sonyps4.ru

Реляционная алгебра, операции реляционной алгебры. Операция декартова произведения

^

Лекция № 4. Реляционная алгебра. Унарные операции

Реляционная алгебра, как нетрудно догадаться, – это особая разновидность алгебры, в которой все операции производятся над реляционными моделями данных, т. е. над отношениями.

В табличных терминах отношение включает в себя строки, столбцы и строку – заголовок столбцов. Поэтому естественными унарными операциями являются операции выбора определенных строк или столбцов, а также смены заголовков столбцов – переименования атрибутов.

^

1. Унарная операция выборки

Первой унарной операцией, которую мы рассмотрим, является операция выборки – операция выбора строк из таблицы, представляющей отношение, по какому

либо принципу, т. е. выбор строк

кортежей, удовлетворяющих определенному условию или условиям.

^ Оператор выборки обозначается σ <P >, условие выборки P <S >, т. е., оператор σ берется всегда определенным условием на кортежи P , а само условие P записывается зависящим от схемы отношения S . С учетом всего этого сама операция выборки над схемой отношения S применительно к отношению r

σ <P >r (S ) σ <P >r = {t (S ) |t r & P <S >t } = {t (S ) |t r & IfNull (P <S >t , False };

Результатом этой операции будет новое отношение с той же схемой отношения S , состоящее из тех кортежей t (S ) исходного отношения

операнда, которые удовлетворяют условию выборки Pt . Понятно, что для того, чтобы применить какое

то условие к кортежу, необходимо подставить значения атрибутов кортежа вместо имен атрибутов.

Чтобы лучше понять принцип работы этой операции, приведем пример. Пусть дана следующая схема отношения:

^ S : Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка).

Условие выборки возьмем такое:

P <S > = (Предмет = ‘Информатика’ and Оценка > 3).

Нам необходимо из исходного отношения

операнда выделить те кортежи, в которых содержится информация о студентах, сдавших предмет «Информатика» не ниже, чем на три балла.

Пусть также дан следующий кортеж из этого отношения:

t 0 (S ) ∈ r (S

Применяем наше условие выборки к кортежу t 0 , получаем:

Pt 0 = (‘Базы данных’ = ‘Информатика’ and 5 > 3);

На данном конкретном кортеже условие выборки не выполняется.

А вообще результатом этой конкретной выборки

σ <Предмет = "Информатика" and Оценка > 3 > Сессия

будет таблица «Сессия», в которой оставлены строки, удовлетворяющие условию выборки.

^

2. Унарная операция проекции

Еще одна стандартная унарная операция, которую мы изучим, – это операция проекции. Операция проекции – это операция выбора столбцов из таблицы, представляющей отношение, по какому

либо признаку. А именно машина выбирает те атрибуты (т. е. буквально те столбцы) исходного отношения

операнда, которые были указаны в проекции.

^ Оператор проекции обозначается [S" ] или π . Здесь S" – подсхема исходной схемы отношения S , т. е. ее некоторые столбцы. Что это означает? Это означает, что у S’ атрибутов меньше, чем у S , потому что в S" остались только те из них, для которых выполнилось условие проекции. А в таблице, представляющей отношение r (S" ), строк столько же, сколько их у таблицы r (S ), а столбцов – меньше, так как остались только соответствующие оставшимся атрибутам. Таким образом, оператор проекции π< S"> применительно к отношению r (S ) дает в результате новое отношение с другой схемой отношения r (S" ), состоящее из проекций t (S ) [S" ] кортежей исходного отношения. Как определяются эти проекции кортежей? Проекция любого кортежа t (S ) исходного отношения r (S ) на подсхему S" определяется следующей формулой:

t (S ) [S’ ] = {t (a )|a def (t ) ∩ S ’}, S " ⊆S .

Важно заметить, что дубликаты кортежей из результата исключаются, т. е. в таблице, представляющей новое, результирующее отношение повторяющихся строк не будет.

С учетом всего вышесказанного, операция проекции в терминах систем управления базами данных будет выглядеть следующим образом:

π <S" >r (S ) ≡ π <S’ >r r (S ) [S ’] ≡ r [S" ] = {t (S ) [S’ ] | t r };

Рассмотрим пример, иллюстрирующий принцип работы операции выборки.

Пусть дано отношение «Сессия» и схема этого отношения:

S : Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка);

Нас будут интересовать только два атрибута из этой схемы, а именно «№ зачетной книжки» и «Фамилия» студента, поэтому подсхема S" будет выглядеть следующим образом:

^ S" : (№ зачетной книжки, Фамилия).

Нужно исходное отношение r (S ) спроецировать на подсхему S" .

t 0 (S ) ∈ r (S ): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};

Значит, проекция этого кортежа на данную подсхему ^ S" будет выглядеть следующим образом:

t 0 (S ) S" : {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’)};

Если говорить об операции проекции в терминах таблиц, то проекция Сессия [№ зачетной книжки, Фамилия] исходного отношения – это таблица Сессия, из которой вычеркнуты все столбцы, кроме двух: № зачетной книжки и Фамилия. Кроме того, все дублирующиеся строки также удалены.

