определяются временные рамки самого проекта в каждой из последующих фаз. Результатом данной фазы должны быть состав и приоритеты функций будущей ИС, предварительные функциональные и информационные модели ИС.

На фазе проектирования часть пользователей под руководством специалистов-разработчиков принимает участие в техническом проектировании системы. Пользователи, непосредственно взаимодействуя с разработчиками, уточняют и дополняют требования к системе, которые не были выявлены на фазе анализа и планирования требований. Для быстрого получения работающих прототипов приложений используются CASE-средства.

Анализируется и при необходимости корректируется функциональная модель. Определяются требования разграничения доступа к данным. Каждый процесс рассматривается детально, и при необходимости для каждого элементарного процесса создается частичный прототип: экран, диалог, отчет, устраняющий неясности или неоднозначности. Здесь же выясняется, какой набор документации необходим для эксплуатации будущей системы.

По результатам анализа процессов принимается решение о количестве, составляющих ИС подсистем, поддающихся разработке одной командой разработчиков за приемлемое для RAD-проектов время - порядка 2-3 мес.

Результатом данной фазы должны быть:

· общая информационная модель системы;

· функциональные модели системы в целом и подсистем, реализуемых отдельными командами разработчиков;

· точно определенные с помощью CASE-средства интерфейсы между автономно разрабатываемыми подсистемами;

· построенные прототипы экранов, отчетов, диалогов.

Использование CASE-средств позволяет избежать искажения данных при передаче информации с фазы на фазу. Кроме того, в подходе RAD каждый прототип не выбрасывается после выполнения своей задачи, а развивается в часть будущей системы. Поэтому на следующую фазу передается уже более полная и полезная информация.

На фазе реализации выполняется непосредственно сама быстрая разработка приложения. Программный код частично формируется с помощью автоматических генераторов CASE-средств.

Для контроля за выполнением требований к ПО привлекаются конечные пользователи. Во время разработки осуществляется тестирование каждой подсистемы, что уменьшает стоимость исправления ошибок в коде программ по сравнению с тестированием уже готовой программной системы.

Автономно разрабатываемые подсистемы постепенно внедряются в общую систему. При подключении очередной части производится тестирование. Затем осуществляется тестирование всей системы в целом. Завершается физическое проектирование системы. При этом производится анализ использования данных, если необходимо, создаются базы данных и подключаются к системе, определяются требования к аппаратным ресурсам, завершается разработка документации ПО и определяются способы увеличения производительности.

Результатом фазы является готовая система, удовлетворяющая всем согласованным требованиям.

На этапе внедрения проводят обучение пользователей, организационные изменения и постепенный переход на новую систему. При этом параллельно с новой системой продолжается эксплуатация старой системы до полного внедрения новой.

Методология RAD не претендует на универсальность. Она хороша в первую очередь для относительно небольших проектов, разрабатываемых для конкретного заказчика, и неприменима для построения сложных расчетных программ, операционных систем или систем управления космическими кораблями, т. е. программ, требующих написания большого объема (сотни тысяч строк) уникального кода.

Принципы организации RAD

Главная идея RAD технологии состоит в том, чтобы как можно быстрее донести до заказчика результаты разработки, пусть и не в полном виде. Например, реализация только пользовательского интерфейса и предъявление его заказчику позволяет уже на ранней стадии разработки получить замечания по экранным и отчетным формам и внести необходимые коррективы. В этом случае значительно возрастает вероятность успеха проекта, то есть возникает уверенность в том, что конечный продукт будет делать именно то, что ожидает заказчик. Кроме того, не следует забывать и тот факт, что разница стоимости ошибки определения требований в начале проекта и в конце равна 1:200.

Основные принципы RAD можно сформулировать следующим образом:

