sonyps4.ru

Кто должен выполнять гидравлический расчет тепловой сети. Гидравлический расчет тепловых сетей

Истечение срока поверки или срока службы обычно владелец не отслеживает, зато УК следит за этим внимательно. Не проведена поверка или замена счетчиков воды – цифры в квитанциях вырастут мгновенно. На вас будут распределены все платежи по ОДН и утечкам, а в Москве добиться перерасчета иногда непросто.

Грамотный работник заменит прибор за час

Если устанавливался прибор ответственными исполнителями. Работая в Москве, мы часто сталкиваемся с отсутствием запорного крана, а это грубейшее нарушение. В таких случаях приходится согласовывать с УК и соседями перекрытие магистралей. Разумеется, наши специалисты при замене счетчика воды в Москве и области кран устанавливают обязательно.

В остальном, процедура будничная, рутинная:

  • Проводится осмотр трубопроводов и коммуникаций, проверяются риски появления протечек;
  • Выясняется, нужен ли новый кран, или можно ограничиться проведением поверки. Довольно часто владельцы не в курсе этого обстоятельства;
  • При замене счетчика воды в Москве готовится комплект документов (разумеется, проводится проверка соединений, исправность прибора).

Всё делается быстро, в согласованное время, без привычного мусора и грязи, частенько оставляемой сантехниками. Осмотр труб и коммуникаций является обязательным, для заказчиков это не стоит дополнительных денег. Это сервис от компании «ТеплоВодоМонтаж».

При замене счетчика воды в квартире сверка показаний обязательна

Помните об этом, даже обратившись в другую компанию. После демонтажа показания старого прибора никто не будет принимать во внимание. Для страховки от лишних расходов (споров), зафиксируйте цифры, получив акт снятия показаний.

Учитывая короткий срок окупаемости (за счет экономии на коммунальных платежах), рекомендуем выбирать качественные приборы. На стоимости замены счетчика воды в квартире высокая цена отразится незначительно, а проблем будет намного меньше.

Некоторые владельцы стали устанавливать фильтры холодного водоснабжения непосредственно на вводных трубопроводах. Подобные комплексы становятся всё популярнее, обеспечивая чистой, практически питьевой водой всю квартиру.

Наши цены

Стоимость установки 1 водосчётчика от 1700 рублей
Стоимость замены 1 водосчётчика от 1400 рублей
Стоимость установки квартирного теплосчётчика от 12 000 рублей
Стоимость замены квартирного теплосчётчика от 7 000 рублей
Установка 1-ого радиатора от 3200 рублей
Установка 1-ого радиатора с заменой 2-ух кранов 1/2" от 4200 рублей
Перемычка 1800 рублей
Установка 1-ого радиатора с заменой 2-ух кранов 3/4" от 4700 рублей
Перемычка 2000 рублей
Установка 1-ого радиатора с заменой 2-ух кранов 1" от 5000 рублей
Перемычка 2400 рублей

Появление вводного комплекса водоподготовки удобно для хозяев, да и замена квартирного счетчика воды становится проще, дешевле. Как и обслуживание всей сантехники, меньше страдающей от загрязнений, особенно после длительных отключений.

Теплосчетчик в не жилых помещениях ДО и ПОСЛЕ монтажа





Производитель счетчиков Пульсар (Россия)

Проектирование и монтаж аналогичных систем – одно из направлений нашей деятельности, предлагаем внимательно отнестись к новым возможностям систем очистки и учета.

Поквартирный учет тепловой энергии возможен только при горизонтальной разводке системы теплоснабжения!!!*

Позвоните нам или оставьте заявку на сайте и наш менеджер свяжется с Вами.

Необходимость установки приборов учета воды и электричества уже ни у кого не вызывает сомнения.

И дело не только в законодательстве, но и в реальной экономии и желании платить за то, что было использовано.

С каждым годом все больше собственников квартир приходят к мысли об установке и теплосчетчика, потому что плата за отопление сказывается на семейном бюджете.