^

3. Унарная операция переименования

И последняя унарная операция, которую мы рассмотрим, – это операция переименования атрибутов . Если говорить об отношении как о таблице, то операция переименования нужна для того, чтобы поменять названия всех или некоторых столбцов.

^ Оператор переименования выглядит следующим образом: ρ<φ >, здесь φ – функция переименования .

Эта функция устанавливает взаимно

однозначное соответствие между именами атрибутов схем S и Ŝ, где соответственно S – схема исходного отношения, а Ŝ схема отношения с переименованными атрибутами. Таким образом, оператор ρ <φ> в применении к отношению r (S ) дает новое отношение со схемой Ŝ , состоящее из кортежей исходного отношения только с переименованными атрибутами.

Запишем операцию переименования атрибутов в терминах систем управления базами данных:

ρ <φ > r (S ) ≡ ρ <φ >r = {ρ <φ > t (S )| t r };

Приведем пример использования этой операции:

Рассмотрим уже знакомое нам отношение Сессия, со схемой:

S: Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка);

Введем новую схему отношения Ŝ, с другими именами атрибутов, которые мы бы хотели видеть вместо имеющихся:

Ŝ : (№ ЗК, Фамилия, Предмет, Балл);

Например, заказчик базы данных захотел в вашем готовом отношении видеть другие названия. Чтобы воплотить в жизнь этот заказ, необходимо спроектировать следующую функцию переименования:

φ : (№ зачетной книжки, Фамилия, Предмет, Оценка) → (№ ЗК, Фамилия, Предмет, Балл);

Фактически, требуется поменять имя только у двух атрибутов, поэтому законно будет записать следующую функцию переименования вместо имеющейся:

φ : (№ зачетной книжки, Оценка) (№ ЗК, Балл);

t 0 (S ) r (S ): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};

Применим оператор переименования к этому кортежу:

ρ<φ> t 0 (S ): {(№ ЗК: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Балл: 5)};

Итак, это один из кортежей нашего отношения, у которого переименовали атрибуты.

В табличных терминах отношение

ρ < № зачетной книжки, Оценка «№ ЗК, Балл > Сессия –

это новая таблица, полученная из таблицы отношения «Сессия», переименованием указанных атрибутов.

^

4. Свойства унарных операций

У унарных операций, как и у любых других, есть определенные свойства. Рассмотрим наиболее важные из них.

Первым свойством унарных операций выборки, проекции и переименования является свойство, характеризующее соотношение мощностей отношений. (Напомним, что мощность – это количество кортежей в том или ином отношении.) Понятно, что здесь рассматривается соответственно отношение исходное и отношение, полученное в результате применения той или иной операции.

Заметим, что все свойства унарных операций следуют непосредственно из их определений, поэтому их можно легко объяснить и даже при желании вывести самостоятельно.

1) соотношение мощностей:

а) для операции выборки: | σ <P >r |≤ |r |;

б) для операции проекции: | r [S" ] | ≤ |r |;

в) для операции переименования: | ρ <φ >r | = |r |;

Итого, мы видим, что для двух операторов, а именно для оператора выборки и оператора проекции, мощность исходных отношений – операндов больше, чем мощность отношений, получаемых из исходных применением соответствующих операций. Это происходит потому, что при выборе, сопутствующему действию этих двух операций выборки и проекции, происходит исключение некоторых строк или столбцов, не удовлетворивших условиям выбора. В том случае, когда условиям удовлетворяют все строки или столбцы, уменьшения мощности (т. е. количества кортежей) не происходит, поэтому в формулах неравенство нестрогое.

В случае же операции переименования, мощность отношения не изменяется, за счет того, что при смене имен никакие кортежи из отношения не исключаются;

2) свойство идемпотентности:

а) для операции выборки: σ <P > σ <P >r = σ <P >;

б) для операции проекции: r [S’ ] [S’ ] = r [S" ];

в) для операции переименования в общем случае свойство идемпотентности неприменимо.

Это свойство означает, что двойное последовательное применение одного и того же оператора к какому

либо отношению равносильно его однократному применению.

Для операции переименования атрибутов отношения, вообще говоря, это свойство может быть применено, но обязательно со специальными оговорками и условиями.

Свойство идемпотентности очень часто используется для упрощения вида выражения и приведения его к более экономичному, актуальному виду.

И последнее свойство, которое мы рассмотрим, – это свойство монотонности. Интересно заметить, что при любых условиях все три оператора монотонны;

3) свойство монотонности:

а) для операции выборки: r 1 r 2 ⇒ σ <P > r 1 σ <P >r 2 ;

б) для операции проекции: r 1 r 2 r 1 [S" ] r 2 [S" ];

в) для операции переименования: r 1 r 2 ρ <φ >r 1 ⊆ ρ <φ >r 2 ;

Понятие монотонности в реляционной алгебре аналогично этому же понятию из алгебры обычной, общей. Поясним: если изначально отношения r 1 и r 2 были связаны между собой таким образом, что r r 2 , то и после применения любого их трех операторов выборки, проекции или переименования это соотношение сохранится.

Связь между записью-владельцем и записью-членом также имеет вид 1:N.