    Обязательное использование инструментальных средств , автоматизирующих процесс разработки, и методик их использования. Тесное взаимодействие между разработчиками и заказчиком . Работа ведется немногочисленными хорошо управляемыми группами профессионалов. Типичный состав группы - руководитель, аналитик, два программиста, технический писатель. Если проект сложный, то для него может быть выделено несколько RAD-групп. Разработка базируется на моделях. Моделирование позволяет оценить проект и выполнить его декомпозицию на составные части, каждая из которых может разрабатываться отдельной RAD-группой. разработка подсистем несколькими; Итерационное прототипирование. Разработка системы и предъявление ее заказчику осуществляется в виде последовательности развиваемых прототипов. Любой из прототипов реализует определенную часть функциональности, требуемой от конечного продукта. При этом каждый последующий прототип включает всю функциональность, реализованную в предыдущем прототипе, с добавлением новой. Число прототипов определяется на основе учета разных параметров – размера проекта, анализа рисков, пожеланий заказчика и т. д. Традиционно для проектов ПО средней сложности разрабатываются три прототипа. Первый содержит весь пользовательский интерфейс с нулевой функциональностью. Он дает возможность собрать замечания заказчика и после их устранения утвердить у него экранные и отчетные формы. Второй прототип содержит реализованную на 70-80% функциональность системы, третий – полностью реализованную функциональность. Основаниями для очередной итерации являются: Замечания заказчика , который привлекается к оценке выходных результатов прототипа. Если замечания носят характер исправлений, они учитываются в следующем прототипе, если же изменяются требования, то выполняется переоценка проекта и корректируются сроки и стоимость проекта. Детализация. Выполняется программирование нереализованной части системы в соответствии с составленным планом. Анализ результатов программирования. Исправляются ошибки, повышается эффективность программного кода и т. д. RAD группа всегда работает только над одним прототипом , что обеспечивает единство целей, лучшую наблюдаемость и управляемость процессом разработки. Соответственно используемые инструментальные средства должны обеспечивать групповую разработку и конфигурационное управление проектом. Большие системы разбиваются на подсистемы. Если проект сложный, то для него может быть выделено несколько RAD групп. Каждая подсистема разрабатывается независимой группой. Ключ успеха – правильное разбиение системы на подсистемы. Команды должны использовать общие стандарты. Обязательно финальное тестирование полной системы.

Принципы RAD применяются не только при реализации, но и распространяются на все этапы жизненного цикла, в частности на этап обследования организации, построения требований, анализ и дизайн.

Гибкое проектирование и XP

Чтобы разрешить проблемы, стоящие перед разработчиками ПО, в феврале 2001 года инициативная группа из 17 методологов объединилась в альянс гибкой разработки программного обеспечения. Эта группа приняла манифест и на его основе сформулировала принципы которые являются критериями процесса гибкой разработки ПО.

Гибкое моделирование (Adile Modeling - AM) – это упорядочивающая, основанная на практическом опыте методология эффективного моделирования и документирования программных систем.

Четыре базовых положения манифеста.

1. Люди и контакты важнее процессов и средств.

2. Работающие программы важнее идеальной документации.

3. Сотрудничество с заказчиком важнее переговоров по условиям контракта.

4. Готовность к изменениям важнее соблюдения планов.

Принципы гибкой разработки ПО:

1. Мы придаем первоочередное значение удовлетворению заказчика, быстро и постоянно предоставляя нужное ему программное обеспечение.

2. Мы приветствуем изменения требований, даже на поздних этапах разработки. Гибкие процессы позволяют поддерживать изменения, обеспечивая заказчику конкурентное преимущество.

3. Новые версии работающего программного обеспечения поставляются часто, с регулярностью от нескольких недель до нескольких месяцев, причем более предпочтительны короткие временные периоды.

4. В ходе проекта бизнесмены и разработчики должны постоянно работать вместе.

5. Проекты строятся мотивированными индивидуалами. Создайте им условия, удовлетворяйте их требования и доверяйте им в том, что касается выполнения работы .

6. Наиболее производительный и эффективный способ передачи информации рабочей группе и внутри нее – это разговор лицом к лицу.

7. Работающее программное обеспечение – это основной показатель прогресса.

8. Гибкие процессы стимулируют устойчивую работу. Спонсоры, разработчики и пользователи должны быть в состоянии неограниченно долго поддерживать постоянный ритм работы.

9. Непрерывное внимание к техническому качеству и хорошему проектированию улучшает гибкость.

10. Простота – искусство минимизировать количество ненужной работы – исключительно важна.

11. Наилучшим образом архитектура, требования и проектирование формируются и выполняются самоорганизующимися командами.

12. Команда должна регулярно обсуждать, как повысить эффективность своей работы, после чего изменять и согласовывать рабочий процесс с результатами этих обсуждений.

t Going to Need It» - «Это вам не понадобится»). Оба они олицетворяют собой одну из практик ХР под названием Простой дизайн.

По принципу YAGNI вы не должны заниматься написанием кода сегодня, если он понадобится для того свойства программы, которое вы будете реализовывать только завтра. На первый взгляд в этом нет ничего сложного. Сложности начинаются, когда речь заходит о таких вещах, как программные каркасы для создания приложений, компоненты для повторного использования и гибкий дизайн. Надо сказать, что спроектировать их довольно сложно. Вы заранее добавляете к общей стоимости работ стоимость и такого проектирования и рассчитываете впоследствии вернуть эти деньги. При этом наличие заблаговременно встроенной в систему гибкости считается признаком хорошего проектирования.

Тем не менее ХР не советует заниматься созданием гибких компонентов и каркасов до того, как понадобится именно эта функциональность. Лучше, если эти структуры будут наращиваться по мере необходимости. Если сегодня мне нужен класс Money, который обрабатывает сложение, а не умножение, то сегодня я буду встраивать в этот класс только сложение. Даже если я абсолютно уверен, что умножение понадобится мне уже в следующей итерации, и я знаю, как очень просто и быстро это сделать сейчас, все равно я должен оставить это на следующую итерацию, когда в нем появится реальная необходимость.

