sonyps4.ru

Сигналы и линейные системы. Преобразование детерминированного сигнала в линейных системах

Цифровая обработка сигналов

дипломная работа

1. Линейные системы

Сигнал - зависимость одной величины от другой (функция). Например, зависимость давления воздуха в точке от времени можно рассматривать как звуковой сигнал. Зависимость напряжения в проводнике от времени тоже может представлять звуковой сигнал. Зависимость яркости точки на плоскости от ее координат можно рассматривать как черно-белое изображение.

Будем пока для определенности рассматривать одномерные сигналы, зависящие от времени, и обозначать их x(t). Почти весь материал допускает обобщение и на многомерный случай.

Система - это некоторое преобразование сигнала. Система переводит входной сигнал x(t) в выходной сигнал y(t). Будем это обозначать так:

Обычно все рассматриваемые системы инвариантны к сдвигу, т.е. если x(t)>y(t), то x(t+T)>y(t+T). Это означает, что форма выходного сигнала зависит только от входного сигнала, а не зависит от времени начала подачи входного сигнала. Далее мы будем рассматривать только такие системы.

Очень большое количество реальных систем можно считать инвариантными к сдвигу. Например, микрофон, переводящий сигнал "плотность воздуха" в сиг-нал "напряжение в проводе", удовлетворяет этому свойству, если пренебречь изменением свойств микрофона со временем.

Линейная система - это система, в которой выполняется следующее свойство линейности: если x 1 (t)>y 1 (t) и x 1 (t)>y 1 (t), то б x 1 (t)+в x 2 (t)>б y 1 (t)+в y 2 (t). Здесь операции над сигналами следует понимать как операции над функциями от аргумента t.

Большое количество реальных систем по преобразованию сигналов можно считать линейными. Например, микрофон является линейной системой (с достаточной степенью точности), так как если в него будут говорить одновременно 2 человека с разной громкостью, то электрический сигнал на выходе будет взвешенной суммой сигналов (от каждого человека в отдельности) на входе, а коэффициенты будут означать громкость разговора первого и второго человека.

Свойства линейных систем:

1. Постоянный (константный) сигнал переводится любой линейной системой в постоянный сигнал.

2. При прохождении через линейную систему синусоида остается синусоидой. Могут измениться лишь ее амплитуда и фаза (сдвиг во времени).

Второе свойство особенно важно, т.к. оно указывает на важнейший метод ана-лиза линейных систем с помощью разложения входных и выходных сигналов на синусоиды (Фурье-анализ).

Что означает "прохождение синусоиды через линейную систему"? Это значит, что синусоида подается на вход системы бесконечно долго, т.е. от t =?? до t=+?. Если же синусоиду начали подавать лишь в некоторый конкретный момент времени (а до этого подавалось что-то другое, например, - 0), то после начала подачи синусоиды на вход мы можем получить синусоиду на выходе не сразу. Выходной сигнал постепенно начнет приобретать синусоидальную форму. Скорость "стремления к верной синусоиде" на выходе зависит от конкретной линейной системы.

Архитектура Softswitch

Одним из таких классов являются линейные блоковые коды. Линейными называются такие двоичные коды, в которых множество всех разрешенных блоков является линейным пространством относительно операции поразрядного сложения по модулю 2...

Моделирование усилителя НЧ

Линейные искажения обусловлены влиянием реактивных элементов усилителя - конденсаторов и катушек, сопротивление которых зависит от частоты. Эти искажения имеются и в линейном усилителе, например, при усилении очень слабых сигналов...

Обработка и фильтрация данных дистанционного зондирования

Важнейшей особенностью линейного оператора является то обстоятельство, что он не изменяет формы входного синусоидального сигнала s(t) = A cos (щt + ц), меняется только амплитуда A и фаза ц. Если же сигнал имеет несинусоидальную форму...

Обратная связь в усилителях

Операционный усилитель как линейное устройство, обеспечивающее минимальные искажения входного сигнала, редко используется без обратной связи. Это объясняется тем...