Квартирный теплосчетчик представляет собой небольшое устройство, встраиваемое в трубу отопления и производящее учет только того тепла, которое было фактически потреблено.

Прибором регистрируется 3 показателя:

  • объем теплоносителя (горячей воды), который получил потребитель;
  • температура при входе во внутриквартирную отопительную систему;
  • температура теплоносителя на выходе из квартиры.

На основании этих данных теплосчетчик выдает главную величину – теплопотребление. Оно измеряется в гигакаллориях, затраченных в расчетный период: месяц, год или даже день.

В итоге потребитель не платит за потери тепла в момент транспортировки по магистралям к дому и квартире.

Наиболее выгодный вариант – установка счетчика совместно с . В таком случае не придется платить за лишнее тепло, потребности в котором у жильцов нет, что часто происходит, например, в момент оттепелей.

Использование приборов учета тепла позволяет экономить до 50 % на отоплении , а это существенная сумма.

Но для реального эффекта необходимо правильно установить прибор.

Варианты монтажа теплосчетчика и возможные трудности

Отопительные системы всех квартир можно классифицировать на 2 группы:

  • вертикальный тип, в котором практически каждый радиатор имеет свой стояк;
  • горизонтальный вариант, имеющий один общий стояк, от которого расходится сеть горизонтальных трубопроводов к батареям.

Первый тип характерен для домов старой постройки. В такой системе установка теплового счетчика сложная и дорогостоящая. Ведь придется монтировать такое контрольное устройство для каждого стояка, что невыгодно и запрещено в многоэтажных и многоквартирных домах Приказом Минрегиона России от 29.12.11 № 627.

В этом случае можно установиться на каждый радиатор распределитель затрат отопления. Принцип их действия заключается в измерении разницы между температурами батареи и помещения. Показания по квартире суммируются. Можно также коллективно всем домом установить общедомовой счетчик. Затраты на него будут поделены между жильцами, поэтому окажутся несущественными, как и экономический эффект.

Гораздо проще обстоит дело с горизонтальной отопительной системой , характерной для новых многоэтажных домов. В этом случае теплосчетчик монтируется в трубу, подающую тепло в квартиру. Реже датчик ставят на обратный трубопровод.

Если в вашей квартире второй вид системы отопления, то теплосчетчик поможет сэкономить средства и достаточно быстро окупится. Осталось только определиться с видом прибора.

Теплосчетчики на отопление в квартире: виды приборов

Выбирая теплосчетчик необходимо ориентироваться не только на цену, но и на условия, в которых будет работать прибор. По принципу действия выделяют несколько видов устройств учета тепла.

Механические счетчики на батареи отопления

Устройства с механическим принципом действия называют еще тахометрическими. Они могут быть трех типов:

  • винтовыми;
  • турбинными;
  • клинчатыми.

В централизованных системах отопления в качестве теплоносителя используют горячую воду. Именно ее количество, поступившее во внутриквартирную отопительную систему, и учитывает сам механизм.

У всех счетчиков тепла этого типа есть несколько общих недостатков:

  • они недолговечны;
  • не особо точны при небольшом расходе теплоносителя;
  • чувствительны к присутствию в воде взвесей, что решается при помощи простого сетчатого фильтра;
  • не подходят для работы в жесткой воде.

По стоимости тахометрические устройства самые дешевые . Одним из наиболее популярных является устройство фирмы ELF, производимый в Польше. Оно состоит из температурного датчика, тахометрического измерителя и электровычислителя. В среднем счетчики этой фирмы стоят 8-9 тысяч рублей.

Также часто для квартир покупают прибор СТ-10, который можно в зависимости от желания потребителя укомплектовать тахометрическим, ультразвуковым или электромагнитым расходомером. Помимо этого в состав счетчика входит вычислитель и термопара. Стоят такие устройства около 9-10 тысяч рублей.

Электромагнитные счетчики тепла

Когда вода проходит сквозь магнитное поле, возникает электрический ток. Это явление лежит в основе работы электромагнитных теплосчетчиков. Такие устройства работают с высокой точностью при условиях правильного подключения.

