sonyps4.ru

Методы доступа к сети. Методы доступа в сетях

В быту востребованный

Глава 4. Локальные вычислительные сети
4.1. Методы доступа.

Типичная среда передачи данных в ЛВС - отрезок (сегмент) коаксиального кабеля. К нему через аппаратуру окончания канала данных подключаются узлы - компьютеры и возможно общее периферийное оборудование. Поскольку среда передачи данных общая, а запросы на сетевые обмены у узлов появляются асинхронно, то возникает проблема разделения общей среды между многими узлами, другими словами, проблема обеспечения доступа к сети.

Доступом к сети называют взаимодействие станции (узла сети) со средой передачи данных для обмена информацией с другими станциями. Управление доступом к среде - это установление последовательности, в которой станции получают доступ к среде передачи данных.

Различают случайные и детерминированные методы доступа. Среди случайных методов наиболее известен метод множественного доступа с контролем несущей и обнаружением конфликтов (МДКН/ОК). Англоязычное название метода - Carrier Sense Multiple Access /Collision Detection (CSMA/CD). Этот метод основан на контроле несущей в линии передачи данных и устранении конфликтов, возникающих из-за попыток одновременного начала передачи двумя или более станциями, путем повторения попыток захвата линии через случайный отрезок времени.

МДКН/ОК является широковещательным (broadcasting) методом. Все станции при применении МДКН/ОК равноправны по доступу к сети. Если линия передачи данных свободна, то в ней отсутствуют электрические колебания, что легко распознается любой станцией, желающей начать передачу. Такая станция захватывает линию. Любая другая станция, желающая начать передачу в некоторый момент времени t, если обнаруживает электрические колебания в линии, то откладывает передачу до момента t + t d , где t d - задержка.

Различают настойчивый и ненастойчивый МДКН/ОК в зависимости от того, как определяется t d . В первом случае попытка захвата канала происходит сразу после его освобождения, что допустимо при слабой загрузке сети. При заметной загрузке велика вероятность того, что несколько станций будут претендовать на доступ к сети сразу после ее освобождения, и, следовательно, конфликты станут частыми. В ненастойчивом МДКН/ОК задержка t d является случайной величиной.

При работе сети каждая станция анализирует адресную часть передаваемых по сети кадров с целью обнаружения и приема кадров, предназначенных для нее. Рис. 4.1. Алгоритмы доступа по методу МДКН/ОК

На рис. 4.1 представлены алгоритмы приема и передачи данных в одном из узлов при МДКН/ОК.

Конфликтом называется ситуация, при которой две или более станции "одновременно" пытаются захватить линию. Понятие "одновременность событий" в связи с конечностью скорости распространения сигналов по линии конкретизируется как отстояние событий во времени не более чем на величину 2*d, называемую окном столкновений , где d - время прохождения сигналов по линии между конфликтующими станциями. Если какие-либо станции начали передачу в окне столкновений, то по сети распространяются искаженные данные. Это искажение и используется для обнаружения конфликта либо сравнением в передатчике данных, передаваемых в линию (неискаженных) и получаемых из нее (искаженных), либо по появлению постоянной составляющей напряжения в линии, что обусловлено искажением используемого для представления данных манчестерского кода. Обнаружив конфликт, станция должна оповестить об этом партнера по конфликту, послав дополнительный сигнал затора, после чего станции должны отложить попытки выхода в линию на время t d . Очевидно, что значения t d должны быть различными для станций, участвующих в столкновении (конфликте); поэтому t d - случайная величина. Ее математическое ожидание должно иметь тенденцию к росту по мере увеличения числа идущих подряд неудачных попыток захвата линии.

Среди детерминированных методов преобладают маркерные методы доступа . Маркерный метод - метод доступа к среде передачи данных в ЛВС, основанный на передаче полномочий передающей станции с помощью специального информационного объекта, называемого маркером. Под полномочием понимается право инициировать определенные действия, динамически предоставляемые объекту, например станции данных в информационной сети.