Такое поведение оправдано с экономической точки зрения. Занимаясь работой, которая понадобится только завтра, я тем самым расходую силы и время, предназначенные для задач, которые должны были быть сделаны сегодня. План выпуска программы четко указывает, над чем мне нужно работать в настоящий момент. Если я отклоняюсь от него, чтобы поработать над тем, что понадобится в будущем, я нарушаю свое соглашение с заказчиком. Кроме того, появляется риск не успеть сделать все записанное в требованиях для текущей итерации. И даже в том случае, если такой опасности нет и у вас появилось свободное время , то решать, чем вам заняться, - прерогатива заказчика, который может попросить заняться вовсе не умножением.

Таким образом, возможные препятствия экономического характера осложняются еще и тем, что мы можем ошибаться. Даже если мы абсолютно уверены в том, как работает эта функция, мы все равно можем ошибиться, особенно если у нас еще нет подробных требований заказчика. А чем раньше мы используем в работе над проектом ошибочные решения, тем хуже. Приверженцы методологии ХР считают, что в такой ситуации гораздо легче принять неправильное решение.

Другая причина, по которой простой дизайн лучше сложного, - отказ от принципа «блуждающего огонька». Сложную конструкцию гораздо труднее понять, чем простую. Именно поэтому любая модификация системы делает ее все более сложной. Это опять-таки ведет к увеличению стоимости работ в период между тем временем, когда дизайн системы стал более сложным, и временем, когда это действительно стало необходимо. Такой стиль работы многим кажется абсурдным , и надо сказать, что они правы. Правы при одном условии - абсурд получится, если эту практику начать применять в обычном процессе разработки, а все остальные практики ХР игнорировать. Если же изменить существующий баланс между эволюционным и предварительным проектированием, то YAGNI становится очень полезным принципом (тогда и только тогда).

Подведем итог. Не стоит расходовать силы на то, чтобы внести в систему новую функциональность, если она не понадобится до следующей итерации. Даже если это практически ничего не стоит, вам не нужно это делать, так как это увеличит общую стоимость модификации. Однако для того, чтобы осознанно применять такой принцип на деле, вам нужно использовать ХР или другую подобную методологию, которая снижает стоимость изменений.

Простой дизайн . Итак, необходимо, чтобы программный код был максимально прост. В конце концов, кому нужно, чтобы код был сложный и запутанный? Осталось только понять, что мы разумеем под словом «простой».

В книге Extreme Programming Explained Кент приводит четыре критерия простой системы. Вот они в порядке убывания важности:

· Система успешно проходит все тесты;

· Код системы ясно раскрывает все изначальные замыслы;

· В ней отсутствует дублирование кода;

· Используется минимально возможное количество классов и методов.

Успешное тестирование системы - довольно простой критерий. Отсутствие дублирования кода тоже вполне четкое требование, хотя большинство разработчиков нужно учить, как этого достичь. Самое сложное скрывается в словах «раскрывает изначальные замыслы». Что это значит?

Основное достоинство программного кода в данном случае - его ясность. ХР всячески подчеркивает, что хороший код - это код, который можно легко прочесть. Скажите ХР-шнику, что он пишет «заумный код», и будьте уверены, что обругали этого человека. Но понимание замыслов программиста, написавшего код, зависит также и от опыта и ума того, кто этот код пытается прочесть. Однако отметим, что не стоит думать над вопросом, как сделать дизайн максимально простым.

В конце концов, позже вы сможете (и должны, и будете) заняться рефакторингом. В конце работы над проектом желание делать рефакторинг гораздо важнее, чем точное понимание того, какое решение является самым простым.

Рефакторинг и принцип YAGNI. Эта тема сравнительно недавно всплыла в списке рассылки, посвященном ХР, и, коль скоро мы заговорили о роли проектирования, нам стоит ее обсудить. Дело в том, что процесс рефакторинга требует времени, но не добавляет новой функциональности. С другой стороны, принцип YAGNI гласит, что надо проектировать только для текущей функциональности, а не для того, что понадобится в будущем. Не сталкиваемся ли мы здесь с противоречием?

Принцип YAGNI состоит в том, чтобы не делать систему более сложной, чем того требует реализация текущих задач. Это является частью практики «Простой дизайн». Рефакторинг же необходим для поддержания системы в максимально простом состоянии. Его нужно проводить сразу же, как только вы обнаружите, что можете что-либо упростить.