Общие свойства импульсных систем

Линейной называется импульсная система, в которой линейны все ее элементы по рис.1 - импульсный элемент (ИЭ) с модулятором (М), канал передачи (КП), непрерывная часть (НЧ). Нелинейной - система, у которой хотя бы один из элементов нелинеен...

Прибор с зарядовой связью

Широкое распространение получили две разновидности ФСИ на ПЗС: строчные (линейные), воспринимающие за один период интегрирования линию изображения, и матричные (плоскостные), в которые весь образ записывается сразу...

Радиотелеметрическая система с частотным разделением товаров

Сложение полезного сигнала с помехой в виде части сигналов соседних каналов приводит к его искажению (рисунок 6). Рисунок 6 Оценим влияние только одного (n-1) канала. Полагаем...

Разработка схемы системы стабилизации передатчика в системах атмосферной оптической передачи данных

Пьезоактюаторы такого типа наиболее широко используемые. В свою очередь они делятся на низковольтные и высоковольтные, корпусные и бескорпусные многослойные дискретные и многослойные монолитные и т.д...

Распространение радиоволн и антенно-фидерные устройства систем подвижной радиосвязи

Определить ширину главного лепестка нормированной амплитудной диаграммы направленности в - плоскости по уровню нулевого излучения и по уровню половинной мощности для линейного симметричного электрического вибратора с длиной плеча...

Сегнетоэлектрики, их свойства и применение

В сегнетоэлектрических преобразователях используются большие значения пьезоэлектрических коэффициентов вблизи температуры перехода...

Технический надзор и техническая документация по волоконно-оптической линии передачи

Для обеспечения надежной и высококачественной эксплуатации на вновь построенные ВОЛП должна составляться достаточно подробная исполнительная документация. Важность этого вопроса подтверждается тем...

Устройства передачи информации по сети электропитания

Данные пользователя, поступающие от DTE, уже являются цифровыми, представленными в униполярном или биполярном коде без возврата к нулю -- NRZ. При передаче данных на большие расстояния в коде NRZ возникают следующие проблемы...

Цифровая система передачи непрерывных сообщений

Условие задания. Двоичные слова с выхода АЦП преобразуются в линейные ФМШС. В качестве шумоподобных сигналов используются последовательности Уолша. База ШС - 32...

Цифровой согласованный обнаружитель сигналов

Подобный сигнал изображен на рисунке 2,а, а закон изменения частоты заполнения импульса - на рисунке 2,б. Рисунок 2 - ЛЧМ - импульс (а) и изменение частоты его заполнения(б)...

Электронные усилители

Качество усилителя определяется степенью искажений, вносимых усилителем при усилении входного сигнала. Под искажениями понимается изменение формы выходного сигнала по отношению к форме входного...

Для облегчения изучения многомерных систем необходимо ограничиться определенными классами операторов, обладающих общими свойствами. Линейные инвариантные к сдвигу дискретные системы (ЛИС-системы) - это наиболее часто изучаемый класс систем для обработки дискретных сигналов любой размерности. Эти системы отличаются простотой как при разработке, так и при анализе, но в то же время они обладают достаточными возможностями для решения многих практических задач. Поведение этих систем во многих случаях можно изучать безотносительно к конкретным характеристикам входного сигнала. Класс линейных инвариантных к сдвигу систем, безусловно, не является наиболее общим классом изучаемых систем, однако он может служить хорошей отправной точкой.