Сбои могут возникать по нескольким причинам:

  • образование пленки окисления на поверхности контактов;
  • примеси в воде;
  • внешнее электромагнитное поле.
  • Недостатком их является высокая цена.

Помимо счетчиков СТ-10 с расходомером ВСЭ-БИ на электромагнитном принципе работают приборы ВЗЛЕТ ТСР-М в исполнении ТСР-033 или ТСР-034 с расходомером ВЗЛЕТ ЭР. Стоимость этого аппарата составляет минимум 32 тысяч рублей.

Вихревые счетчики на тепло

В этих приборах учет расхода производится на основании анализа вихрей, которые образуются при прохождении воды и даже пара через препятствия. Исказить показания могут:

  • пузырьки воздуха;
  • крупные взвеси;
  • погрешности в сверке.

Ультразвуковые приборы и цены

Принцип работы этого устройства основан на измерении скорости прохождения ультразвука через поток жидкости.

Ультразвуковые приборы бывают 4 типов:

  • временными;
  • частотными;
  • корреляционными;
  • доплеровскими.

Несколько исказить показаниям могут:

  • окалина в воде;
  • накипь в теплоносителе;
  • пузырьки воздуха.

Но это на сегодняшний день самые долговечные, точные и надежные системы. Широко применяются в квартирах следующие ультразвуковые счетчики:

  • Multical 402 средней стоимостью в 500 евро;
  • Ultraheat T230 , цена на который составляет минимум 15 500 рублей;
  • Измеритель тепловой энергии Индивид-1 для вертикальной разводки отопления — от 1500 рублей.

Определиться с видом прибора можно только после консультации со специалистами. Любой из счетчиков должен быть снабжен специальной документацией.

Регистрация, поверка и передача показаний

Установку устройства для учета тепла могут произвести только специалисты из организации, которая имеет специальную документацию, разрешающую подобную деятельность. Весь процесс монтажа производится в несколько шагов.

Шаг 1. Составление проектной документации.

Шаг 2. Предоставление проекта в организацию, снабжающую ваш дом теплом.

Шаг 3. Установка счетчика и последующая его регистрация.

Шаг 4. Окончательная наладка работы прибора и передача его в эксплуатацию компании, занимающейся надзором за подобными аппаратами.

После этого счетчиком можно пользоваться. Эксплуатация его включает в себя передачу показания . Эта процедура может осуществляться несколькими способами:

  • на электронную почту управляющей организации;
  • по телефону;
  • записью в квитанции с самостоятельным подсчетом суммы платежа.

Обслуживание прибора заключается в своевременной поверке. Новый счетчик поверяется еще на заводе, и потребитель получает его с записью, наклейкой и клеймом в паспорте и на самом устройстве.

Регламентируемое между поверками время составляет 3-5 лет. Повторно поверяют устройство в филиале Ростеста, в специальной организации или на самом заводе-изготовителе.

Солнечные батареи для отопления дома: как работают гелиосистемы? Читайте в статье.

Разновидности : как выбрать и установить?

Как обустроить вентиляцию в ванной комнате и туалете? Узнайте по ссылке.

Цена установки теплосчетчика на отопление в квартире

Если вы решились на монтаж теплосчетчика, необходимо правильно выбрать компанию, которой вы доверите это ответственное мероприятие.

Надежную фирму можно определить по нескольким параметрам:

  • сертификация и допуск к подобным работам;
  • бесплатный выезд специалиста для консультации;
  • предоставление гарантий на работу;
  • сервисное обслуживание.

Цена на установку составляет в среднем 5000 рублей.

Видео о теплосчетчике, его описание и монтаж:

Гидравлический расчет производят в следующей последовательности:

    Выбирают на трассе тепловых сетей главную магистраль – наиболее протяженную и загруженную, соединяющую источник теплоснабжения с дальними потребителями.

    Разбивают тепловую сеть на расчетные участки, проставляют номера (сначала по главной магистрали, затем по ответвлениям), определяют расчетные расходы теплоносителя и измеряют длину участков.