Применяется ряд разновидностей маркерных методов доступа. Например, в эстафетном методе передача маркера выполняется в порядке очередности; в способе селекторного опроса (квантированной передачи) сервер опрашивает станции и передает полномочие одной из тех станций, которые готовы к передаче. В кольцевых одноранговых сетях широко применяется тактируемый маркерный доступ, при котором маркер циркулирует по кольцу и используется станциями для передачи своих данных.

Оригинальный метод применен в высокоскоростных сетях FDDI, рассматриваемый далее.

Для управления обменом в сети существует ряд правил, определяющих способы доступа к среде передачи. Эти правила регламентированы в методе управления обменом (или методе доступа к среде передачи) – одном из важнейших параметров сети, который определяется особенностями топологии, архитектурой и т.д. От эффективности выбранного метода зависит скорость обмена информацией между узлами, нагрузочная способность сети, время реакции сети на внешние события и т.д.

Существует следующая классификация методов управления:

· централизованные методы , при которых управление сосредоточено в одном месте. Недостатками являются: малая гибкость управления и неустойчивость к отказам центра. Достоинство – отсутствие конфликтов;

· децентрализованные методы , при которых отсутствует центр управления. Высокая устойчивость к отказам и большая гибкость – достоинства таких методов, однако здесь возможны конфликты, которые необходимо разрешать.

Можно привести другую классификацию методов:

· детерминированные методы , которые функционируют по четким правилам, по которым происходит захват сети узлами. При этом существует система приоритетов, в общем случае различных для разных узлов. Конфликты здесь практически исключены;

· случайные методы , которые подразумевают случайное чередование передающих узлов. Конфликты, неизбежно возникающие в этом случае, разрешаются с помощью заранее определенного алгоритма.

Рассмотрим некоторые конкретные реализации методов доступа.

Метод CSMA / CD (множественный доступ с контролем носителя и обнаружением коллизий) в настоящее время является одним из наиболее распространенных. Используется этот метод в архитектуре Ethernet. Отличительные особенности этого метода следующие:

· контроль носителя – перед передачей в сеть данных узел сначала проверяет состояние линии связи (носителя) на предмет занятости передачей других данных;

· множественный доступ – несколько узлов одновременно могут начать передачу данных в сеть;

· обнаружение конфликтов – если линия занята, то узел ждет ее освобождения. Может так случиться, что два узла, одновременно опросив линию, убеждаются в том, что она свободна и начинают передачу, и, как следствие, возникает конфликт сигналов. В этом случае оба передающих узла прекращают передачу и ожидают некоторое время (выбранное случайным образом для каждого), а затем повторяют запрос линии. В силу случайности вероятность того, что выбранные периоды времени одинаковы, практически мала. Также после посылки кадров каждый узел ожидает некоторое время, а затем, в случае отсутствия ошибок в сети, вновь начинает посылать данные.


Это необходимо для того, чтобы ни один узел не мог захватить линию связи монопольно.

Метод CSMA / CA (множественный доступ с контролем носителя и предотвращением конфликтов) работает вначале аналогично CSMA/CD. Однако, если узел не находит в линии чужих сигналов, он посылает запрос на передачу (RTS), тем самым объявляя всем, что он намерен выполнить передачу. Поэтому здесь возможен только конфликт запросов RTS, а не пакетов данных, т.е. конфликты исключены. Производительность этого метода меньше, чем CSMA/CD практически вдвое. Используется этот метод в сетях AppleTalk.

Методы CSMA/CD и CSMA/CА еще называют конкурентными методами (в них узлы как бы конкурируют за право передачи).