Основное различие этих моделей состоит в том, что в сетевой модели запись может быть членом более чем одного группового отношения. Согласно этой модели каждое групповое отношение именуется и проводится различие между его типом и экземпляром. Тип группового отношения задается его именем и определяет свойства общие для всех экземпляров данного типа. Экземпляр группового отношения представляется записью-владельцем и множеством (возможно пустым) подчиненных записей. При этом имеется следующее ограничение: экземпляр записи не может быть членом двух экземпляров групповых отношений одного типа (т.е. сотрудник из примера в п..1, например, не может работать в двух отделах).

  • деревья (a) и (b), показанные на рис. 4.2 , заменяются одной сетевой структурой, в которой запись СОТРУДНИК входит в два групповых отношения;
  • для отображения типа M:N вводится запись СОТРУДНИК_КОНТРАКТ, которая не имеет полей и служит только для связи записей КОНТРАКТ и СОТРУДНИК, (см. рис. 4.3). Отметим, что в этой записи может храниться и полезная информация, например, доля данного сотрудника в общем вознаграждении по данному контракту.


Рис. 4.3.

Каждый экземпляр группового отношения характеризуется следующими признаками:

Способ упорядочения подчиненных записей:

  • произвольный,
  • хронологический /очередь/,
  • обратный хронологический /стек/,
  • сортированный.

Если запись объявлена подчиненной в нескольких групповых отношениях, то в каждом из них может быть назначен свой способ упорядочивания.

Режим включения подчиненных записей:

  • автоматический - невозможно занести в БД запись без того, чтобы она была сразу же закреплена за неким владельцем;
  • ручной - позволяет запомнить в БД подчиненную запись и не включать ее немедленно в экземпляр группового отношения. Эта операция позже инициируется пользователем.

Режим исключения.

Принято выделять три класса членства подчиненных записей в групповых отношениях:

  • Фиксированное. Подчиненная запись жестко связана с записью владельцем и ее можно исключить из группового отношения только удалив. При удалении записи -владельца все подчиненные записи автоматически тоже удаляются. В рассмотренном выше примере фиксированное членство предполагает групповое отношение "ЗАКЛЮЧАЕТ" между записями "КОНТРАКТ" и "ЗАКАЗЧИК", поскольку контракт не может существовать без заказчика.
  • Обязательное. Допускается переключение подчиненной записи на другого владельца, но невозможно ее существование без владельца. Для удаления записи-владельца необходимо, чтобы она не имела подчиненных записей с обязательным членством. Таким отношением связаны записи "СОТРУДНИК" и "ОТДЕЛ". Если отдел расформировывается, все его сотрудники должны быть либо переведены в другие отделы, либо уволены.
  • Необязательное. Можно исключить запись из группового отношения, но сохранить ее в базе данных не прикрепляя к другому владельцу. При удалении записи -владельца ее подчиненные записи - необязательные члены сохраняются в базе, не участвуя более в групповом отношении такого типа. Примером такого группового отношения может служить "ВЫПОЛНЯЕТ" между "СОТРУДНИКИ" и "КОНТРАКТ", поскольку в организации могут существовать работники, чья деятельность не связана с выполнением каких-либо договорных обязательств перед заказчиками.

Операции над данными в сетевой модели БД

Добавить - внести запись в БД и, в зависимости от режима включения, либо включить ее в групповое отношение, где она объявлена подчиненной, либо не включать ни в какое групповое отношение.
Включить в групповое отношение - связать существующую подчиненную запись с записью-владельцем.
Переключить - связать существующую подчиненную запись с другой записью-владельцем в том же групповом отношении.
Обновить - изменить значение элементов предварительно извлеченной записи.
Извлечь - извлечь записи последовательно по значению ключа, а также используя групповые отношения - от владельца можно перейти к записям - членам, а от подчиненной записи к владельцу набора.
Удалить - убрать из БД запись. Если эта запись является владельцем группового отношения, то анализируется класс членства подчиненных записей. Обязательные члены должны быть предварительно исключены из группового отношения, фиксированные удалены вместе с владельцем, необязательные останутся в БД.
Исключить из группового отношения - разорвать связь между записью-владельцем и записью-членом.

Ограничения целостности

Как и в иерархической модели обеспечивается только поддержание целостности по ссылкам (владелец отношения - член отношения).

Достоинства и недостатки ранних СУБД

Достоинства ранних СУБД:

  • развитые средства управления данными во внешней памяти на низком уровне;
  • возможность построения вручную эффективных прикладных систем;
  • возможность экономии памяти за счет разделения подобъектов (в сетевых системах)

Недостатки ранних СУБД:

  • сложность использования;
  • высокий уровень требований к знаниям о физической организации БД;
  • зависимость прикладных систем от физической организации БД;
  • перегруженность логики прикладных систем деталями организации доступа к БД.

Как иерархическая, так и сетевая модель данных предполагает наличие высококвалифицированных программистов. И даже в таких случаях реализация пользовательских запросов часто затягивается на длительный срок.