    Задавшись удельными потерями давлений на трение, исходя из расходов теплоносителя на участках, по номограмме (приложение 10) , составленным для труб с коэффициентом эквивалентной шероховатости k e = 0,0005 мм, находят диаметр трубопроводов, действительные удельные потери на трение и скорость движения теплоносителя, которая должна быть не более 3,5 м/c.

    Определив диаметры расчетных участков тепловой сети, разрабатывают монтажную схему теплопроводов, размещая по трассе запорную арматуру, неподвижные опоры, компенсаторы.

    По монтажной схеме устанавливают местные сопротивления на расчетных участках и находят сумму коэффициентов местных сопротивлений и их эквивалентные длины, в зависимости от диаметра трубопровода.

    Определяют приведённую длину расчетного участка тепловой сети

    Находят потери давления на расчетных участках тепловой сети

4.1 Определение расходов сетевой воды

Расчетный расход сетевой воды, т/ч , в закрытых системах теплоснабжения для определения диаметров труб в водяных тепловых сетях при качественном регулировании отпуска теплоты следует определять отдельно для отопления, вентиляции и горячего водоснабжения по формулам:

На отопление :

где и – температуры в подающем и обратном трубопроводах тепловой сети при расчетной температуре наружного воздуха для проектирования систем отопления и вентиляции.

На вентиляцию :

Расчетные расходы сетевой воды на горячее водоснабжение, т/ч зависят от схемы присоединения водоподогревателей. При двухступенчатой схеме присоединения расход воды определяют по следующим формулам:

где среднечасовой расход воды на горячее водоснабжение, т/ч.

И температура в подающем и обратном теплопроводах в точке излома графиков температур воды.

Формулы для определения расчетного расхода сетевой воды при параллельной схеме присоединения подогревателей приведены в .

Суммарный расчетный расход сетевой воды, т/ч, в двухтрубных тепловых сетях при качественном регулировании по отопительной нагрузке:

где коэффициент, учитывающий долю среднего расхода воды на горячее водоснабжение, принимается в зависимости от мощности системы теплоснабжения (k=1,0 при k=1,0 при ).

Для потребителей с тепловым потоком 10 МВт и менее суммарный расчетный расход воды следует определять по формуле:

При центральном качественном регулировании отпуска теплоты по совмещённой нагрузке отопления и горячего водоснабжения расчетный расход сетевой воды определяется как сумма расходов воды на отопление и вентиляцию без учета нагрузки горячего водоснабжения:

Расчетный расход сетевой воды в неотопительный период, т/чопределяется по формуле:

где определяют по формуле (33), с учётом того, что максимальную тепловую нагрузку на горячее водоснабжение определяют с учётом повышения температуры холодной воды до 15 o C;

Коэффициент, учитывающий изменение расхода воды на горячее водоснабжение в неотопительный период по отношению к отопительному, принимаемый для жилищно-коммунального сектора равным 0,8. Для курортных и южных городов , для промышленных предприятий .

ПРИМЕР 4. Для двух кварталов района города определить расчетный суммарный расход сетевой воды. Данные по расчетным тепловым потокам взять из примера 1. Температура воды в подающем трубопроводе , в обратном Регулирование отпуска теплоты производится по совмещенной нагрузке на отопление и горячее водоснабжение.

Водяные системы теплоснабжения представляют собой сложные гидравлические системы, в которых работа отдельных звеньев находится во взаимной зависимости. Одним из важных условий работы таких систем является обеспечение в тепловой сети перед центральными или местными тепловыми пунктами располагаемых напоров, достаточных для подачи в абонентские установки расходов воды, соответствующей их тепловой нагрузке.