Метод с передачей маркера неконкурентный. Сигнал, называемый маркером, передается по сети от одного узла к другому, пока не достигнет того, который хочет начать передачу данных. Как правило, такой метод используется в кольцевой топологии, но может применяться и в шине. Пример сети с методом передачи маркера – Token Ring. В ней при попадании маркера на компьютер, который готов передавать данные, этот компьютер захватывает управление маркером, добавляет данные к сигналу маркера и передает его в сеть. При прохождении пакета по сети все компьютеры последовательно передают его дальше до тех пор, пока он не достигнет того, кому он предназначен. После этого компьютер-получатель добавляет в маркер данные об успешном приеме и передает маркер дальше по кругу. Компьютер-передатчик опять добавляет данные к маркеру и передает его по кругу или, если передавать нечего, вместо данных вставляет отметку о том, что маркер свободен. В некоторых архитектурах с передачей маркера, например, FDDI, по сети могут циркулировать несколько маркеров.

Метод доступа с приоритетами запросов был разработан для локальной сетевой архитектуры 100VG-AnyLAN (высокоскоростная, гибкая и эффективная архитектура, призванная заменить Ethernet). В этих сетях используется древовидная топология, аналогичная звезде (рис.2.15).

Рис.2.15. Топология 100VG-AnyLAN

Концентраторы выполняют карусельный обзор подключенных узлов для обнаружения запросов на передачу данных. Определенным типам данных может быть присвоен приоритет для их обработки концентратором в первую очередь, что гарантирует необходимую пропускную способность для высокоскоростных приложений в реальном времени.

Этот метод запросов более эффективен, нежели CSMA/CD, потому что здесь используются пары кабелей (четыре кабеля к одному компьютеру, т.е. можно одновременно и передавать, и принимать), и сигналы передаются только тому концентратору, к которому подключен узел, а не всей сети. Это также повышает безопасность передаваемых данных.

При обмене данными между компьютерами используются три метода передачи данных:

Симплексная (однонаправленная) передача (телевидение, радио);

Полудуплексная (прием/передача информации осуществляется поочередно);

Дуплексная (двунаправленная), каждая станция одновременно передает и принимает данные.

Для передачи данных в информационных системах наиболее часто применяется последовательная передача. Широко используются асинхронная и синхронная передачи.

При асинхронной передаче каждый символ передается отдельной посылкой. Стартовые биты предупреждают приемник о начале передачи. Затем передается символ. Для определения достоверности передачи используется бит четности (бит четности =1, если количество единиц в символе нечетно, и 0 в противном случае). Последний бит "стоп бит" сигнализирует об окончании передачи.

Преимущества: несложная отработанная система; недорогое (по сравнению с синхронным) интерфейсное оборудование.

Недостатки: третья часть пропускной способности теряется на передачу служебных битов (старт/стоповых и бита четности); невысокая скорость передачи по сравнению с синхронной; при множественной ошибке с помощью бита четности невозможно определить достоверность полученной информации.

Асинхронная передача используется в системах, где обмен данными происходит время от времени и не требуется высокая скорость передачи данных. Некоторые системы используют бит четности как символьный бит, а контроль информации выполняется на уровне протоколов обмена данными.

При синхронной передаче данные передаются блоками. Для синхронизации работы приемника и передатчика в начале блока передаются биты синхронизации. Затем передаются данные, код обнаружения ошибки и символ окончания передачи. При синхронной передаче данные могут передаваться и как символы, и как поток битов. В качестве кода обнаружения ошибки обычно используется Циклический Избыточный Код Обнаружения Ошибок (CRC). Он вычисляется по содержимому поля данных и позволяет однозначно определить достоверность принятой информации.

Преимущества: высокая эффективность передачи данных; высокие скорости передачи данных; надежный встроенный механизм обнаружения ошибок.

Недостатки: интерфейсное оборудование более сложное и, соответственно, более дорогое.

Протоколы SDLC и HDLC основываются на синхронной бит-ориентированной передаче данных.

Для доступа к сети используются несколько методов:

Ø Метод коллективного доступа с опознаванием (прослушиванием) несущей и обнаружением коллизий. CSMA/CD ( carrier-sense-miltiply-acct with collision detection).

Применяют в сетях, где компьютеры имеют непосредственный доступ к каналу связи (общей шине) и могут немедленно получить данные, которые передаются любым компьютерам. Данные передаются кадрами, в которых указываются адрес узла получателя и узла отправителя. Кадр передается как только освобождается канал связи. Принимающий узел при нормальном получении кадра передает сообщение отправителю.