Простой дизайн одновременно задействует практики ХР и сам по себе является основополагающей практикой. Только при условии тестирования, непрерывной интеграции и рефакторинга можно говорить об эффективном использовании простого дизайна. Но в то же время простой дизайн абсолютно необходим для сглаживания кривой стоимости изменений. Любая излишне сложная конструкция затруднит внесение изменений в систему по всем направлениям, за исключением того из них, ради которого эта сложность в нее вносилась. Однако редко удается предсказать такое направление, поэтому лучше будет стремиться к простым решениям. И в то же время мало кому удается сделать все максимально просто с первого раза, так что вам придется заниматься рефакторингом, чтобы приблизиться к цели.

Наращивание архитектуры . Термин «архитектура» передает идею основных элементов системы, тех ее частей, которые трудно изменить. Они являются фундаментом, на котором можно построить все остальное. Какую роль играет архитектура в эволюционном проектировании? Критики ХР считают, что эта методология вообще не признает работы над архитектурой, что вся суть ХР - сразу садиться за написание кода и уповать на то, что рефакторинг решит все проблемы с проектированием. Они правы, и, может быть, в этом заключается некоторая слабость ХР Приверженцы ХР - Кент Бек (Kent Beck), Рон Джеффриз (Ron Jeffries) и Боб Мартин (Bob Martin) - прикладывают очень много сил, чтобы вообще избежать любого предварительного проектирования архитектуры. Не добавляйте в систему базу данных, пока она вам действительно не понадобилась. Работайте поначалу с файлами, а база данных появится в следующей итерации, в результате рефакторинга.

Однако рекомендуется все-таки начинать работу с приблизительной оценки архитектуры системы. Если вы видите большое количество данных и множество различных пользователей, смело включайте в архитектуру базу данных. Если вы должны работать со сложной бизнес-логикой, используйте модель предметной области. Однако не забывайте об уважении к богам YAGNI и в сомнительных случаях отдавайте предпочтение более простым решениям. Кроме того, всегда будьте готовы выбросить кусок архитектуры, если видите, что он не приносит ничего полезного.

UML и ХР. В идеале ХР полностью отрицает проектирование системы, в частности методами UML. Тем не менее программисты все же часто используют на начальном этапе диаграммы UML. На самом деле диаграммы очень полезны для понимая разрабатываемого продукта, но чтобы они сделали процесс более длительным и трудоемким, необходимо их использовать правильно.

Советы тем, кто хочет правильно использовать диаграммы.

Во-первых, пока рисуете диаграмму, не забывайте, для чего вы это делаете. Основное ее достоинство - коммуникация с людьми. Чтобы коммуникация была эффективной, нужно отображать на диаграмме только важные аспекты, не обращая внимания на все второстепенные. Такая избирательность - основа правильной работы с UML. Не надо отображать на диаграмме каждый класс - только самые важные. У классов не нужно задавать каждый атрибут или операцию - только самые важные. Не надо рисовать диаграммы последовательности для всех вариантов использования и сценариев - ну, и так далее. Самая распространенная проблема с использованием диаграмм - это то, что их пытаются сделать максимально всеобъемлющими. Однако самый лучший источник всеобъемлющей информации - это программный код, так как именно его легче всего синхронизировать с кодом. Для диаграммы же всеобъемлемость - враг удобопонятности.

Чаще всего диаграммы используются для того, чтобы проанализировать проектные решения еще до написания кода. Нередко при этом возникает чувство, что в ХР этого делать нельзя. Это совсем не так. Многие полагают, что перед разработкой сложной задачи стоит ненадолго собраться всей командой для ее предварительного проектирования. Тем не менее, когда проводите такие собрания, не забывайте, что:

они должны быть действительно недолгими;

не нужно обсуждать все подробности (только самое важное);

относитесь к полученному в результате проектному решению как к наброску, а не как к конечной версии, не подверженной изменениям.

Последний пункт стоит раскрыть подробнее. Когда вы занимаетесь предварительным проектированием, вы неизбежно обнаруживаете, что некоторые ваши решения неправильны. Причем обнаруживается это уже при кодировании. Разумеется, это не проблема, если вы после этого вносите соответствующие изменения. Проблемы начинаются тогда, когда вы полагаете, что с проектированием покончено, и не учитываете полученные сведения, сохраняя неверный дизайн. Изменения в дизайне вовсе необязательно подразумевают изменения в диаграммах. Абсолютно разумным будет просто-напросто выбросить диаграмму, после того, как она помогла вам найти нужное решение. Нарисовав диаграмму, вы решили стоявшую перед вами проблему, и этого совершенно достаточно. Диаграмма и не должна существовать как некий постоянный артефакт. Надо сказать, что лучшие UML-диаграммы такими артефактами как раз не являются. Кроме того, UML-диаграммы используются в качестве документации по проекту. Как правило, в своей обычной форме это модель, редактируемая с помощью некоторого CASE-инструмента. Идея здесь состоит в том, что ведение такой документации облегчает работу. На самом деле, чаще всего она вообще не нужна, поскольку:

нужно постоянно тратить массу времени, чтобы не дать диаграммам устареть, в противном случае они не будут соответствовать программному коду;

диаграммы находятся внутри сложного CASE-средства либо в толстенной папке, и никто туда не заглядывает.

