sonyps4.ru

Перенос бд sql другой сервер. Перенос базы данных на другой SQL-сервер

Определение. Множество - это совокупность некоторых объектов, объединенных по какому-либо признаку.

Элементы, составляющие множество, обычно обозначаются малыми латинскими буквами, а само множество - большой латинской буквой. Знак ∈ используется для обозначения принадлежности элемента множеству. Запись a∈A означает, что элемент a принадлежит множеству A. Если некоторый объект x не является элементом множества A, пишут x∉A. Например, если A - это множество четных чисел, то 2∈A, а 1∉A. Множества A и B считаются равными (пишут A = B), если они состоят из одних и тех же элементов.

Если множество содержит конечное число элементов, его называют конечным; в противном случае множество называется бесконечным. Если множество A конечно, символом |A| будет обозначаться число его элементов. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом ∅. Очевидно, |∅|=0.

Пример . Пусть A - множество действительных решений квадратного уравнения x 2 + px + q = 0. Множество A конечно, |A|≤2. Если дискриминант D = p 2 -4q отрицателен, множество A пусто. Множество действительных решений квадратичного неравенства x 2 +px+q≤0 конечно, если D≤0, и бесконечно, если D>0.

Конечное множество может быть задано перечислением всех его элементов,

либо описываются их свойства. Если множество A состоит из элементов x, y, z, пишут A ={x, y, z,}. Например, A = {0, 2, 4, 6, 8} - множество четных десятичных цифр или - множество натуральных чисел, удовлетворяющих условию х + 2 = 1.

Введем используемое в дальнейшем понятие индексированного семейства множеств. Пусть I - некоторое множество, каждому элементу которого i сопоставлено однозначно определенное множество A i . Элементы множества I называют индексами, а совокупность множеств A i называют индексированным семейством множеств и обозначают через (A i) i ∈ I .

Говорят, что множество B является подмножеством множества A и пишут B⊂A, если всякий элемент множества B является элементом множества A. Например, множество натуральных чисел N является подмножеством множества целых чисел Z, а последнее в свою очередь является подмножеством множества рациональных чисел Q, то есть N⊂Z и Z⊂Q, или, короче, N⊂Z⊂Q. Легко видеть, что если B⊂A и A⊂B, то множества A и B состоят из одних и тех же элементов, и, значит, A=B, в противном случае . Наряду с обозначением B⊂A используется также A⊃B, имеющее тот же смысл.

Подмножества множества A, отличные от ∅ и A, называются собственными. Пустое множество и множество А называются несобственными подмножествами множества А. Совокупность всех подмножеств множества А называется его булеаном , или множеством-степенью , и обозначается через Р(А) или 2 А.


Пример . Пусть A = {a, b, c}. Тогда множество 2 A состоит из следующих элементов:

{∅}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}.

Если множество A конечно и содержит n элементов, то это множество имеет 2 n подмножеств, то есть |2 A |=2 | A | .

Все операции над множествами можно иллюстрировать с помощью диаграмм Эйлера-Венна. Если некоторое универсальное множество, содержащее как подмножества все другие множества, обозначить U и изобразить его в виде всей плоскости, то любое множество можно изобразить в виде части плоскости, т.е. в виде некоторой фигуры, лежащей на плоскости.

Объединением или суммой множеств А и В называют такое множество С, которое состоит из элементов множества А, или элементов множества В, или из элеметов обоих этих множеств, т.е. . Например, если A = {1, 2, 3} и B = {2, 3, 4}, то A∪B = {1, 2, 3, 4}.

Пересечением или произведением двух множеств А и В называется такое множество С, которое состоит из элементов, принадлежащих одновременно обоим множествам, т.е. . Например, если A = {1, 2, 3} и B = {2, 3, 4}, то A∩B = {2, 3}.

Разностью двух множеств А и В называется множество, состоящее из тех и только тех элементов, которые входят в А и одновременно не входят в В, т.е.

Например, если A = {1, 2, 3} и B ={2, 3, 4}, то A\B = {1}.

Если, в частности, А - подмножество U, то разность U \ A обозначается и называется дополнением множества А.

Симметрической разностью (кольцевой суммой) множеств А и В называется множество , т.е. . Например, если A ={1, 2, 3} и B = {2, 3, 4}, то AΔB = {1, 4}.

Законы алгебры множеств:

1. Коммутативный закон : .

2. Ассоциативный закон : .

3. Дистрибутивный закон :

4. Законы идемпотентности : , в частности

5. Законы поглощения :

6. Законы де Моргана (двойственности) :

7. Закон двойного дополнения :

8. Закон включения :

9. Закон равенства :

Пример 1. Проверим первый из законов де Моргана. Покажем сначала, что. Предположим, что . Тогда x∉A∩B, так что x не принадлежит хотя бы одному из множеств A и B. Таким образом, x∉A или x∉B, то есть или .