Ранее мы получили выражение (1.29) для выходной последовательности линейной системы при входном сигнале . Если система еще и инварианта к сдвигу, можно сделать дальнейшие упрощения. Импульсный отклик на произвольно расположенный входной импульс описывается выражением

Для частного случая имеем

Используя принцип инвариантности к сдвигу, описываемый равенством (1.30), получим

Импульсный отклик на произвольно расположенный входной импульс равен сдвинутому импульсному отклику на входной импульс, расположенный в начале координат. Введя обозначение , можно выразить выходную последовательность следующим образом:

. (1.36)

Это соотношение известно под названием двумерной дискретной свертки. В сущности здесь выполняется разложение входной последовательности на взвешенную сумму сдвинутых импульсов в соответствии с равенством (1.25). ЛИС-система преобразует каждый импульс в сдвинутую копию импульсного отклика . Суперпозиция этих взвешенных и сдвинутых импульсных откликов образует выходную последовательность, причем весовыми коэффициентами являются значения отсчетов входной последовательности . Равенство (1.36) записано в предположении, что ЛИС-система полностью характеризуется своим импульсным откликом .

Выполнив замену переменных и , равенство (1.36) можно записать в другой форме:

. (1.37)

Отсюда видно, что свертка - это коммутативная операция. Будем использовать двойную звездочку для обозначения двумерной свертки [одиночная звездочка будет обозначать одномерную свертку]. Тогда уравнения (1.36) и (1.37) примут вид

. (1.38)

С помощью векторных обозначений выходную последовательность -мерной ЛИС-системы можно представить как -мерную свертку выходной последовательности и импульсного отклика

. (1.39)

Двумерная свертка принципиально не отличается от ее одномерного аналога. Как и в одномерном случае, возможна следующая вычислительная интерпретация операции свертки. Будем рассматривать и как функции и . Чтобы из последовательности образовать последовательность , сначала выполняем отражение относительно обеих осей и , а затем сдвигаем последовательность так, чтобы отсчет попал в точку , как показано на рис. 1.11. Последовательность-произведение образована; для нахождения значения выходного отсчета складываем ненулевые значения отсчетов последовательности-произведения. При изменении значений и последовательность сдвигается по плоскости , давая другие последовательности-произведения и соответственно другие значения выходных отсчетов. Если используется другая возможная форма записи дискретной свертки [выражение (1.37)], в приведенном описании вычислений и меняются местами.

Рис. 1.11. a - последовательность ; б - последовательность при , .

Пример 1

Рассмотрим двумерную дискретную ЛИС-систему, выходной отсчет которой в точке характеризует вклад значений входных отсчетов, расположенных в точках ниже и левее точки . Грубо говоря, система представляет собой один из видов двумерного цифрового интегратора; ее импульсный отклик - это двумерная единичная ступенчатая последовательность , описанная в разд. 1.1.1.

В качестве входной последовательности выберем двумерную последовательность конечной протяженности, значения отсчетов которой равны 1 внутри прямоугольной области , и 0 вне ее.

Для вычисления значения выходного отсчета с помощью выражения (1.36) образуем последовательность-произведение . В зависимости от конкретного значения ненулевые области последовательностей и перекрываются в различной степени. Можно выделить пять случаев, представленных на рис. 1.12, где ненулевые области каждой последовательности заштрихованы, а нулевые отсчеты просто не показаны.

Рис. 1.12. Свертка квадратного импульса с двумерной ступенчатой последовательностью.

Ненулевые области каждой последовательности отмечены одной штриховкой; последовательность-произведение отлична от нуля лишь в областях с двойной штриховкой.

Случай 1. или . Из рис. 1.12 видно, что для таких значений последовательности и не перекрываются. Поэтому их произведение, как и значения таких отсчетов свертки, равны нулю.

Случай 2. , . Имеет место частичное перекрытие. Вклад ненулевых значений отсчетов в последовательность-произведение имеет вид

. (1.40)

Случай 3. , . Здесь можно написать

. (1.41)

Случай 4. , . По аналогии со случаем 3 имеем

. (1.42)

Случай 5. , . В этом последнем случае отраженная сдвинутая ступенчатая последовательность полностью перекрывает импульс . Тогда

. (1.43)

В итоге полная свертка имеет вид

. (1.44)

Ее графическое изображение приведено на рис. 1.13.

Рис. 1.13. Свертка двух последовательностей, рассмотренная в примере 1.