Объектно-ориентированные СУБД

Появление объектно-ориентированных СУБД вызвано потребностями программистов на ОО-языках, которым были необходимы средства для хранения объектов, не помещавшихся в оперативной памяти компьютера. Также важна была задача сохранения состояния объектов между повторными запусками прикладной программы. Поэтому, большинство ООСУБД представляют собой библиотеку, процедуры управления данными которой включаются в прикладную программу. Примеры реализации ООСУБД как выделеного сервера базы данных крайне редки.

Сразу же необходимо заметить, что общепринятого определения " объектно-ориентированной модели данных " не существует. Сейчас можно говорить лишь о неком "объектном" подходе к логическому представлению данных и о различных объектно-ориентированных способах его реализации.

Мы знаем, что любая модель данных должна включать три аспекта: структурный, целостный и манипуляционный. Посмотрим, как они реализуются на основе объектно-ориентированная парадигмы программирования .

Структура

Структура объектной модели описывается с помощью трех ключевых понятий:

инкапсуляция - каждый объект обладает некоторым внутренним состоянием (хранит внутри себя запись данных), а также набором методов - процедур, с помощью которых (и только таким образом) можно получить доступ к данным, определяющим внутреннее состояние объекта, или изменить их. Таким образом, объекты можно рассматривать как самостоятельные сущности, отделенные от внешнего мира;
наследование - подразумевает возможность создавать из классов объектов новые классы объекты, которые наследуют структуру и методы своих предков, добавляя к ним черты, отражающие их собственную индивидуальность. Наследование может быть простым (один предок) и множественным (несколько предков);
полиморфизм - различные объекты могут по разному реагировать на одинаковые внешние события в зависимости от того, как реализованы их методы.

Целостность данных

Для поддержания целостности объектно-ориентированный подход предлагает использовать следующие средства:

  • автоматическое поддержание отношений наследования возможность объявить некоторые поля данных и методы объекта как "скрытые", не видимые для других объектов; такие поля и методы используются только методами самого объекта создание процедур контроля целостности внутри объекта

Средства манипулирования данными

К сожалению, в объектно-ориентированном программировании отсутствуют общие средства манипулирования данными, такие как реляционная алгебра или реляционное счисление. Работа с данными ведется с помощью одного из объектно-ориентированных языков программирования общего назначения, обычно это SmallTalk, C++ или Java.

Подведем теперь некоторые итоги

В объектно-ориентированных базах данных, в отличие от реляционных, хранятся не записи, а объекты. ОО-подход представляет более совершенные средства для отображения реального мира, чем реляционная модель, естественное представление данных. В реляционной модели все отношения принадлежат одному уровню, именно это осложняет преобразование иерархических связей модели "сущность-связь" в реляционную модель. ОО - модель можно рассматривать послойно, на разных уровнях абстракции. Имеется возможность определения новых типов данных и операций с ними.

В то же время, ОО - модели присущ и ряд недостатков :

  • отсутствуют мощные непроцедурные средства извлечения объектов из базы. Все запросы приходится писать на процедурных языках, проблема их оптимизации возлагается на программиста;
  • вместо чисто декларативных ограничений целостности (типа явного объявления первичных и внешних ключей реляционных таблиц с помощью ключевых слов PRIMARY KEY и REFERENCES ) или полудекларативных триггеров для обеспечения внутренней целостности приходится писать процедурный код.

Очевидно, что оба эти недостатка связаны с отсутствием развитых средств манипулирования данными. Эта задача решается двумя способами - расширение ОО-языков в сторону управления данными (стандарт ODMG), либо добавление объектных свойств в реляционные СУБД (SQL-3, а также так называемые объектно-реляционных СУБД).

Добавить - внести запись в БД и, в зависимости от режима включения, либо включить ее в групповое отношение, где она объявлена подчиненной, либо не включать ни в какое групповое отношение.
Включить в групповое отношение - связать существующую подчиненную запись с записью-владельцем.
Переключить - связать существующую подчиненную запись с другой записью-владельцем в том же групповом отношении.
Обновить - изменить значение элементов предварительно извлеченной записи.
Извлечь - извлечь записи последовательно по значению ключа, а также используя групповые отношения - от владельца можно перейти к записям - членам, а от подчиненной записи к владельцу набора.
Удалить - убрать из БД запись. Если эта запись является владельцем группового отношения, то анализируется класс членства подчиненных записей. Обязательные члены должны быть предварительно исключены из группового отношения, фиксированные удалены вместе с владельцем, необязательные останутся в БД.
Исключить из группового отношения - разорвать связь между записью-владельцем и записью-членом.

Реляционная модель базы данных

Во-первых , все данные в модели представляются только в виде таблиц и связей между ними. Реляционная модель - единственная из всех обеспечивает единообразие представления данных.

Второй элемент модели - реляционно-полный язык. Полнота языка в приложении к реляционной модели означает, что он должен выполнять любую операцию реляционной алгебры . Более того, язык должен описывать любой запрос в виде операций с таблицами, а не с их строками. Одним из таких языков является SQL .

Третий элемент реляционной модели требует от реляционной модели поддержания некоторых ограничений целостности . Каждая строка в таблице должна иметь некий уникальный идентификатор , называемый первичным ключом. Второе ограничение накладывается на целостность ссылок между таблицами.

Объектно-ориентированная модель.