Это означает, что. Мы показали, что произвольный элемент множества является элементом множества. Следовательно, . Обратное включение доказывается аналогично. Достаточно повторить все шаги предыдущего рассуждения в обратном порядке.

Пример 2. Доказать включения

Решение. Легче всего это сделать по диаграмме Эйлера-Венна

Из любой пары элементов a и b (не обязательно различных) можно составить новый элемент - упорядоченную пару (a,b). Упорядоченные пары (a,b) и (c,d) считают равными и пишут (a,b) = (c,d), если a = c и b = d. В частности, (a,b) = (b,a) лишь в том случае, когда a=b. Элементы a и b называют координатами упорядоченной пары (a,b) .

Прямым (декартовым) произведением множеств A и B называется множество всех упорядоченных пар (a,b), где a∈A и b∈B. Прямое произведение множеств A и B обозначается через A×B. В соответствии с определением имеем

A×B = {(a,b)| a∈A, b∈B}. Произведение называется декартовым квадратом.

Пример 3. Даны множества А = {1; 2}; B = {2; 3}. Найти .

Решение.

Таким образом, декартово произведение не подчиняется коммутативному закону.

Пример 4. Пусть Из каких элементов состоят множества ?

Решение. Запишем множества А; В; С, перечислив их элементы:

А = {3; 4; 5; 6}; B = {2; 3}; C = {2}. Тогда Подобно парам, можно рассматривать упорядоченные тройки, четверки и, вообще, упорядоченные наборы элементов произвольной длины. Упорядоченный набор элементов длины n обозначается через (a 1 , a 2 , a n). Для таких наборов используется также название кортеж длины n. Допускаются в том числе и кортежи длины 1 - это просто одноэлементные множества. Кортежи (a 1 , a 2 , a n) и (b 1 , b 2 , b n) считаются равными, если a 1 = b 1 , a 2 = b 2 , a n = b n .

По аналогии с произведением двух множеств определим прямое произведение множеств A 1 , A 2 , A n как множество всех кортежей (a 1 , a 2 , a n) таких, что a 1 ∈A 1 , a 2 ∈A 2 , a n ∈A n . Обозначается прямое произведение через A 1 × A 2 × A n .

Понятие прямого произведения может быть обобщено на случай произвольного семейства множеств (A i) i ∈ I . Назовем I-кортежем набор элементов (A i) i ∈ I такой, что a i ∈A i для каждого i∈I. Прямое произведение семейства множеств (A i) i ∈ I - это множество, состоящее из всех I-кортежей. Для обозначения этого множества используется символ Π i ∈ I A i и его разновидности, подобные тем, которые применяются для обозначения пересечения и объединения семейства множеств.

В случае, когда множество A умножается само на себя, произведение называют (декартовой) степенью и используют экспоненциальные обозначения. Так, в соответствии с определением A × A = A 2 , A × A × A = A 3 и т. д. Считается, что A 1 = A и A 0 = ∅.

Непосредственно из определений следует справедливость следующих соотношений (A∪B) × C = (A × C) ∪ (B × C);

(A∩B) × C = (A × C) ∩ (B × C);

(A\B) × C = (A × C)\(B × C).

1. Судоплатов С.В., Овчинникова Е.В. Элементы дискретной математики. М.:ИНФРА-М, Новосибирск, 2002.

2. Асеев Г.Г., Абрамов О.М., Ситников Д.Э. Дискретная математика. Харьков, «Торсинг», 2003.

3. Нефедов В.Н., Осипова В.А. Курс дискретной математики. М.:Наука, 1973.

4. Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов. М.:ФИЗМАТЛИТ, 2001.

Множество — это набор каких-либо объектов, которые называются элементами этого множества.

Например: множество школьников, множество машин, множество чисел .

В математике множество рассматривается намного шире. Мы не будем сильно углубляться в эту тему, поскольку она относится к высшей математике и на первых порах может создавать трудности для обучения. Мы рассмотрим только ту часть темы, с которой уже имели дело.

Содержание урока

Обозначения

Множество чаще всего обозначают заглавными буквами латинского алфавита, а его элементы - строчными. При этом элементы заключаются в фигурные скобки.

Например, если наших друзей зовут Том, Джон и Лео , то мы можем задать множество друзей, элементами которого будут Том, Джон и Лео.

Обозначим множество наших друзей через заглавную латинскую букву F (friends ), затем поставим знак равенства и в фигурных скобках перечислим наших друзей:

F = { Том, Джон, Лео }

Пример 2 . Запишем множество делителей числа 6.

