sonyps4.ru

Схема работы калькулятора. Калькулятор из компьютера Lego

Математический-Калькулятор-Онлайн v.1.0

Калькулятор выполняет следующие операции: сложение, вычитание, умножение, деление, работа с десятичными, извлечение корня, возведение в степень, вычисление процентов и др. операции.


Решение:

Как работать с математическим калькулятором

Клавиша Обозначение Пояснение
5 цифры 0-9 Арабские цифры. Ввод натуральных целых чисел, нуля. Для получения отрицательного целого числа необходимо нажать клавишу +/-
. точка (запятая) Разделитель для обозначения десятичной дроби. При отсутствии цифры перед точкой (запятой) калькулятор автоматически подставит ноль перед точкой. Например: .5 - будет записано 0.5
+ знак плюс Сложение чисел (целые, десятичные дроби)
- знак минус Вычитание чисел (целые, десятичные дроби)
÷ знак деления Деление чисел (целые, десятичные дроби)
х знак умножения Умножение чисел (целые, десятичные дроби)
корень Извлечение корня из числа. При повторном нажатие на кнопку "корня" производится вычисление корня из результата. Например: корень из 16 = 4; корень из 4 = 2
x 2 возведение в квадрат Возведение числа в квадрат. При повторном нажатие на кнопку "возведение в квадрат" производится возведение в квадрат результата Например: квадрат 2 = 4; квадрат 4 = 16
1 / x дробь Вывод в десятичные дроби. В числителе 1, в знаменателе вводимое число
% процент Получение процента от числа. Для работы необходимо ввести: число из которого будет высчитываться процент, знак (плюс, минус, делить, умножить), сколько процентов в численном виде, кнопка "%"
( открытая скобка Открытая скобка для задания приоритета вычисления. Обязательно наличие закрытой скобки. Пример: (2+3)*2=10
) закрытая скобка Закрытая скобка для задания приоритета вычисления. Обязательно наличие открытой скобки
± плюс минус Меняет знак на противоположный
= равно Выводит результат решения. Также над калькулятором в поле "Решение" выводится промежуточные вычисления и результат.
удаление символа Удаляет последний символ
С сброс Кнопка сброса. Полностью сбрасывает калькулятор в положение "0"

Алгоритм работы онлайн-калькулятора на примерах

Сложение.

Сложение целых натуральных чисел { 5 + 7 = 12 }

Сложение целых натуральных и отрицательных чисел { 5 + (-2) = 3 }

Сложение десятичных дробных чисел { 0,3 + 5,2 = 5,5 }

Вычитание.

Вычитание целых натуральных чисел { 7 - 5 = 2 }

Вычитание целых натуральных и отрицательных чисел { 5 - (-2) = 7 }

Вычитание десятичных дробных чисел { 6,5 - 1,2 = 4,3 }

Умножение.

Произведение целых натуральных чисел { 3 * 7 = 21 }

Произведение целых натуральных и отрицательных чисел { 5 * (-3) = -15 }

Произведение десятичных дробных чисел { 0,5 * 0,6 = 0,3 }

Деление.

Деление целых натуральных чисел { 27 / 3 = 9 }

Деление целых натуральных и отрицательных чисел { 15 / (-3) = -5 }

Деление десятичных дробных чисел { 6,2 / 2 = 3,1 }

Извлечение корня из числа.

Извлечение корня из целого числа { корень(9) = 3 }

Извлечение корня из десятичных дробей { корень(2,5) = 1,58 }

Извлечение корня из суммы чисел { корень(56 + 25) = 9 }

Извлечение корня из разницы чисел { корень (32 – 7) = 5 }

Возведение числа в квадрат.

Возведение в квадрат целого числа { (3) 2 = 9 }

Возведение в квадрат десятичных дробей { (2,2) 2 = 4,84 }

Перевод в десятичные дроби.

Вычисление процентов от числа

Увеличить на 15% число 230 { 230 + 230 * 0,15 = 264,5 }

Уменьшить на 35% число 510 { 510 – 510 * 0,35 =331,5 }

18% от числа 140 это { 140 * 0,18 = 25,2 }

В современном мире, учебу школьника и студента, работу бухгалтера и инженера, невозможно представить без использования калькулятора. Наиболее востребованы в этом сегменте электронных устройств – калькуляторы, работающие на солнечных батареях.