Итак, если вы хотите иметь текущую документацию по проекту, учитывайте все вышеперечисленные проблемы:

используйте только те диаграммы, которые вы можете поддерживать без особых усилий;

помещайте диаграммы туда, где их все видят. Пусть остальные рисуют на ней ручкой все простые изменения, которые были внесены в изначальный вариант;

посмотрите, обращают ли ваши разработчики на диаграммы хоть какое-то внимание, и если нет, выбросите их.

И наконец, последний аспект использования UML для документации - передача проекта в другие руки (например, от одной группы разработчиков другой). Согласно методологии ХР создание документации - такая же задача, как и все остальные, а значит, ее приоритет должен быть определен заказчиком. В этой ситуации может пригодиться UML, разумеется, при условии избирательности диаграмм, которые создавались с целью облегчения коммуникации. Помните, что программный код - это основной репозиторий подробной информации, а диаграммы служат для обобщенного представления основных аспектов системы.

Проектирование в ХР требует от человека следующих качеств :

· постоянного желания сохранять программный код простым и понятным насколько это возможно;

· наличия навыков рефакторинга, так чтобы с уверенностью вносить в систему изменения, как только в этом возникнет необходимость;

· хорошего знания паттернов: рассматривать их не просто как готовые решения, а оценивать своевременность и использовать постепенно, от простого к сложному;

· умения объяснять при необходимости решения по конструированию системы (используя для этого программный код, диаграммы и, самое главное, личное общение).

Для того чтобы реализовать задачу, ответственный за нее программист прежде всего ищет себе партнера, поскольку окончательный код всегда пишется двумя людьми на одной машине. Если возникают вопросы о предмете или методах реализации, партнеры проводят короткую (15-минутную) встречу с заказчиком и/или программистами, осведомленными в вопросах кодирования задач, которые с наибольшей вероятностью будут связаны с кодом данной задачи в ходе реализации. По результатам этой встречи программисты составляют список тестовых примеров, которые необходимо прогнать до завершения реализации задачи. Из списка выбирается такой тест, в реализации которого программисты полностью уверены и с помощью которого они смогут лучше понять суть задачи. Пишется тестовая программа. Если она сразу нормально заработает, можно двигаться дальше. Однако, как правило, без проблем не обходится. В случае если тест не работает, возможна одна из следующих ситуаций:

· мы знаем простой способ заставить его работать, и мы действуем этим способом;

· мы знаем сложный и очень неприятный способ заставить его работать, но понимаем, как изменить архитектуру системы и добиться нормальной работы тестового примера без лишних усилий. Тогда мы решаемся на переработку системы;

· мы знаем сложный и неприятный способ заставить его работать и не видим никакой возможности переработать систему, поэтому мы идем этим сложным путем.

После того как тест заработал, мы, возможно, снова поймем, как усовершенствовать систему, что и сделаем. Вполне вероятно, что в ходе реализации тестового примера мы найдем другой тестовый пример, который также должен работать. Мы заносим новый тест в свой список и продолжаем разработку. Возможно, мы обнаружим, что масштабы перестройки системы выходят за рамки требований текущего теста, тогда зафиксируем и этот факт и двинемся дальше. В конце концов, наша цель - сконцентрироваться на деталях и успешно справиться с конкретной проблемой, но одновременно не потерять общего представления о системе, которое формируется в процессе интенсивной работы над кодами.

Контрольная

Информатика, кибернетика и программирование

CASE- технологии CASE-системами или CASE-технологиями называют реализованные в виде программных продуктов технологические системы, ориентированные на создание сложных программных систем и поддержку их полного жизненного цикла или его основных этапов...

CASE - технологии

CASE -системами или CASE -технологиями называют реализованные в виде программных продуктов технологические системы, ориентированные на создание сложных программных систем и поддержку их полного жизненного цикла или его основных этапов. В настоящее время CASE -технологии прочно вошли в практику программной индустрии. При этом они используются не только для производства ПП, но и как мощный инструмент решения исследовательских и проектных задач. Такие задачи включают структурный анализ предметной области, моделирование деловых предложений с целью решения задач оперативного и стратегического планирования и управления ресурсами - тех видов деятельности, на который в России в ближайшее время ожидается большой спрос.

CASE -технологии являются естественным продолжением эволюции всей отрасли разработки ПО. Традиционно выделяют 6 периодов, качественно отличающихся применяемой техникой и методами разработки ПО.