Гидравлический расчет – один из важных разделов проектирования и эксплуатации тепловой сети. При проектировании тепловой сети в гидравлический расчет входят следующие задачи: определение диаметров трубопроводов, определение падение давления, определение давлений в различных точках сети, увязка всей системы при различных режимах работы сети. Результаты гидравлического расчета дают следующие исходные данные:

1) Для определения капиталовложений, расход металла труб и основного объема работ на сооружение тепловой сети;

2) Установление характеристик циркуляционных и подпиточных насосов, количество насосов и их размещение;

3) Выяснения условия работы условий источников теплоты, тепловой сети и абонентских систем выбора схем присоединения теплопотребляющих установок к тепловой сети;

5) Разработка режимов эксплуатации систем теплоснабжения.

В качестве исходных данных для расчёта обычно задаются: схема тепловой сети, параметры теплоносителя на входе в рассчитываемый участок, расход теплоносителя и длина участков сети. Поскольку в начале расчёта неизвестен ряд величин, задачу приходиться решать методом последовательных приближений в два этапа: приближенный и проверочный расчёты.

Предварительный расчёт

1. Определяется располагаемая потеря напора в сети исходя из обеспечения необходимого статического напора на абонентском вводе. Определяется тип пьезометрического графика.

2. Выбирается самая отдалённая точка тепловой сети (расчётная магистраль).

3. Магистраль разбивается на участки по принципу постоянства расхода теплоносителя и диаметра трубопровода. В некоторых случаях в пределах участка с равным расходом изменяется диаметр трубопровода. На участке находится сумма местных сопротивлений.

4. Вычисляется предварительное падение давления на данном участке, оно же является максимально возможным падением давления на рассматриваемом участке.

5. Определяется доля местных потерь данного участка и удельное линейное падение давления. Доля местных потерь представляет собой отношение падения давления в местных сопротивлениях к линейному падению давления прямолинейных участков.

6. Предварительно определяется диаметр трубопровода рассчитываемого участка.

Проверочный расчёт

1. Предварительно рассчитанный диаметр трубы округляется до ближайшего стандартного типоразмера трубы.

2. Уточняется линейное падение давление и вычисляется эквивалентная длина местных сопротивлений. Эквивалентная длина местных сопротивлений – прямолинейный трубопровод линейное падение давления на котором равно падению давления в местных сопротивлениях.

3. Рассчитывается истинное падение давления на участке, которое является полным сопротивлением данного участка.

4. Определяется потеря напора и располагаемый напор в конечной точки участка между подающий и обратной линиях.

Все участки тепловой сети рассчитываются по данной методике и увязываются между собой.

Для проведения гидравлического расчета обычно задаются схемой и профилем тепловой сети, а затем выбирают наиболее удаленную точку, которые характеризуется наименьшим удельным падением магистрали. Расчетная температура сетевой воды в подающей и обратной линиях тепловой сети: t1=150 °С, t2=70 °С. Расчетная схема тепловой сети показана на рис. 5.1.

Располагаемый напор в точке ввода м. вод. ст. Располагаемый напор на всех абонентских вводах м. вод. ст. Средний удельный вес воды γ =9496 Н/м 2 , длина расчетной магистрали, L(0-11)=820 м.

Определяем расходы воды на участках в соответствии с расчетной схемой и результаты сводим в в табл. 5.1.

Таблица 5.1.

Расход воды по участкам

№ участка 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
G,т/ч 65,545 60,28 47,1175 31,3225 26,6425 18,745 9,6775 6,1675 3,8275
№ участка 10-11 1-1.1 2-2.1 3-3.1 3.1-3.2 3.1-3.3 3.3-3.4 3.3-3.5 3.5-3.6
G,т/ч 1,755 0,585 0,585 9,945 0,585 8,19 0,585 5,5575 3,51
№ участка 3.5-3.7 4-4.1 5-5.1 6-6.1 7-7.1 8-8.1 9-9.1 10-10.1 11-1.1
G,т/ч 1,17 0,585 0,8775 0,585 0,8775 0,8775 0,8775 2,6325 0,8775

Предварительный расчет

Располагаемая потеря напора м. вод. ст. Распределяем поровну эту потерю напора между подающей и обратной линиями тепловой сети, поскольку тепловая сеть выполнена в двух трубном исполнение, одинаковый профиль труб . вод. ст.