В объектно-ориентированных базах данных, в отличие от реляционных, хранятся не записи, а объекты (текст, аудио- и видеоинформация, документы и другие объекты). Также важна задача сохранения состояния объектов между повторными запусками прикладной программы. Однако, развитого математического аппарата, на который могла бы опираться общая объектно-ориентированная модель данных , не существует.

Большинство ООСУБД представляют собой библиотеку, процедуры управления данными которой включаются в прикладную программу. Несмотря на преимущества объектно-ориентированных систем - реализация сложных типов данных , связь с языками программирования и т.п. - на ближайшее время превосходство реляционных СУБД гарантировано.

Объектно-реляционные СУБД

Разница между объектно-реляционными и объектными СУБД : первые являют собой надстройку над реляционной схемой, вторые же изначально объектно-ориентированы. Главная особенность и отличие объектно-реляционных (как и объектных) СУБД от реляционных заключается в том, что ОРСУБД интегрированы с Объектно-Ориентированным (OO) языком программирования, внутренним или внешним как C++, Java .

Объектно-реляционными СУБД являются, например, широко известные Oracle Database , Microsoft SQL Server , PostgreSQL, Microsoft Access.

Реляционный подход к построению модели предметной области.

· предметная область моделируется совокупностью отдельных информационных объектов (сущностей), каждый из которых описывается своей двумерной таблицей;

· между таблицами существуют связи;

· каждый элемент таблицы - один элемент данных;

· все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;

· каждый столбец описывает один атрибут сущности;

· каждый столбец имеет уникальное имя;

· строка содержит значения атрибутов для одного экземпляра сущности;

· одинаковые строки в таблице отсутствуют (наличие первичного ключа);

· порядок следования строк и столбцов может быть произвольным.

Нормализация отношений - формальный аппарат ограничений на формирование отношений (таблиц), который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение (ввод, корректировку) базы данных.

Первая нормальная форма

Отношение (таблица) называется нормализованным или приведенным к первой нормальной форме , если все его атрибуты простые (далее неделимы).

Преобразование отношения к первой нормальной форме может привести к увеличению количества реквизитов (полей) отношения и изменению ключа.

Таблица находится во второй нормальной форме , если она удовлетворяет требованиям первой нормальной формы и все ее поля, не входящие в первичный ключ, связаны полной функциональной зависимостью с первичным ключом, то есть любое не ключевое поле однозначно идентифицируется полным набором ключевых полей .

· таблица должна содержать данные об одном типе объектов;

· каждая таблица должна содержать одно поле или несколько полей, образующих уникальный идентификатор (или первичный ключ) для каждой строки;

· все неключевые поля должны определяться полным уникальным идентификатором данной таблицы.

Третья нормальная форма

Требование третьей нормальной формы сводится к тому, чтобы все нёключевые поля зависели только от первичного ключа и не зависели друг от друга. Другими словами, нужно иметь возможность изменять значение любого неключевого поля, не изменяя значения любого другого поля базы данных.

Типы связей. Свойства отношений

· Отношение "один-к-одному" (1:1) означает, что каждая запись в одной таблице соответствует не более чем одной записи в другой таблице.

· Отношение "один-ко-многим" (1:М) означает, что каждой записи в одной таблице соответствует 0 или 1 или несколько записей в другой таблице.

· Отношение "многие-к-одному" (М:1) аналогично рассмотренному ранее типу "один-ко-многим". Тип отношения между объектами зависит от точки зрения.

· Отношение "многие-ко-многим" (М:М). возникает между двумя таблицами тогда, когда каждой записи в одной таблице соответствует 0 или более записей в другой таблице и наоборот.

Простые и составные ключи

Первичный ключ может состоять из единственного поля таблицы, значения которого уникальны для каждой записи. Такой первичный ключ называют простым ключом.

Если таблица не имеет единственного уникального поля, первичный ключ может быть составлен из нескольких полей, совокупность значений которых гарантирует уникальность.

Такой первичный ключ называют составным ключом

Все виды связей реализуются с помощью первичных ключей и ссылок на их значения в других таблицах. Такие ссылки, представляющие собой копии первичных ключей других таблиц, называются внешними ключами.

Рассмотренный иерархический и сетевой пример базы данных , содержащей сведения о подразделениях предприятия и работающих в них сотрудниках, применительно к реляционной модели будет иметь вид:

Связь "многие-ко-многим " реализуется через дополнительную таблицу, с помощью которой эта связь будет сведена к двум связям типа "один-ко-многим ".

Реляционная алгебра, как нетрудно догадаться, – это особая разновидность алгебры, в которой все операции производятся над реляционными моделями данных, т. е. над отношениями.

В табличных терминах отношение включает в себя строки, столбцы и строку – заголовок столбцов. Поэтому естественными унарными операциями являются операции выбора определенных строк или столбцов, а также смены заголовков столбцов – переименования атрибутов.

1. Унарная операция выборки

Первой унарной операцией, которую мы рассмотрим, является операция выборки – операция выбора строк из таблицы, представляющей отношение, по какому-либо принципу, т. е. выбор строк-кортежей, удовлетворяющих определенному условию или условиям.