В качестве инструментальных средств в эти периоды использовались:

ассемблеры, дампы памяти, анализаторы;

компиляторы, интерпретаторы, трассировщики;

символические отладчики, пакеты программ;

систем анализа и управления исходными текстами;

CASE -средства анализа требований, проектирования спецификаций и структуры, редактирования интерфейсов(1-ая генерация CASE -1;

CASE -средства генерации исходных текстов и реализации интегрированного окружения поддержки полного ЖЦ разработки ПО (2-ая генерация CASE - II ).

Таким образом, CASE -средства являются результатом естественного эволюционного развития отрасли инструментальных (или технологических) средств. CASE -технологии начали развиваться с целью преодоления ограничений методологии структурного программирования. Эта методология, несмотря на формализацию в составлении программ, характеризуется все же сложностью понимания, большой трудоемкостью и стоимостью использования, трудностью внесения изменений в проектные спецификации. Однако заложенные в ней принципы позволили развивать эту методологию и повысить ее эффективность за счет автоматизации наиболее рутинных этапов. Напомню, что автоматизация рутинных работ возможна только в случае их формализации. Формализация в структурном программировании оказалась наиболее приемлемой для автоматизации.

CASE обладают следующими основными достоинствами:

  • улучшают качество создаваемого ПО за счет средств автоматического контроля, прежде всего, контроля проекта;
  • позволяют за короткое время создавать прототип будущей системы, что позволяет на ранних этапах оценить ожидаемый результат;
  • ускоряют процесс проектирования и разработки;
  • позволяют разработчику больше времени уделять творческой работе по созданию ПО, освобождая его от рутинной работы;
  • поддерживают развитие и сопровождение разработки (заметим, что этот аспект не затрагивался ни одной из рассмотренных нами технологий проектирования);
  • поддерживают технологии повторного использования компонент разработки).

При использовании CASE -технологий изменяются фазы жизненного цикла ПП как показано ниже:

При традиционной технологии: При CASE -технологии:

Анализ Прототипирование

Проектирование Проектирование спецификаций

Контроль проекта

Кодирование Кодогенерация

Тестирование Системное тестирование

Сопровождение Сопровождение

Необходимо отметить, что наиболее просто автоматизируемыми фазами в CASE -технологии оказались контроль проекта и кодогенерация, хотя все другие фазы ЖЦ также поддерживаются CASE -средствами. Кроме изменения содержания фаз, существенно изменилось распределение трудозатрат по фазам, как показано в табл.

Технология

Этапы разработки

Анализ

Проектирование

Кодирование

Тестирование

традиционная

CASE -1

CASE -11

В следующей таблице сравниваются цели и содержание этапов при традиционной разработке и с применением CASE -средств.

№ п/п

Традиционная разработка

CASE -технология

Основные усилия - на

кодирование и тестирование

Основные усилия - на анализ

и проектирование

‘Бумажные’ спецификации

Быстрое итеративное

прототипирование

Ручное кодирование

Автоматическая кодогенерация

Ручное документирование

Автоматическая генерация

документации

Тестирование кодов

Автоматический

Контроль проекта

Сопровождение кодов

Сопровождение специфи-

каций проектирования

Модель ЖЦ ПО определяет порядок выполнения этапов, а также критерии перехода от этапа к этапу.

Традиционная модель ЖЦ ПО строится по каскадному принципу (переход на следующий этап происходит после окончания работ по предыдущему этапу) или по поэтапному принципу с промежуточным контролем (с циклами обратной связи между этапами, что предполагает корректировки в процессе проектирования, но растягивает все этапы на весь период разработки).

CASE -технология базируется на спиральной модели ЖЦ ПП, суть которой в следующем. Делается упор на начальные этапы ЖЦ: анализ требований, проектирование спецификаций, предварительное и детальное проектирование. На этих этапах проверяется и обосновывается реализуемость технических решений путем создания прототипов. Все эти этапы выполняются на каждом витке спирали ЖЦ. Каждый виток спирали соответствует некоторому уровню детализации проекта Каждый следующий виток характеризуется более высокой степенью детализации создаваемого ПО. Каждый виток заканчивается тем, что уточняются цели и характеристики проекта и планируются работы следующего витка спирали. Тем самым реализуется нисходящий принцип проектирования.

Специалистами отмечаются следующие преимущества спиральной модели:

накопление и повторное использование программных средств, моделей и прототипов;

ориентация на развитие и модификацию ПО в процессе проектирования;

анализ риска и издержек в процессе проектирования.

Чем же принципиально CASE -технология отличается от традиционной?