Падение давления на участке 1-2, Па:

δP1-2 = δH*ƴ*L1-2/L1-27=4748

∑Ƹ=∑Ƹзадв+∑Ƹ90ᵒ+∑Ƹкомп=2,36

Определяем долю местных сопротивлений

0,20

где коэффициент при эквивалентом шероховатости ..

Предварительно вычисляем удельное линейное падение давления, Па/м и диаметр участка 1-2, м:

Па/м;

,

где коэффициент при эквивалентой шероховатости для стальных труб, .

Поверочный расчет

Выбираем ближайший стандартный внутренний диаметр, мм по ГОСТ 8731-87 "Трубы стальные" .

Dв.1-2 = 0,261 мм.

Определяем удельное линейное падение давления, Па/м:

11,40Па/м,

где коэффициент при эквивалентом шероховатости, .

Рассчитываем эквивалентную длину местных сопротивлений, м участка трубопровода на участке 1-2

28,68м,

где – коэффициент, зависящий от абсолютной эквивалентной шероховатости .

Потеря давления на участке трубопровода 0-1, Па:

Потеря напора на участке трубопровода 0-1, м. вод.ст.:

0,13м.

Так как потеря напора в подающей и обратной линиях тепловой сети одинакова, то располагаемый напор в точке 1, можно вычислить по формуле:

Для остальных участков рассматриваемой магистрали расчеты проводятся аналогично, их результаты представлены в табл. 5.2.

Таблица 5.2

Гидравлический расчет магистрали теплопровода

Предварительный Поверочный
L,м δP,Па Σξ А Rл, Па/м d, м d", м R", Па/м Lэ, м δP",Па δH", м ΔH", м
0-1 1,34 0,46 40,69 0,29 0,313 9,40 17,05 348,14 0,04 29,93
1-2 2,36 0,20 49,38 0,28 0,261 11,40 28,68 1238,73 0,13 29,74
2-3 3264,25 1,935 0,24 47,83 0,28 0,261 11,04 23,69 868,90 0,09 29,82
3-4 3857,75 2,105 0,22 48,58 0,28 0,261 11,21 25,68 1016,91 0,11 29,79
4-5 10979,75 4,145 0,15 51,46 0,27 0,261 11,88 49,87 2789,63 0,29 29,41
5-6 3857,75 2,105 0,22 48,58 0,28 0,261 11,21 25,68 1016,91 0,11 29,79
6-7 7418,75 3,125 0,17 50,68 0,27 0,261 11,70 37,74 1903,62 0,20 29,60
7-8 3,38 0,17 50,93 0,27 0,261 11,76 40,77 2125,15 0,22 29,55
8-9 2670,75 1,765 0,27 46,79 0,28 0,261 10,80 21,72 720,73 0,08 29,85
9-10 1483,75 1,425 0,39 42,69 0,28 0,313 9,86 17,92 423,17 0,04 29,91
10-11 890,25 1,255 0,57 37,74 0,29 0,313 8,72 16,25 272,45 0,03 29,94

Ответвление рассчитываться как транзитные участки с заданным падением давления (напора). При расчете сложных ответвлений, сначала находиться расчетное направление как направление с минимальным удельным падением давления, а затем проводят все остальные операции.

Гидравлический расчет ответвления теплопровода показан в табл. 5.3.