Можно заметить, что в рассмотренном примере и , и представляют собой разделимые последовательности, поэтому их свертка также разделима, поскольку мы можем написать

Это свойство обладает общностью: свертка двух разделимых последовательностей всегда разделима (упр. 1.9).. На рис. 1.14,в показано перекрытие для точки и равны 1 в своих опорных областях (рис. 1.14, а и б).

В этом разделе мы рассмотрели два относительно простых примера выполнения двумерной свертки. Читатель, несомненно, заметил, что эти вычисления требуют определенных усилий. К счастью, такого рода вычисления редко приходится выполнять вручную. Однако знакомство с основными операциями необходимо для написания соответствующих машинных программ и для интерпретации результатов. Действительно, невозможно правильно выполнить операцию двумерной свертки, не определив предварительно все случаи, требующие рассмотрения. Это всегда должно быть первым шагом при выполнении свертки.

Чтобы преобразовать входной сигнал в удобную для хранения, воспроизведения и управления форму, необходимо обосновать требования к параметрам систем преобразования сигнала. Для этого надо математически описать связь между сигналами на входе, выходе системы и параметрами системы.

В общем случае система преобразования сигнала является нелинейной: при вхождении в нее гармонического сигнала на выходе системы возникают гармоники других частот. Параметры нелинейной системы преобразования зависят от параметров входного сигнала. Общей теории нелинейности не существует . Одним из способов описать связь между входным E вх (t ) и выходным E вых (t ) сигналами и параметром K нелинейности системы преобразования является следующий:

(1.19)

где t и t 1 – аргументы в пространстве выходного и входного сигналов соответственно.

Нелинейность системы преобразования определяется видом функции K .

Чтобы упростить анализ процесса преобразований сигнала, используют допущение о линейности систем преобразований. Это допущение применимо к нелинейным системам, если сигнал имеет малую амплитуду гармоник, либо когда систему можно рассматривать как совокупность линейного и нелинейного звеньев. Примером такой нелинейной системы являются светочувствительные материалы (подробный анализ их преобразующих свойств будет сделан ниже).

Рассмотрим преобразование сигнала в линейных системах. Система называется линейной , если ее реакция на одновременное воздействие нескольких сигналов равна сумме реакций, вызываемых каждым сигналом, действующим отдельно , т. е. выполняется принцип суперпозиции :

где t , t 1 – аргументы в пространстве выходного и входного сигналов соответственно;

E 0 (t , t 1) – импульсная реакция системы.

Импульсной реакцией системы называется выходной сигнал, если на вход подан сигнал, описываемый дельта-функцией Дирака. Эту функцию δ(x ) определяют тремя условиями:

δ(t ) = 0 при t ≠ 0; (1.22)
(1.23)
δ(t ) = δ(–t ). (1.24)

Геометрически она совпадает с положительной частью вертикальной оси координат, т. е. имеет вид луча, выходящего вверх из начала координат. Физической реализацией дельта-функции Дирака в пространстве является точка с бесконечной яркостью, во времени – бесконечно короткий импульс бесконечно большой интенсивности, в спектральном пространстве – бесконечно сильное монохроматическое излучение.

Дельта-функция Дирака обладает следующими свойствами:

(1.25)
(1.26)

Если импульс происходит не на нулевом отсчете, а при значении аргумента t 1 , то такую "сдвинутую" на t 1 дельта-функцию можно описать как δ(t t 1).

Чтобы упростить выражение (1.21), связывающее выходной и входной сигналы линейной системы, принимают допущение о нечувствительности (инвариантности) линейной системы к сдвигу. Линейная система называется нечувствительной к сдвигу , если при сдвиге импульса импульсная реакция изменяет только свое положение, но не изменяет своей формы , т. е. удовлетворяет равенству:

E 0 (t , t 1) = E 0 (t t 1). (1.27)

Рис. 1.6. Нечувствительность импульсной реакции систем

или фильтров к сдвигу

Оптические системы, являясь линейными, чувствительны к сдвигу (не инвариантны): распределение, освещенность и размер "кружка" (в общем случае не являющегося кругом) рассеяния зависят от координаты в плоскости изображения. Как правило, в центре поля зрения диаметр "кружка" меньше, а максимальное значение импульсной реакции больше, чем по краям (рис.1.7).