Коллизия – ситуация, когда несколько узлов пытаются одновременно передавать сообщения. Передающий узел, обнаруживший коллизию, прекращает передачу кадра, делает паузу случайной длины и повторяет попытку захвата передающей среды и передачи кадра. После 16 попыток передачи кадра кадр отбрасывается.

При увеличении количества коллизий, когда передающая среда заполняется по­вторными кадрами, реальная пропускная способность сети резко уменьшается. В этом случае необходимо уменьшить трафик сети любыми доступными метода­ми (уменьшение количества узлов сети, использование приложений с меньшими затратами сетевых ресурсов, реструктуризация сети).

Этот метод нашел широкое распространение вследствие своей простоты.

Ø Приоритетный доступ по требованию . Отдельный узел запрашивает у центрального узла разрешение на передачу данных. Если канал свободен, то центральный узел осуществляет передачу. В противном случае запрос ставится в очередь. В сети поддерживаются 2 уровня приоритетов: высокий и низкий.

Узел, имеющий низкий приоритет, может получить высокий приоритет в том случае, если он достаточно долго не может получить доступ к каналу связи.

Ø Маркерный метод . Право доступа к каналу передается с помощью специального кадра, который называется маркером. Все узлы ретранслируют кадры, и маркер передается от узла к узлу. Узел, получив маркер, определяет наличие у него данных для передачи. Если данных нет, то узел передает маркер дальше. Если данные есть, то маркер изымается из сети и узел передает свои данные по кольцу. Каждый кадр снабжается как адресом получателя, так и адресом отправителя. Узел, получивший кадр с адресом получателя, совпадающим с его собственным адресом, копирует данные, вставляет в кадр признак подтверж­дения приема и оправляет кадр дальше. Получив обратно посланный кадр с подтверждением получения, узел-отправитель отправляет в сеть новую копию маркера для передачи доступа к сети. Время доступа к сети ограничивается временем удержания маркера, в течение которого узел может послать несколько кадров дан­ных и после чего узел обязан передать маркер в сеть.

Метод доступа – это способ определения того, какая из рабочих станций сможет следующей использовать ЛВС. То, как сеть управляет доступом к каналу связи (кабелю), существенно влияет на ее характеристики. Примерами методов доступа являются:

Множественный доступ с прослушиванием несущей и разрешением коллизий (Carrier Sense Multiple Access with Collision Detection – CSMA/CD);

Множественный доступ с передачей полномочия (Token Passing Multiple Access – TPMA) или метод с передачей маркера;

Множественный доступ с разделением во времени (Time Division Multiple Access – TDMA);

Множественный доступ с разделением частоты (Frequency Division Multiple Access – FDMA) или множественный доступ с разделением длины волны (Wavelength Division Multiple Access – WDMA).

Метод множественного доступа с прослушиванием несущей и разрешением коллизий (CSMA/CD) устанавливает следующий порядок: если рабочая станция хочет воспользоваться сетью для передачи данных, она сначала должна проверить состояние канала: начинать передачу станция может, если канал свободен. В процессе передачи станция продолжает прослушивание сети для обнаружения возможных конфликтов. Если возникает конфликт из-за того, что два узла попытаются занять канал, то обнаружившая конфликт интерфейсная плата, выдает в сеть специальный сигнал, и обе станции одновременно прекращают передачу. Принимающая станция отбрасывает частично принятое сообщение, а все рабочие станции, желающие передать сообщение, в течение некоторого, случайно выбранного промежутка времени выжидают, прежде чем начать сообщение.

Алгоритм множественного доступа с прослушиванием несущей и разрешением коллизий приведен на рис. 3.5.

Все сетевые интерфейсные платы запрограммированы на разные псевдослучайные промежутки времени. Если конфликт возникнет во время повторной передачи сообщения, этот промежуток времени будет увеличен.