Для ответа на этот вопрос несколько отвлечемся и вспомним, что нас интересует прежде всего, если мы встречаем предмет, который раньше никогда не видели? Смею утверждать, что это будут вопросы ‘Что оно делает?’ и ‘ Из чего оно состоит?’. Ответы на эти вопросы представляют собой функциональный и структурный аспект описания объекта. Исторически так сложилось, что при проектировании новых объектов структурный аспект отражается в виде схем (принципиальные электрические схемы, механические схемы, комбинированные схемы и т.п.). Так вот CASE -технологии иначе еще называют структурным системным анализом, что отражает тот факт, что и функционирование объекта (в рассматриваемом случае разрабатываемого ПО) отражается в различных схемах, таблицах, диаграммах, матрицах, картах и т.п. Можно смело утверждать, что девизом разработчиков CASE -технологий является фраза ‘одна картинка стоит тысячи слов’.

Некоторые из элементов CASE -технологий Вы будете изучать в последующих курсах.

Большинство CASE -технологий основано на парадигме методология/метод/нотация/ средство. Понятия методологии и метода мы с Вами уже давали.

Под нотацией понимаются правила формализованного описания структуры системы, элементов данных и других ее компонентов с помощью схем, диаграмм, формальных и естественных языков . Например, в качестве миниспецификаций некоторые CASE -технологии используют таблицы решений. Правила построения такой таблицы и представляют собой нотацию.

Средства - это инструментарий поддержки методов. Реализуются средства в ПО, которое создает среду разработчика ПО. Эти инструменты поддерживают работу пользователей-разработчиков при создании и редактировании проекта в интерактивном режиме, они выполняют проверки соответствия компонентов и кодируют на некотором языке программирования модули ПО (кодогенерация).

Следует отметить, что используемые в методологии структурного анализа средства весьма разнообразны, Наиболее часто и эффективно используются следующие:

DFD (Data Flow Diagrams ) - диаграммы потоков данных, совместно со словарями данных и спецификациями процессов или миниспецификациями;

ERD (Entity-Relationship Diagrams) - диаграммы ‘ сущность - связь ’;

STD (State Transition Diagrams ) - диаграммы переходов состояний.

Современные структурные методологии анализа и проектирования классифицируются по следующим признакам:

по отношению к школам - Software Engineering (SE) и Information Engineering (IE);

по порядку построения моделей - процедурно-ориентированные, ориентированные на данные и информационно-ориентированные;

по типу целевых систем - для систем реального времени и для информационных систем.

Основная особенность систем реального времени заключается в том, что они контролируют и контролируются внешними событиями: своевременное реагирование на эти события (отклик должен следовать не позднее регламентированного временного интервала) - основная и первоочередная функция таких систем. Другие отличия информационных систем от систем реального времени сведены в таблицу.

Информационные системы

Системы реального времени

Управляются данными

Управляются событиями

Сложные структуры данных

Простые структуры данных

Большой объем

Входных данных

Малое количество

Входных данных

Интенсивный ввод-вывод

Интенсивные вычисления

Машинная независимость

Машинная зависимость

Средствами поддержки перечисленных в таблице особенностей и различаются соответствующие структурные методологии.

SE является нисходящим подходом к проектированию функций разрабатываемого ПО. Применяется при разработке как информационных систем, так и систем реального времени. По сравнению с IE появилась раньше и более апробирована.

IE - более новая дисциплина. С одной стороны, она имеет более широкую область применения, поскольку является дисциплиной построения систем вообще, а не только систем ПО. Она включает этапы более высокого уровня (например, стратегическое планирование). С другой стороны, IE используется для проектирования информационных систем, а SE дополнительно еще и систем реального времени.

Во всех структурных методологиях используется одна и та же концепция: данные входят в систему, обрабатываются и выходят из системы (вход -обработка-выход). Отличаются технологии порядком построения модели ПО (как бы по разному решается вопрос: что раньше яйцо или курица?). Традиционный процедурно-ориентированный подход регламентирует первичность проектирования функциональных компонентов по отношению к проектированию структур данных: требования к данным раскрываются через функциональные требования. При подходе, ориентированном на данные, вход и выход являются наиболее важными - структуры данных определяются первыми, а процедурные компоненты являются производными от данных. Информационно-ориентированный подход, как часть IE -дисциплины, отличается от предыдущего подхода тем, что позволяет работать с неиерархическими структурами данных.

CASE -средства можно классифицировать по типам, отражающим функциональную ориентацию в технологическом процессе.

Анализ и проектирование . Средства данной группы применяют для создания спецификаций системы и ее проектирования, они поддерживают методологии SE и IE :

  • CASE - аналитик (Эйтекс);
  • POSE (Computer Systems Advisers);
  • Design/IDEF (Meta Software);
  • BPWin (Logic Works);
  • SELECT (Select Software Tools);
  • CASE/4/0 (micro TOOl GmbH)

и ряд других средств.