Как работает

По своей конструкции, внешнему виду и количеству выполняемых операций, калькуляторы могут сильно различаться, но тем не менее, по принципу работы, они схожи.

Калькулятор, работающий на солнечной батарее, имеет в своем составе следующие элементы:

  1. Корпус – может быть выполнен из различного вида пластика или иного прочного и легкого материала, различной расцветки и дизайна.
  2. Клавиатура, оснащенная резиновыми кнопками, служащая для набора необходимых значений и требуемых функций.
  3. Электронная плата – являющаяся основой устройства, обеспечивающая выполнение необходимых операций.
  4. Дисплей жидкокристаллический – отражает выполнение операций.
  5. Солнечная батарея – служит источником энергии устройства, обеспечивающая его работу.

Аккумулятор – источник питания, обеспечивающий работу калькулятора, при недостаточном освещении (на приведенном ниже рисунке не указан).

Электронная плата – это основной элемент калькулятора, который может быть выполнен из различных комплектующих, что определяется количеством выполняемых операций и функций. Главной составной частью платы является микросхема. При нажатии на клавиши клавиатуры, происходит замыкание определенной электрической цепи, что вызывает прохождение электрического тока и как следствие, выполнение определенных действий. Жидкокристаллический дисплей отображает выполняемые действия и получаемый результат.

Для работы электрической схемы устройство оснащено солнечной батарей, принцип работы которой основан на преобразовании энергии солнечного или искусственного света в электрическую энергию путем создания разности потенциалов в фотоэлементах, являющихся основой этого элемента устройства.

Принцип работы фотоэлементов, изготавливаемых из двух слоев кремния, заключается в создании электрического поля между этими слоями, в результате воздействия света на них.
В верхний слой, обращенный в сторону источника света, добавляется фосфор, в нижний – бор. Когда свет попадает на фотоэлемент, внутри слоев происходит образование дополнительного количества отрицательно заряженных электронов – в верхнем слое, и «дырок» — в нижнем. Между слоями образуется электрическое поле и как следствие, разность потенциалов между ними. При подключении нагрузки (замыкание цепи), отрицательно заряженные частицы движутся в нижний слой, положительно заряженные – в верхний, в цепи протекает электрический ток, устройство работает.

Популярные модели

В настоящее время промышленностью выпускается большое количество различных калькуляторов, поэтому всегда есть возможность выбрать требуемую модель, в соответствии с предъявляемыми к ней требованиями, дизайну и габаритными размерами.

Вот некоторые из популярных моделей, и их характеристики:

  • Citizen SDC-640II – так называемый, бухгалтерский, настольный калькулятор. Изготовлен из пластика и оснащен ЖК дисплеем с 14-ю разрядами. Работает от солнечной батареи и имеет в своей конструкции обычную, плоскую батарейку.

  • Canon WS-1210T – настольный калькулятор, оснащенный 12-ти разрядным дисплеем и возможностью изменять его угол наклона по отношению к плоскости клавиатуры. Имеет в составе предусмотренных функций некоторые бухгалтерские операции (расчет наценки, налоговые операции и т. д.). При перегреве элементов питания, аппарат автоматически выключается. В качестве источника электрической энергии служит солнечная батарея и плоская батарейка.

  • Сенсорный прозрачный калькулятор – одна из новинок подобных устройств. Модель изготовлена из прозрачного пластика и оборудована сенсорными клавишами. Единственным источником энергии служит солнечная батарея. ЖК дисплей обладает 8-ю разрядами.

Еще одной из разновидностей калькуляторов, использующих в качестве источника питания энергию света, является «калькулятор кредитная карта».

Данный тип портативных устройств, по своей форме, напоминает кредитную карту и имеет очень малую толщину и габаритные размеры — 86 х 53 х 28 мм. Калькулятор практичен и удобен при эксплуатации, выполняет следующие функции: умножение, деление, сложение и вычитание.

Восьми разрядный ЖК дисплей, источник питания — солнечная батарея.