Рис. 3.5. Алгоритм CSMA/CD

Стандарт типа Ethernet определяет сеть с конкуренцией, в которой несколько рабочих станций должны конкурировать друг с другом за право доступа к сети.

Метод с передачей маркера – это метод доступа к среде, в котором от рабочей станции к рабочей станции передается маркер, дающий разрешение на передачу сообщения. При получении маркера рабочая станция может передавать сообщение, присоединяя его к маркеру, который переносит это сообщение по сети. Каждая станция между передающей станцией и принимающей видит это сообщение, но только станция – адресат принимает его. При этом она создает новый маркер.

Маркер (token), или полномочие, – уникальная комбинация битов, позволяющая начать передачу данных.

Алгоритм множественного доступа с передачей полномочия, или маркера, приведен на рис. 3.6.

Рис. 3.6. Алгоритм TPMA

Каждый узел принимает пакет от предыдущего, восстанавливает уровни сигналов до номинального уровня и передает дальше. Передаваемый пакет может содержать данные или являться маркером. Когда рабочей станции необходимо передать пакет, ее адаптер дожидается поступления маркера, а затем преобразует его в пакет, содержащий данные, отформатированные по протоколу соответствующего уровня, и передает результат далее по ЛВС.

Пакет распространяется по ЛВС от адаптера к адаптеру, пока не найдет своего адресата, который установит в нем определенные биты для подтверждения того, что данные достигли адресата, и ретранслирует его вновь в ЛВС. После чего пакет возвращается в узел из которого был отправлен. Здесь после проверки безошибочной передачи пакета, узел освобождает ЛВС, выпуская новый маркер.

Таким образом, в ЛВС с передачей маркера невозможны коллизии (конфликты). Метод с передачей маркера в основном используется в кольцевой топологии.

Данный метод характеризуется следующими достоинствами:

Гарантирует определенное время доставки блоков данных в сети;

Дает возможность предоставления различных приоритетов передачи данных.

Вместе с тем он имеет существенные недостатки:

В сети возможны потеря маркера, а также появление нескольких маркеров, при этом сеть прекращает работу;

Включение новой рабочей станции и отключение связаны с изменением адресов всей системы.

Множественный доступ с разделением во времени основан на распределении времени работы канала между системами (рис. 3.7).

Доступ TDMA основан на использовании специального устройства, называемого тактовым генератором. Этот генератор делит время канала на повторяющиеся циклы. Каждый из циклов начинается сигналом Разграничителем. Цикл включает n пронумерованных временных интервалов, называемых ячейками. Интервалы предоставляются для загрузки в них блоков данных.

Рис. 3.7. Структура множественного доступа с разделением во времени

Данный способ позволяет организовать передачу данных с коммутацией пакетов и с коммутацией каналов.

Первый (простейший) вариант использования интервалов заключается в том, что их число (n) делается равным количеству абонентских систем, подключенных к рассматриваемому каналу. Тогда во время цикла каждой системе предоставляется один интервал, в течение которого она может передавать данные. При использовании рассмотренного метода доступа часто оказывается, что в одном и том же цикле одним системам нечего передавать, а другим не хватает выделенного времени. В результате неэффективное использование пропускной способности канала.

Второй, более сложный, но высокоэкономичный вариант заключается в том, что система получает интервал только тогда, когда у нее возникает необходимость в передаче данных, например при асинхронном способе передачи. Для передачи данных система может в каждом цикле получать интервал с одним и тем же номером. В этом случае передаваемые системой блоки данных появляются через одинаковые промежутки времени и приходят с одним и тем же временем запаздывания. Это режим передачи данных с имитацией коммутации каналов. Способ особенно удобен при передаче речи.

Доступ FDMA основан на разделении полосы пропускания канала на группу полос частот (рис. 3.8), образующих логические каналы.

Широкая полоса пропускания канала делится на ряд узких полос, разделенных защитными полосами. Размеры узких полос могут быть различными.