Оператор выборки обозначается ? <P >, условие выборки P <S >, т. е., оператор ? берется всегда с определенным условием на кортежи P , а само условие P записывается зависящим от схемы отношения S . С учетом всего этого сама операция выборки над схемой отношения S применительно к отношению r

? <P >r (S ) ? ? <P >r = {t (S ) |t ? r & P <S >t } = {t (S ) |t ? r & IfNull (P <S >t , False };

Результатом этой операции будет новое отношение с той же схемой отношения S , состоящее из тех кортежей t (S ) исходного отношения-операнда, которые удовлетворяют условию выборки Pt . Понятно, что для того, чтобы применить какое-то условие к кортежу, необходимо подставить значения атрибутов кортежа вместо имен атрибутов.

Чтобы лучше понять принцип работы этой операции, приведем пример. Пусть дана следующая схема отношения:

S : Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка).

Условие выборки возьмем такое:

P <S > = (Предмет = ‘Информатика’ and Оценка > 3).

Нам необходимо из исходного отношения-операнда выделить те кортежи, в которых содержится информация о студентах, сдавших предмет «Информатика» не ниже, чем на три балла.

Пусть также дан следующий кортеж из этого отношения:

t 0 (S ) ? r (S

Применяем наше условие выборки к кортежу t 0 , получаем:

Pt 0 = (‘Базы данных’ = ‘Информатика’ and 5 > 3);

На данном конкретном кортеже условие выборки не выполняется.

А вообще результатом этой конкретной выборки

? <Предмет = "Информатика" and Оценка > 3 > Сессия

будет таблица «Сессия», в которой оставлены строки, удовлетворяющие условию выборки.

2. Унарная операция проекции

Еще одна стандартная унарная операция, которую мы изучим, – это операция проекции. Операция проекции – это операция выбора столбцов из таблицы, представляющей отношение, по какому-либо признаку. А именно машина выбирает те атрибуты (т. е. буквально те столбцы) исходного отношения-операнда, которые были указаны в проекции.

Оператор проекции обозначается [S" ] или ? . Здесь S" – подсхема исходной схемы отношения S , т. е. ее некоторые столбцы. Что это означает? Это означает, что у S’ атрибутов меньше, чем у S , потому что в S" остались только те из них, для которых выполнилось условие проекции. А в таблице, представляющей отношение r (S" ), строк столько же, сколько их у таблицы r (S ), а столбцов – меньше, так как остались только соответствующие оставшимся атрибутам. Таким образом, оператор проекции ?< S"> применительно к отношению r (S ) дает в результате новое отношение с другой схемой отношения r (S" ), состоящее из проекций t (S ) [S" ] кортежей исходного отношения. Как определяются эти проекции кортежей? Проекция любого кортежа t (S ) исходного отношения r (S ) на подсхему S" определяется следующей формулой:

t (S ) [S’ ] = {t (a )|a ? def (t ) ? S ’}, S " ?S .

Важно заметить, что дубликаты кортежей из результата исключаются, т. е. в таблице, представляющей новое, результирующее отношение повторяющихся строк не будет.

С учетом всего вышесказанного, операция проекции в терминах систем управления базами данных будет выглядеть следующим образом:

? <S" >r (S ) ? ? <S’ >r ? r (S ) [S ’] ? r [S" ] = {t (S ) [S’ ] | t ? r };

Рассмотрим пример, иллюстрирующий принцип работы операции выборки.

Пусть дано отношение «Сессия» и схема этого отношения:

S : Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка);

Нас будут интересовать только два атрибута из этой схемы, а именно «№ зачетной книжки» и «Фамилия» студента, поэтому подсхема S" будет выглядеть следующим образом:

S" : (№ зачетной книжки, Фамилия).

Нужно исходное отношение r (S ) спроецировать на подсхему S" .

t 0 (S ) ? r (S ): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};

Значит, проекция этого кортежа на данную подсхему S" будет выглядеть следующим образом:

t 0 (S ) S" : {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’)};

Если говорить об операции проекции в терминах таблиц, то проекция Сессия [№ зачетной книжки, Фамилия] исходного отношения – это таблица Сессия, из которой вычеркнуты все столбцы, кроме двух: № зачетной книжки и Фамилия. Кроме того, все дублирующиеся строки также удалены.

3. Унарная операция переименования

И последняя унарная операция, которую мы рассмотрим, – это операция переименования атрибутов . Если говорить об отношении как о таблице, то операция переименования нужна для того, чтобы поменять названия всех или некоторых столбцов.

Оператор переименования выглядит следующим образом: ?>, здесь ? - функция переименования .

Эта функция устанавливает взаимно-однозначное соответствие между именами атрибутов схем S и S, где соответственно S - схема исходного отношения, а S - схема отношения с переименованными атрибутами. Таким образом, оператор ? <?> в применении к отношению r (S ) дает новое отношение со схемой S , состоящее из кортежей исходного отношения только с переименованными атрибутами.