Средние цены

Стоимость калькулятора зависит от его назначения, мощности и количества функций, которые он способен выполнять, марки и бренда производителя, а также торговой сети, где он реализуется.

Для того, чтобы определить порядок цен, на данные устройства, ниже приведены цены на уже рассмотренные модели, это:

  1. Модель Citizen SDC-640II, в зависимости от торговой сети и региона продажи, стоимость составляет от 700,00 до 1100,00 рублей.
  2. Модель Canon WS-1210T, у различных продавцов, стоит от 600,00 до 1100,00 рублей.
  3. Сенсорный прозрачный калькулятор, в различных торговых сетях, стоит от 400,00 до 800,00 рублей.
  4. Калькулятор кредитная карта – стоит от 100,00 до 600,00 рублей.

Как зарядить

Электронные устройства, в том числе и калькуляторы, использующие в качестве источника энергии солнечную батарею, не требуют выполнения отдельной операции по зарядке элемента питания.
После включения в работу, подобные устройства готовы к работе и способны выполнять необходимые вычисления. Резервный источник питания, которым является плоская батарейка, служит для резервного электроснабжения устройств, в случае выхода из строя солнечной батареи или при условии работы без наличия источников света.

Что делать если не работает

Как любое электронное устройство, калькулятор также может выйти из строя и причин может быть несколько, это:

  • Поврежден ЖК дисплей – при подобной неисправности необходимо его заменить аналогичным;
  • Западают клавиши (кнопки) – корпус необходимо вскрыть и прочистить замыкаемые контакты;
  • Калькулятор не производит вычисления – вышла из строя микросхема, устройство подлежит утилизации, т.к. ремонт будет нерентабельным;
  • При выходе из строя плоской батарейки или солнечной панели – элементы питания заменяются на аналогичные.

Внешний вид картонного четырёхбитного калькулятора из картона. Хорошо видны полусумматор вверху и три сумматора в средней и нижней части калькулятора

Давным-давно, до изобретения электроники, люди изготавливали механические компьютеры из подручных материалов. Самым известным и сложным примером такой машины является антикитерский механизм - сложнейшее устройство из не менее чем 30 шестерёнок использовалось для расчёта движения небесных тел и позволяло узнать дату 42 астрономических событий.

В наше время механические компьютеры (калькуляторы) - скорее предмет развлечения гиков и повод устроить забавное шоу. Например, как компьютер из 10 000 костяшек домино , который складывает произвольные четырёхзначные бинарные числа и выдаёт пятизначную двухбитную сумму (математическая теория этого калькулятора и архитектура). Такие перфомансы позволяют детям лучше понять, как работают битовые логические операции в программировании, как устроены логические вентили. Да и вообще сделать маленький компьютер своими руками из подручных материалов очень интересно, тем более если вы делаете это вместе с ребёнком.



Логическая операция AND в компьютере из 10 000 костяшек домино

Для изготовления механического калькулятора отлично подходит конструктор Lego. На YouTube можно найти немало примеров таких калькуляторов .

Калькулятор из компьютера Lego

Вдохновлённый примером компьютера из домино и механических калькуляторов из конструктора Lego, программист C++ под ником lapinozz вместе со своими младшими сестричками решил соорудить в домашних условиях нечто подобное для школьного научного проекта одной из сестёр. Он задумал и реализовал полностью функциональный четырёхбитный калькулятор LOGIC (Logic cardbOard Gates Inpredictable Calculator) . Для изготовления этой вычислительной машины не требуется ничего кроме картона и клея, а работает она не на электричестве, а на шариках и земной гравитации. Калькулятор умеет складывать числа от 0 до 15 с максимальной суммой 30.

В отличие от костяшек доминов и кубиков Lego, в производстве этого калькулятора не использовались никакие фабричные компоненты. Все элементы калькулятора склеены из картона с нуля, что хорошо понятно по фотографиям устройства. В этом смысле данное устройство можно считать уникальным.

Цель проекта

Наглядное представление, как складывать бинарные числа. Обучение школьника навыкам перевода из десятичной в двоичную систему счисления и обратно. Изучение битовых логических операций и основных логических схем.