Рис. 1.7. Чувствительность импульсной реакции к сдвигу

Для нечувствительных к сдвигу линейных систем выражение (1.21), связывающее входной и выходной сигналы, приобретает более простой вид:

Из определения свертки следует возможность представить выражение (1.28) в несколько ином виде:

что для рассматриваемых преобразований дает

(1.32)

Таким образом, зная сигнал на входе линейной и инвариантной к сдвигу системы, а также импульсную реакцию системы (отклик ее на единичный импульс), по формулам (1.28) и (1.30) можно математически определить сигнал на выходе системы, не реализуя физически саму систему.

К сожалению, из указанных выражений невозможно непосредственно найти одну из подынтегральных функций E вх (t ) или E 0 (t ) по второй и известному выходному сигналу.

Если линейная, нечувствительная к сдвигу система состоит из нескольких, последовательно пропускающих сигнал фильтрующих звеньев, то импульсная реакция системы представляет собой свертку импульсных реакций составляющих фильтров, что в сокращенном виде можно записать как

что соответствует сохранению неизменного значения постоянной составляющей сигнала при фильтрации (это станет очевидным при анализе фильтрации в частотной области).

Пример . Рассмотрим преобразование оптического сигнала при получении на светочувствительном материале миры с косинусоидальным распределением интенсивности. Мирой называется решетка или ее изображение, состоящие из группы полос определенной ширины. Распределение яркости в решетке обычно имеет прямоугольный или косинусоидальный характер. Миры необходимы для экспериментального изучения свойств фильтров оптических сигналов.

Схема устройства для записи косинусоидальной миры представлена на рис. 1.8.

Рис. 1.8. Схема устройства для получения миры
с косинусоидальным распределением интенсивности

Равномерно перемещающуюся со скоростью v фотопленку 1 освещают через щель 2 шириной A. Изменение освещенности во времени производится по косинусоидальному закону. Это достигается за счет прохождения светового пучка через осветительную систему 3 и два поляроидных фильтра 4 и 5. Поляроидный фильтр 4 равномерно вращается, фильтр 5 неподвижен. Вращение оси подвижного поляризатора относительно неподвижного обеспечивает косинусоидальное изменение интенсивности проходящего светового пучка. Уравнение изменения освещенности E (t ) в плоскости щели имеет вид:

Фильтрами в рассматриваемой системе являются щель и фотопленка. Так как подробный анализ свойств светочувствительных материалов будет приведен ниже, то проанализируем только фильтрующее действие щели 2. Импульсную реакцию E 0 (х ) щели 2 шириной A можно представить в виде:

(1.41)

то окончательный вид уравнения сигнала на выходе щели следующий:

Сравнение Е вых (x ) и Е вх (x ) показывает, что они отличаются лишь наличием множителя в переменной части. График функции типа sinc представлен на рис. 1.5. Она характеризуется осциллирующим с постоянным периодом убыванием от 1 до 0.

Следовательно, при увеличении значения аргумента этой функции, т. е. при росте произведения w 1 A и уменьшении v , амплитуда переменной составляющей сигнала на выходе падает.

Кроме того, эта амплитуда будет обращаться в нуль, когда

Это имеет место при

Где n = ±1, ±2…

В таком случае вместо миры на пленке получится равномерное почернение.

Изменения постоянной составляющей сигнала а 0 не произошло, т. к. импульсная реакция щели здесь являлась нормированной в соответствии с условием (1.37).

Таким образом, регулируя параметры записи миры v , A , w 1 , можно подобрать оптимальную для данного светочувствительного материала амплитуду переменной составляющей освещенности, равную произведению a sinc ((w 1 A )/(2v )), и предотвратить брак.



Загрузка...