Проектирование баз данных и файлов . Средства данной группы обеспечивают логическое моделирование данных, автоматическое моделей данных в третью нормальную форму, автоматическую генерацию схем БД и описаний форматов файлов на уровне программного кода. К таким средствам относятся:

  • ERWin (Logic Works);
  • S-Designor (SPD);
  • Designtr/2000 (Oracle);
  • Sillverrun (Computer Systems Advisers)/

Программирование . Средства поддерживабют этапы программирования и тестирования, а также автоматическую кодогенерацию из спецификаций, получая полностью документированную выполняемую программу:

  • COBOL 2/Workbench (Mikro Focus);
  • DECASE (DEC);
  • NETRON/CAP (Netron);
  • APS (Sage Softwfre).

Эти средства включают генераторы кодов, анализаторы кодов, генераторы тестов, анализаторы покрытия тестами, отладчики и средства интегрирования с результатами выполнения предыдущих этапов (диаграммеры для анализа спецификаций, средства поддержки работы с депозитарием (хранилище описаний данных, потоков и т.п.)).

Сопровождение и реинжениринг . Сюда относят документаторы, анализаторы программ, средства реструктурирования:

  • Adpac CASE Tools (Adpac);
  • Scan/COBOL и SuperStructure (Computer Data Systems):
  • Inshtctor/Recoder (language Tecnologe).

Средства позволяют осуществлять поддержку всей системноц документации, включая коды, спецификации, наборы тестов, контролировать покрытие тестами для оценки полноты тестируемости, управлять функционированием смистемы.Особый интерес представляют средства обеспечения мобильности (в CASE они получили название: средства миграции), обеспечивающие перенос существующей системы в новое операционное или аппаратурное окружение.


А также другие работы, которые могут Вас заинтересовать

54957. Гуситское движение в Чехии 62.5 KB
Вооруженная борьба гуситов. Крестовые походы против гуситов. Вооружение и способы борьбы гуситов. Вооруженная борьба гуситов.
54958. Причины и социально-экономические последствия инфляции. Антиинфляционная политика государства 18.02 KB
Как свидетельствует опыт, остановить инфляцию с помощью одних организационных мер весьма трудно, если не сказать невозможно. Для этого необходима структурная реформа, направленная на преодоление возникших в экономике диспропорций.
54959. Пусть всегда будет солнце 62.5 KB
Вид урока Комбинированный Тип урока Комплексный урок Государственный социальный заказ Во исполнение Закона Российской Федерации Об образовании; Закона О развитии образования в городе Москве; Конвенции о правах ребенка;...
54960. ВЫРЕЗАНИЕ ИЗ БУМАГИ 69 KB
Цели: Обучающая: Способствовать формированию представления о таком виде декоративно прикладного искусства как вырезание из бумаги. Слайды 18 Сейчас вы можете назвать мне тему нашего урока ответы детей Правильно вырезание из бумаги слайд 9 Но давайте нашему уроку придумаем красивое название...
54961. Материки и океаны 65.5 KB
План урока Этапы урока Задачи этапов Деятельность учителя Деятельность учащихся Методы и приемы Формы работы Средства обучения Самоопределение в деятельности Настрой учащихся на работу активизация познавательных мотивов учащихся создание психологического комфорта в классе...
54962. 41.5 KB
Прыжки и их разновидности: на двух ногах на правой ноге на левой ноге 1мин 5 мин 3мин 2мин Обратить внимание на внешний вид занимающихся Плечи чуть наклонены вперед Темп движения быстрый руки согнуты ноги не соединять Руки на поясе...
54963. Национальный и религиозный состав населения России 60.1 KB
Цели: познакомить обучающихся с особенностями национального и религиозного состава населения России. Задачи: образовательные: изучить особенности национального и религиозного состава населения страны языковые семьи и группы; познакомить с национальным составом населения Республики Коми; развивающие: продолжить работу над развитием умения анализировать статистический материал работать с дополнительными источниками; воспитательные: воспитывать гражданственность...
54964. Разработки уроков по информатике 2.39 MB
Планконспект урока Презентация к уроку Дополнительный материал 2 2 Информация Теория Практика Понятие информации свойства информации единицы измерения объема информации. Планконспект урока Презентация к уроку Дополнительный материал 3 3 Кодирование информации в компьютере Теория Практика Кодирование и декодирование. Планконспект урока Презентация к уроку Дополнительный материал 4 4 Информационная деятельность человека Теория Практика Сбор обработка передача хранение поиск и защита информации. Планконспект урока Презентация к уроку...
54965. Алфавит 64.5 KB
Буквы значки как бойцы на парад в строгом порядке построены в ряд. Подумайте почему мы прописали именно эти две буквы Первая и последняя буквы алфавита С новой строки пишем соединения букв ал лф фа ав ви ит. С новой строки с маленькой буквы пишем слово алфавит. Беседа Алфавит или азбука это все буквы расположенные в определенном строгом порядке.


Загрузка...