Внешний вид калькулятора

Как можно рассмотреть на фотографии калькулятора, в верхней части располагается зона для ввода данных. После прохождения всех логических операций шарики показывают результат операции внизу.

Ввод данных осуществляется шариками. Шарик есть - 1, шарика нет - 0. Бит справа - это наименьший бит числа. Перед началом работы некоторые части калькулятора следует привести в исходное положение. После указания исходных значений отодвигается полоска картона, которая удерживает шарики в исходном положении - и начинается процесс сложения.

Например, так выглядит исходное положение шариков для операции 7+5 (0111 + 0101).

Устройство калькулятора

Логические операции картонного калькулятора осуществляется схожим образом, как и в вышеупомянутом компьютере из домино .

Схематически логические вентили для всех логических операций показаны на схеме.

То есть логический вентиль «И» (AND) означает, что при поступлении 0 шариков на входе получается 0 на выходе. При поступлении 1 шарика на входе получается 0 на выходе. При поступлении 2 шариков на входе получается 1 на выходе.

1 на входе, 0 на выходе

2 на входе, 1 на выходе

Логический вентиль XOR сделать немного сложнее. В этом случае если поступает один шарик, он должен пройти. А если поступает два шарика, то они должны аннулировать друг друга, то есть на выходе будет 0. Автор показывает, как это делать, через вертикально висящий кусочек картона с узким горлышком. Если два шарика приходят одновременно, то они блокируют друг друга - и таким образом эффективно реализуют логическую операцию XOR.

Логический вентиль XOR

Чтобы оптимизировать систему и не городить массу логических вентилей AND и XOR, автор реализовал полусумматор - комбинационную логическую схему, имеющую два входа и два выхода. Полусумматор позволяет вычислять сумму A + B, при этом результатом будут два бита S и C, где S - это бит суммы по модулю 2, а C - бит переноса. В нашей картонной конструкции это означает, что если на входе у нас 1 шарик, то он попадает на выход C, а если на входе 2 шарика, то 1 шарик попадает на выход S, а второй никуда не попадает.

Программист придумал довольно простую и эффективную схему для полусумматора. В ней 1 шарик на входе спокойно продолжает свой путь, переворачивая барьер, и проходя в отверстие C. Но если поступают два шарика, то второй шарик уже не может пройти через барьер, перевёрнутый первым шариком - и проваливается в отверстие, прибивая новый путь S. Это и есть полусумматор.

Один шарик на входе полусумматора

Два шарика на входе полусумматора

Наконец, настоящим шедевром является сумматор. Обычно его делают из двух полусумматоров и логического вентиля «ИЛИ», но автор реализовал другую конструкцию, которая фактически является небольшой модификацией полусумматора.

Один шарик на входе - один шарик по пути 1

Два шарика на входе - один шарик по пути 2

Три шарика на входе - один шарик по пути 1, а другой по пути 2

Весь калькулятор целиком состоит из одного полусумматора и трёх сумматоров.

Калькулятор выдаёт корректный результат вычислений в случае, если шарики падают с правильной скоростью, не слишком быстро и не слишком медленно, и не отскакивают друг от друга. Сама логика безупречна, но на практике калькулятор иногда глючит.

Перечитывая хаб Старое железо , я наткнулся на обзор теплого лампового телефона , и вспомнил, что похожий аппарат где-то имеется и у меня. Сразу захотелось достать свой телефон, протереть спиртиком и водрузить на рабочий стол (тот, который из ДСП) в качестве действующего музейного экспоната. И заодно проверить, полностью ли местная АТС отказалась от импульсного набора номера.

Но так как телефон остался в другом городе, я отложил свои намерения на неопределенное время, и, конечно же, забыл про это. А на Рождество я волею судьбы наконец-таки оказался во славном городе Владимире, где как раз и лежит сей чудесный телефон. В процессе его поиска среди огромного количества старых вещей, был найден советский микрокалькулятор Электроника Б3-18А, который, несомненно, представляет гораздо больший интерес.

Изображение взято с обложки журнала «Наука и Жизнь» (№10, 1976 год)

О нем я и хотел бы поведать Хабрасообществу.