Запишем операцию переименования атрибутов в терминах систем управления базами данных:

? <? > r (S ) ? ? <? >r = {? <? > t (S )| t ? r };

Приведем пример использования этой операции:

Рассмотрим уже знакомое нам отношение Сессия, со схемой:

S: Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка);

Введем новую схему отношения S, с другими именами атрибутов, которые мы бы хотели видеть вместо имеющихся:

S:

Например, заказчик базы данных захотел в вашем готовом отношении видеть другие названия. Чтобы воплотить в жизнь этот заказ, необходимо спроектировать следующую функцию переименования:

? : (№ зачетной книжки, Фамилия, Предмет, Оценка) > (№ ЗК, Фамилия, Предмет, Балл);

Фактически, требуется поменять имя только у двух атрибутов, поэтому законно будет записать следующую функцию переименования вместо имеющейся:

? : (№ зачетной книжки, Оценка) > (№ ЗК, Балл);

t 0 (S ) ? r (S ): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};

Применим оператор переименования к этому кортежу:

? t 0 (S ): {(№ ЗК: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Балл: 5)};

Итак, это один из кортежей нашего отношения, у которого переименовали атрибуты.

В табличных терминах отношение

? < № зачетной книжки, Оценка > «№ ЗК, Балл > Сессия -

это новая таблица, полученная из таблицы отношения «Сессия», переименованием указанных атрибутов.

4. Свойства унарных операций

У унарных операций, как и у любых других, есть определенные свойства. Рассмотрим наиболее важные из них.

Первым свойством унарных операций выборки, проекции и переименования является свойство, характеризующее соотношение мощностей отношений. (Напомним, что мощность – это количество кортежей в том или ином отношении.) Понятно, что здесь рассматривается соответственно отношение исходное и отношение, полученное в результате применения той или иной операции.

Заметим, что все свойства унарных операций следуют непосредственно из их определений, поэтому их можно легко объяснить и даже при желании вывести самостоятельно.

1) соотношение мощностей:

а) для операции выборки: | ? <P >r |? |r |;

б) для операции проекции: | r [S" ] | ? |r |;

в) для операции переименования: | ? <? >r | = |r |;

Итого, мы видим, что для двух операторов, а именно для оператора выборки и оператора проекции, мощность исходных отношений – операндов больше, чем мощность отношений, получаемых из исходных применением соответствующих операций. Это происходит потому, что при выборе, сопутствующему действию этих двух операций выборки и проекции, происходит исключение некоторых строк или столбцов, не удовлетворивших условиям выбора. В том случае, когда условиям удовлетворяют все строки или столбцы, уменьшения мощности (т. е. количества кортежей) не происходит, поэтому в формулах неравенство нестрогое.

В случае же операции переименования, мощность отношения не изменяется, за счет того, что при смене имен никакие кортежи из отношения не исключаются;

2) свойство идемпотентности:

а) для операции выборки: ? <P > ? <P >r = ? <P >;

б) для операции проекции: r [S’ ] [S’ ] = r [S" ];

в) для операции переименования в общем случае свойство идемпотентности неприменимо.

Это свойство означает, что двойное последовательное применение одного и того же оператора к какому-либо отношению равносильно его однократному применению.

Для операции переименования атрибутов отношения, вообще говоря, это свойство может быть применено, но обязательно со специальными оговорками и условиями.

Свойство идемпотентности очень часто используется для упрощения вида выражения и приведения его к более экономичному, актуальному виду.

И последнее свойство, которое мы рассмотрим, – это свойство монотонности. Интересно заметить, что при любых условиях все три оператора монотонны;

3) свойство монотонности:

а) для операции выборки: r 1 ? r 2 ? ? <P > r 1 ? ? <P >r 2 ;

б) для операции проекции: r 1 ? r 2 ? r 1 [S" ] ? r 2 [S" ];

в) для операции переименования: r 1 ? r 2 ? ? <? >r 1 ? ? <? >r 2 ;

Понятие монотонности в реляционной алгебре аналогично этому же понятию из алгебры обычной, общей. Поясним: если изначально отношения r 1 и r 2 были связаны между собой таким образом, что r ? r 2 , то и после применения любого их трех операторов выборки, проекции или переименования это соотношение сохранится.

Реляционная алгебра - это язык операций, выполняемых над отношениями - таблицами реляционной базы данных. Операции реляционной алгебры позволяют на основе одного или нескольких отношений создавать другое отношение без изменения самих исходных отношений. Полученное другое отношение обычно не записывается в базу данных, а существует в результате выполнения SQL-запроса - массиве, создаваемом функциями для работы с базами данных в языках программирования. Для каждой операции реляционной алгебры будет дана её реализация в виде запросов на языке SQL.

Рассмотрим операции реляционной алгебры. Чтобы Вам не отвлекаться на содержание таблиц не Ваших баз данных, таких как "Продукты", "Водители", "сливы", "груши", "чай", "кофе", Владимиры, Сергеи и т.п. будем выполнять операции над отношениями (таблицами) с абстрактными данными, такими как R1, R2 (названия таблиц - отношений) и т.д. и А1, А2, А3 (названия атрибутов - столбцов) и h15, w11 и т.п. (содержание записей таблиц базы данных).

Приоритеты выполнения операций реляционной алгебры (в порядке убывания пунктов списка, а в одном пункте - операции с равными приоритетами):

  • селекция, проекция
  • декартово произведение, соединение, пересечение, деление
  • объединение, разность.