При использовании FDMA, именуемого также множественным доступом с разделением волны WDMA, широкая полоса пропускания канала делится на ряд узких полос, разделенных защитными полосами. В каждой узкой полосе создается логический канал. Размеры узких полос могут быть различными. Передаваемые по логическим каналам сигналы накладываются на разные несущие и поэтому в частотной области не должны пересекаться. Вместе с этим, иногда, несмотря на наличие защитных полос, спектральные составляющие сигнала могут выходить за границы логического канала и вызывать шум в соседнем логическом канале.

Рис. 3.8. Схема выделения логических каналов

В оптических каналах разделение частоты осуществляется направлением в каждый из них лучей света с различными частотами. Благодаря этому пропускная способность физического канала увеличивается в несколько раз. При осуществлении этого мультиплексирования в один световод излучает свет большое число лазеров (на различных частотах). Через световод излучение каждого из них проходит независимо от другого. На приемном конце разделение частот сигналов, прошедших физический канал, осуществляется путем фильтрации выходных сигналов.

Метод доступа FDMA относительно прост, но для его реализации необходимы передатчики и приемники, работающие на различных частотах.

Метод доступа – это способ определения того, какая из рабочих станций сможет следующей использовать ЛВС. То, как сеть управляет доступом к каналу связи (кабелю), существенно влияет на ее характеристики. Примерами методов доступа являются:

- множественный доступ с прослушиванием несущей и разрешением коллизий (Carrier Sense Multiple Access with Collision Detection – CSMA/CD);

- множественный доступ с передачей полномочия (Token Passing Multiple Access – TPMA) или метод с передачей маркера;

- множественный доступ с разделением во времени (Time Division Multiple Access – TDMA);

- множественный доступ с разделением частоты (Frequency Division Multiple Access – FDMA) или множественный доступ с разделением длины волны (Wavelength Division Multiple Access – WDMA).

CSMA/CD

Алгоритм множественного доступа с прослушиванием несущей и разрешением коллизий приведен на рис. 4.1.

Рис. 4 .1 Алгоритм CSMA/CD

Метод множественного доступа с прослушиванием несущей и разрешением коллизий (CSMA/CD) устанавливает следующий порядок: если рабочая станция хочет воспользоваться сетью для передачи данных, она сначала должна проверить состояние канала: начинать передачу станция может, если канал свободен. В процессе передачи станция продолжает прослушивание сети для обнаружения возможных конфликтов. Если возникает конфликт из-за того, что два узла попытаются занять канал, то обнаружившая конфликт интерфейсная плата, выдает в сеть специальный сигнал, и обе станции одновременно прекращают передачу. Принимающая станция отбрасывает частично принятое сообщение, а все рабочие станции, желающие передать сообщение, в течение некоторого, случайно выбранного промежутка времени выжидают, прежде чем начать сообщение.

Все сетевые интерфейсные платы запрограммированы на разные псевдослучайные промежутки времени. Если конфликт возникнет во время повторной передачи сообщения, этот промежуток времени будет увеличен. Стандарт типа Ethernet определяет сеть с конкуренцией, в которой несколько рабочих станций должны конкурировать друг с другом за право доступа к сети.

TPMA

Алгоритм множественного доступа с передачей полномочия, или маркера, приведен на рис. 4.2.

Рис. 4 .2 Алгоритм TPMA

Метод с передачей маркера – это метод доступа к среде, в котором от рабочей станции к рабочей станции передается маркер, дающий разрешение на передачу сообщения. При получении маркера рабочая станция может передавать сообщение, присоединяя его к маркеру, который переносит это сообщение по сети. Каждая станция между передающей станцией и принимающей видит это сообщение, но только станция – адресат принимает его. При этом она создает новый маркер.

Маркер (token ), или полномочие, – уникальная комбинация битов, позволяющая начать передачу данных.

Каждый узел принимает пакет от предыдущего, восстанавливает уровни сигналов до номинального уровня и передает дальше. Передаваемый пакет может содержать данные или являться маркером. Когда рабочей станции необходимо передать пакет, ее адаптер дожидается поступления маркера, а затем преобразует его в пакет, содержащий данные, отформатированные по протоколу соответствующего уровня, и передает результат далее по ЛВС .