Микрокалькулятор Электроника Б3-18А - это модификация калькулятора Электроника Б3-18, выпускавшаяся с 1976 года, и принципиально ничем от Б3-18 не отличающаяся. Даже цена калькулятора Б3-18А была такой же, как и модели Б3-18, и составляла в 1976 году целых 220 рублей. Хотелось бы напомнить, что зарплата инженера без опыта работы в то время равнялась 120 р. в месяц, и данный калькулятор был по карману далеко не каждому.

Однако, следует заметить, что к концу 1980 года цена микрокалькулятора значительно снизилась, и мой экземпляр был приобретен всего за 95 рублей, о чем свидетельствует соответствующая запись в гарантийном талоне и товарный чек.

Чтобы сделать калькулятор дешевле и доступнее, была выпущена еще одна модификация, получившая название Б3-25А. Главным ее отличием от более дорогой модели являлось лишь отсутствие клавиши префиксной функции F, с помощью которой модель Б3-18А могла в два приёма возводить в любую степень в пределах восьми разрядов, вычислять обратные величины, вычислять логарифмы и антилогарифмы, тригонометрические функции.

Комплектация моего калькулятора Электроника Б3-18А оказалась следующей: сам аппарат, кожаный чехол, блок питания БП2-3, инструкция по эксплуатации и принципиальная электрическая схема. К сожалению, потерялась упаковочная тара (коробка) и паспорт блока питания, но это не удивительно, ведь с момента покупки микрокалькулятора прошло уже более тридцати лет.

Исходя из того, что микрокалькулятор Б3-18А ничем не отличается от модели Б3-18, некоторая часть материала для обзора на Хабре была найдена в статье “Фантастическая электроника” (автор - Р. Сворень), опубликованной в 10 номере журнала Наука и Жизнь за 1976 год. Но львиная доля информации по техническим характеристикам и принципе работы калькулятора оказалась, как не странно, в инструкции по эксплуатации калькулятора. А принципиальная электрическая схема, идущая в комплекте, настолько подробна, что не только позволяет легко отремонтировать вышедший из строя калькулятор, но и спаять свой собственный. Жалко, что к современной электронике такие схемы не прилагаются.

ОБЩИЕ СВЕДЕНИЯ

Микрокалькулятор «Электроника Б3-18А» предназначен для инженерных расчетов и позволяет выполнить четыре арифметические операции, а также возводить в квадрат и извлекать квадратный корень, в два приёма возводить в любую степень в пределах восьми разрядов, вычислять обратные величины, вычислять логарифмы и антилогарифмы, а также тригонометрические функции для любых действительных чисел.

Ввод данных и команд в микрокалькулятор производится с помощью клавиатуры. Контроль ввода исходных данных и результатов вычислений осуществляется визуально с помощью 9-разрядного вакуумного люминесцентного дисплея.
Характерной особенностью микрокалькулятора Электроника Б3-18А является наличие клавиши совмещенной функции («F») позволяющей использовать каждую клавишу для выполнения двух операций. Также, предусмотрена индикация знака числа и переполнения разрядной сетки микрокалькулятора.

Для хранения данных и накопления результатов в микрокалькуляторе имеется регистр памяти (РП), а для хранения промежуточных результатов вычислений - рабочий регистр (РР).
Микрокалькулятор может работать от встроенной батареи аккумуляторов Д-0,55С (4 шт.) или сетевого блока питания БП2-3. Подзарядка аккумуляторов осуществляется от блока питания.

Чтобы почувствовать, каким необыкновенным чудом научно-технического прогресса казался людям данный калькулятор в 1976 году, привожу цитату из статьи “Фантастическая электроника” журнала Наука и Жизнь:

Этот калькулятор перешел Рубикон арифметики, его математическое образование шагнуло в тригонометрию и алгебру. «Электроника БЗ-18» умеет мгновенно возводить в квадрат и извлекать квадратный корень, в два приема возводить в любую степень в пределах восьми разрядов, вычислять обратные величины, вычислять логарифмы и антилогарифмы (десятичные и натуральные), тригонометрические функции. Все это не обращение к памяти, не воспроизведение справочных данных. Так, например, для вычисления синуса калькулятор сам по своей внутренней программе производит десятки арифметических операций, пользуясь известным разложением в ряд Тейлора.