Операция выборки

Операция выборки работает с одним отношением и определяет результирующее отношение R , которое содержит только те кортежи (или строки, или записи), отношения , которые удовлетворяют заданному условию (предикату P ).

Таким образом, операция выборки - унарная операция - и записывается следующим образом:

где P - предикат (логическое условие).

Запрос SQL

Теперь посмотрим, что получится в результате выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL. В таблице ниже дано одно отношение, с которым работает эта операция.

R3
A1 A2 A3 A4
3 hh yl ms
4 pp a1 sr
1 rr yl ms

Просматриваем столбец А3 и устанавливаем, что предикату A3>"d0" удовлетворяют записи в первой и третьей строках исходного отношения (так как номер буквы y в алфавите больше номера буквы d). В результате получаем следующее новое отношение, в котором две строки:

R
A1 A2 A3 A4
3 hh yl ms
1 rr yl ms

Комбинировать всевозможные логические условия для выборок Вам поможет материал "Булева алгебра (алгебра логики)" .

Запрос SQL

SELECT A1, A2, A3 from R1 UNION SELECT A1, A2, A3 from R2

Теперь посмотрим, что получится в результате выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL. Теперь даны два отношения, так как операция объединения - бинарная операция:

R1 R2
A1 A2 A3 A1 A2 A3
Z7 aa w11 X8 pp k21
B7 hh h15 Q2 ee h15
X8 pp w11 X8 pp w11

Объединяем строки первого и второго отношения и видим, что третья строка, которая является третьей и в первом, и во втором отношении - идентичны, поэтому её включаем в новое отношение только один раз. Получаем следующее отношение:

R
A1 A2 A3
Z7 aa w11
B7 hh h15
X8 pp w11
X8 pp k21
Q2 ee h15

Важно следующее: операция объединения может быть выполнена только тогда, когда два отношения обладают одинаковым числом и названиями атрибутов (столбцов), или, говоря формально, совместимы по объединению.

Операция пересечения

Результатом пересечения двух множеств (отношений) А и В () будет такое множество (отношение) С, которое включает в себя те и только те элементы, которые есть и во множестве А, и во множестве В. Операция пересечения реляционной алгебры идентична операции .

Запрос SQL

SELECT A1, A2, A3 from R1 INTERSECT SELECT A1, A2, A3 from R2

В некоторых диалектах SQL отсутствует ключевое слово INTERSECT. Его заменой, например, в MySQL и других, является INNER JOIN. О том, как работает оператор SQL JOIN вообще и его разновидности INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN и FULL OUTER JOIN - на уроке SQL JOIN - соединение таблиц базы данных .

Запрос MySQL

Теперь посмотрим, что получится в результате выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL. Вновь даны два отношения R1 и R2:

R1 R2
A1 A2 A3 A1 A2 A3
Z7 aa w11 X8 pp k21
B7 hh h15 Q2 ee h15
X8 pp w11 X8 pp w11

Просматриваем все записи в двух отношениях, и обнаруживаем, что и в первом, и во втором отношении есть одна строка - та, которая является третьей и в первом, и во втором отношении. Получаем новое отношение:

R
A1 A2 A3
X8 pp w11

Операция разности

Разность двух отношений R1 и R2 () состоит из кортежей (или записей, или строк), которые имеются в отношении R1, но отсутствуют в отношении R2. Отношения R1 и R2 должны быть совместимы по объединению. Операция разности реляционной алгебры идентична операции .

Запрос SQL

SELECT A1, A2, A3 from R2 EXCEPT
SELECT A1, A2, A3 from R1

Установим, что получится в результате выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL. Вновь даны два отношения R1 и R2:

R1 R2
A1 A2 A3 A1 A2 A3
Z7 aa w11 X8 pp k21
B7 hh h15 Q2 ee h15
X8 pp w11 X8 pp w11

Из отношения R2 исключаем строку, которая есть также в отношении R2 - третью - и получаем новое отношение:

R
A1 A2 A3
X8 pp w11
Q2 ee h15

Операция декартова произведения

Операция декартова произведения () определяет новое отношение R, которое является результатом конкатенации каждого кортежа отношения R1 с каждым кортежем отношения R2.

Запрос SQL

SELECT * from R3, R4

Установим, что получится в результате выполнения этой операции реляционной алгебры и соответствующего ей запроса SQL. Даны два отношения R3 и R4:

R3 R4
A1 A2 A3 A4 A5 A6
3 hh yl ms 3 hh
4 pp a1 sr 4 pp
1 rr yl ms

В новом отношении должны присутствовать все атрибуты (столбцы) двух отношений. Сначала первая строка отношения R3 сцепляется с каждой из двух строк отношения R4, затем вторая строка отношения R3, затем третья. В результате должно получиться 3 Х 2 = 6 кортежей (строк). Получаем такое новое отношение:

R
A1 A2 A3 A4 A5 A6
3 hh yl ms 3 hh
3 hh yl ms 4 pp
4 pp a1 sr 3 hh
4 pp a1 sr 4 pp
1 rr yl ms 3 hh
1 rr yl ms 4 pp


Загрузка...