Обозначим через любую заглавную латинскую букву данное множество, например, через букву D

затем поставим знак равенства и в фигурных скобках перечислим элементы данного множества, то есть перечислим делители числа 6

D = { 1, 2, 3, 6 }

Если какой-то элемент принадлежит заданному множеству, то эта принадлежность указывается с помощью знака принадлежности ∈ . К примеру, делитель 2 принадлежит множеству делителей числа 6 (множеству D ). Записывается это так:

Читается как: «2 принадлежит множеству делителей числа 6»

Если какой-то элемент не принадлежит заданному множеству, то эта не принадлежность указывается с помощью зачёркнутого знака принадлежности ∉. К примеру, делитель 5 не принадлежит множеству D . Записывается это так:

Читается как: «5 не принадлежит множеству делителей числа 6″

Кроме того, множество можно записывать прямым перечислением элементов, без заглавных букв. Это может быть удобным, если множество состоит из небольшого количества элементов. Например, зададим множество из одного элемента. Пусть этим элементом будет наш друг Том :

{ Том }

Зададим множество, которое состоит из одного числа 2

{ 2 }

Зададим множество, которое состоит из двух чисел: 2 и 5

{ 2, 5 }

Множество натуральных чисел

Это первое множество с которым мы начали работать. Натуральными числами называют числа 1, 2, 3 и т.д.

Натуральные числа появились из-за потребности людей сосчитать те иные объекты. Например, посчитать количество кур, коров, лошадей. Натуральные числа возникают естественным образом при счёте.

В прошлых уроках, когда мы употребляли слово «число» , чаще всего подразумевалось именно натуральное число.

В математике множество натуральных чисел обозначается заглавной латинской буквой N .

Например, укажем, что число 1 принадлежит множеству натуральных чисел. Для этого записываем число 1, затем с помощью знака принадлежности ∈ указываем, что единица принадлежит множеству N

1 ∈ N

Читается как: «единица принадлежит множеству натуральных чисел»

Множество целых чисел

Множество целых чисел включает в себя все положительные и , а также число 0.

Множество целых чисел обозначается заглавной латинской буквой Z .

Укажем, к примеру, что число −5 принадлежит множеству целых чисел:

−5 ∈ Z

Укажем, что 10 принадлежит множеству целых чисел:

10 ∈ Z

Укажем, что 0 принадлежит множеству целых чисел:

В будущем все положительные и отрицательные числа мы будем называть одним словосочетанием — целые числа .

Множество рациональных чисел

Рациональные числа, это те самые обыкновенные дроби, которые мы изучаем по сей день.

Рациональное число — это число, которое может быть представлено в виде дроби , где a — числитель дроби, b — знаменатель.

В роли числителя и знаменателя могут быть любые числа, в том числе и целые (за исключением нуля, поскольку на нуль делить нельзя).

Например, представим, что вместо a стоит число 10, а вместо b — число 2

10 разделить на 2 равно 5. Видим, что число 5 может быть представлено в виде дроби , а значит число 5 входит во множество рациональных чисел.

Легко заметить, что число 5 также относится и ко множеству целых чисел. Стало быть множество целых чисел входит во множество рациональных чисел. А значит, во множество рациональных чисел входят не только обыкновенные дроби, но и целые числа вида −2, −1, 0, 1, 2.

Теперь представим, что вместо a стоит число 12, а вместо b — число 5.

12 разделить на 5 равно 2,4. Видим, что десятичная дробь 2,4 может быть представлена в виде дроби , а значит она входит во множество рациональных чисел. Отсюда делаем вывод, что во множество рациональных чисел входят не только обыкновенные дроби и целые числа, но и десятичные дроби.

Мы вычислили дробь и получили ответ 2,4. Но мы могли бы выделить в этой дроби целую часть:

При выделении целой части в дроби , получается смешанное число . Видим, что смешанное число тоже может быть представлено в виде дроби . Значит во множество рациональных чисел входят и смешанные числа.

В итоге мы приходим к выводу, что множество рациональных чисел содержат в себе:

  • целые числа
  • обыкновенные дроби
  • десятичные дроби
  • смешанные числа

Множество рациональных чисел обозначается заглавной латинской буквой Q .

Например укажем, что дробь принадлежит множеству рациональных чисел. Для этого записываем саму дробь , затем с помощью знака принадлежности ∈ указываем, что дробь принадлежит множеству рациональных чисел:

Q

Укажем, что десятичная дробь 4,5 принадлежит множеству рациональных чисел:

4,5 ∈ Q

Укажем, что смешанное число принадлежит множеству рациональных чисел:

Q

Вводный урок по множествам завершён. В будущем мы рассмотрим множества намного лучше, а пока рассмотренного в данном уроке будет достаточно.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках



Загрузка...