Изображение взято из журнала «Наука и Жизнь» (№10, 1976 год)

«Электроника БЗ-18» содержит примерно 10 тысяч транзисторов, 8 тысяч резисторов, 1 тысячу конденсаторов и 25 тысяч соединительных проводников. Для сравнения заметим, что в транзисторном приемнике около 100 элементов, в телевизоре - около тысячи. Все эти транзисторы, резисторы, конденсаторы и проводники разместились на тоненькой кремниевой пластинке размером 5 Х5,2 мм. Вдумайтесь - полсотни телевизоров в одной клеточке арифметической тетради. Фантастика! ”

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

  • Управляющая микросхема (процессор) - К145ИП7П;
  • Дисплей - вакуумный, люминесцентный, содержит 8 числовых разрядов (индикатор ИВ-21);
  • Клавиатура - 20 клавиш, 2 переключателя (питание и единицы измерения углов град/рад);
  • Питание - от аккумуляторов типа Д-0,55С (4 шт) или от внешнего блока питания БП2-3;
ВНУТРЕННЕЕ УСТРОЙСТВО

Для того, чтобы проникнуть внутрь микрокалькулятора Электроника БЗ-18А, необходимо открутить всего один винт. Мой калькулятор ни разу не вскрывался (даже для замены аккумуляторов), поэтому пришлось повредить заводскую пломбу в виде похожей на пластилин субстанции.

Открываем крышку, достаем четыре аккумуляторных элемента Д-0,55С.

Аккумуляторы
На фотографии аккумуляторы имеют вполне презентабельный вид, так как были предварительно очищены от окислов и вытекшего электролита. На плюсовом контакте аккумулятора можно разглядеть год выпуска и двух человечков, держащих в руках нечто похожее на звезду.

Да, вы не ошиблись, аккумуляторам уже более 30 лет.

Элементы Д-0,55С являются щелочными никель-кадмиевыми аккумуляторами, и у меня сразу возникло желание возродить их к жизни.

На просторах интернета был найден шаманский способ, который вроде как помог восстановить похожие аккумуляторы. Суть этого способа заключается в следующем: аккумуляторные элементы Д-0,55С кладутся на два дня в холодильник, затем варятся в воде из под крана 30 минут, сушатся и заряжаются сначала переменным, а затем постоянным током (ВНИМАНИЕ! Не пытайтесь повторять это дома).

Особой надежды на успех у меня не было, но я решил последовать совету шамана, и повторил указанную процедуру в домашних условиях. Правда, переменным током заряжать не стал. В итоге аккумуляторы стали гораздо чище, но после 12 часов зарядки (родным блоком питания, внутри калькулятора) работать так и не захотели. Не особо расстроившись, я продолжил чистку аккумуляторов от окислов с помощью ластика и чистящего средства для LCD мониторов. Вернув аккумуляторные элементы на свое законное место, я еще два дня игрался с калькулятором, питая его от сети, пока случайно не обнаружил, что…

Аккумуляторы стали набирать заряд. Поразительно!
Емкость аккумуляторов, естественно, снизилась, и, вместо положенных 3-х часов работы калькулятора от автономного источника питания, он работает всего минут сорок. Но все же…

Печатная плата

Печатная плата, на которой располагаются все электронные компоненты микрокалькулятора, фиксируется в корпусе с помощью четырех пластиковых штырьков. Для того, чтобы извлечь плату из корпуса, достаточно просто потянуть ее вверх.

Практически сразу бросается в глаза микросхема К145ИП7П и индикатор ИВ-21.

Конденсаторы, постоянные и переменные резисторы, несколько пар диодов и другие дискретные электронные компоненты занимают лишь малую часть общей площади печатной платы.

Корпусные элементы

Вынув печатную плату, можно увидеть два переключателя, зеленое стеклышко и разъем для подключения питания. Клавиатура неразборная, поэтому почистить контакты в случае их загрязнения и дребезга довольно сложно.

Теперь можно собрать микрокалькулятор, и положить на полочку в качестве действующего экспоната.



Загрузка...