Пакет распространяется по ЛВС от адаптера к адаптеру, пока не найдет своего адресата, который установит в нем определенные биты для подтверждения того, что данные достигли адресата, и ретранслирует его вновь в ЛВС . После чего пакет возвращается в узел из которого был отправлен. Здесь после проверки безошибочной передачи пакета, узел освобождает ЛВС , выпуская новый маркер. Таким образом, в ЛВС с передачей маркера невозможны коллизии (конфликты). Метод с передачей маркера в основном используется в кольцевой топологии.

Данный метод характеризуется следующими достоинствами:

- гарантирует определенное время доставки блоков данных в сети;

- дает возможность предоставления различных приоритетов передачи данных.

Вместе с тем он имеет существенные недостатки:

- в сети возможны потеря маркера, а также появление нескольких маркеров, при этом сеть прекращает работу;

- включение новой рабочей станции и отключение связаны с изменением адресов всей системы.

TDMA

Множественный доступ с разделением во времени основан на распределении времени работы канала между системами (рис.4.7).

Доступ TDMA основан на использовании специального устройства, называемого тактовым генератором. Этот генератор делит время канала на повторяющиеся циклы. Каждый из циклов начинается сигналом Разграничителем . Цикл включает n пронумерованных временных интервалов, называемых ячейками. Интервалы предоставляются для загрузки в них блоков данных.

Рис. 4 .3 Структура множественного доступа с разделением во времени

Данный способ позволяет организовать передачу данных с коммутацией пакетов и с коммутацией каналов.

Первый (простейший) вариант использования интервалов заключается в том, что их число (n) делается равным количеству абонентских систем, подключенных к рассматриваемому каналу. Тогда во время цикла каждой системе предоставляется один интервал, в течение которого она может передавать данные. При использовании рассмотренного метода доступа часто оказывается, что в одном и том же цикле одним системам нечего передавать, а другим не хватает выделенного времени. В результате – неэффективное использование пропускной способности канала.

Второй, более сложный, но высокоэкономичный вариант заключается в том, что система получает интервал только тогда, когда у нее возникает необходимость в передаче данных, например при асинхронном способе передачи. Для передачи данных система может в каждом цикле получать интервал с одним и тем же номером. В этом случае передаваемые системой блоки данных появляются через одинаковые промежутки времени и приходят с одним и тем же временем запаздывания. Это режим передачи данных с имитацией коммутации каналов. Способ особенно удобен при передаче речи.

FDMA

Доступ FDMA основан на разделении полосы пропускания канала на группу полос частот (Рис. 4.8), образующих логические каналы .

Широкая полоса пропускания канала делится на ряд узких полос, разделенных защитными полосами. Размеры узких полос могут быть различными.

При использовании FDMA, именуемого также множественным доступом с разделением волны WDMA, широкая полоса пропускания канала делится на ряд узких полос, разделенных защитными полосами. В каждой узкой полосе создается логический канал. Размеры узких полос могут быть различными. Передаваемые по логическим каналам сигналы накладываются на разные несущие и поэтому в частотной области не должны пересекаться. Вместе с этим, иногда, несмотря на наличие защитных полос, спектральные составляющие сигнала могут выходить за границы логического канала и вызывать шум в соседнем логическом канале.

Рис. 4 .4 Схема выделения логических каналов

В оптических каналах разделение частоты осуществляется направлением в каждый из них лучей света с различными частотами. Благодаря этому пропускная способность физического канала увеличивается в несколько раз. При осуществлении этого мультиплексирования в один световод излучает свет большое число лазеров (на различных частотах). Через световод излучение каждого из них проходит независимо от другого. На приемном конце разделение частот сигналов, прошедших физический канал, осуществляется путем фильтрации выходных сигналов.

Метод доступа FDMA относительно прост, но для его реализации необходимы передатчики и приемники, работающие на различных частотах.



Загрузка...