Таблица 5.3

Результаты гидравлического расчета ответвлений

L,м δP,Па Σξ А Rл, Па/м d, м d", м R", Па/м Lэ, м δP",Па δH", м ΔH", м
3-3.1 1,34 0,458607 25,36 0,31 0,313 5,86 19,07 229,1455 0,02 29,95
3.1-3.2 593,5 1,17 0,80085 27,35 0,31 0,313 6,32 16,36 166,6545 0,02 29,96
3.1-3.3 2077,25 1,595 1,224859 22,87 0,32 0,313 5,29 23,27 308,2111 0,03 29,94
3.3-3.4 593,5 1,17 0,80085 27,35 0,31 0,313 6,32 16,36 166,6545 0,02 29,96
3.3-3.5 890,25 1,255 0,572688 26,32 0,31 0,313 6,08 17,71 199,023 0,02 29,96
3.5-3.6 2,02 0,230444 19,65 0,33 0,313 4,55 30,55 411,7142 0,04 29,91
3.5-3.7 1,34 0,458607 25,36 0,31 0,313 5,86 19,07 229,1455 0,02 29,95
4-4.1 593,5 1,17 0,80085 27,35 0,31 0,313 6,32 16,36 166,6545 0,02 29,96
5-5.1 890,25 1,255 0,572688 26,32 0,31 0,313 6,08 17,71 199,023 0,02 29,96
6-6.1 593,5 1,17 0,80085 27,35 0,31 0,313 6,32 16,36 166,6545 0,02 29,96
7-7.1 890,25 1,255 0,572688 26,32 0,31 0,313 6,08 17,71 199,023 0,02 29,96
8-8.1 890,25 1,255 0,572688 26,32 0,31 0,313 6,08 17,71 199,023 0,02 29,96
9-9.1 890,25 1,255 0,572688 26,32 0,31 0,313 6,08 17,71 199,023 0,02 29,96
10-10.1 2670,75 1,765 0,268471 21,46 0,32 0,313 4,97 26,14 353,213 0,04 29,93
11-11.1 890,25 1,255 0,572688 26,32 0,31 0,313 6,08 17,71 199,023 0,02 29,96

Пьезометрический график показан на рис. 5.2.

6.Расчет толщины изоляции

Среднегодовая температура теплоносителя t 1 =100, t 2 =56,9

Определим внутренний d в.э и наружный d н.э эквивалентные диаметры канала по внутренним (0,9×0,6 м) и наружным (1,15×0,78 м) размерам его поперечного сечения:

м

м

Определим термическое сопротивление внутренней поверхности канала

Определим термическое сопротивление стенки канала Rк, приняв коэффициент теплопроводности железобетона λст = 2,04 Вт/(м · град):

Определим при глубине заложения оси труб h = 1,3 м и теплопроводности грунта λгр = 2,0 Вт/(м · град), термическое сопротивление грунта

Приняв температуру поверхности теплоизоляции 40 °С , определим средние температуры теплоизоляционных слоев подающего t т.п и обратного t т.о трубопроводов:

Определим также, используя прил. , коэффициенты

теплопроводности тепловой изоляции (Теплоизоляционные изделия

из пенополиуретана) для подающего λ к1 и обратного λ к2 трубопроводов:

λ к 1 = 0,033 + 0,00018 t т.п = 0,033 + 0,00018 ⋅ 70 = 0,0456 Вт/(м⋅°С);

λ к2 = 0,033 + 0,00018 t т.о = 0,033 + 0,00018 ⋅ 48,45 = 0,042 Вт/(м⋅ °С).

Определим термическое сопротивление поверхности теплоизоляционного слоя:

Примем по прил. нормируемые линейные плотности тепловых потоков для подающего ql1 = 45 Вт/м и обратного ql2 = 18 Вт/м трубопроводов. Определим суммарные термические сопротивления для подающего Rtot1 и обратного Rtot2 трубопроводов при К1 = 0,9 :

Определим коэффициенты взаимного влияния температурных полей подающего ϕ1 и обратного ϕ2 трубопроводов:

Определим требуемые термические сопротивления слоёв для подающего Rк.п и обратного Rк.о трубопроводов, м ⋅°С/Вт:

R к.п = R tot1 − R п.c − (1+ϕ 1)(R п.к + R к + R гр)=

2,37− 0,1433− (1+ 0,4)(0,055 + 0,02+ 0,138) =1,929 м⋅ °С /Вт;

R к.о = R tot2 − R п.c − (1+ϕ 1)(R п.к + R к + R гр)=

3,27− 0,1433− (1+ 2,5)(0,055 + 0,02 + 0,138) = 2,381 м ⋅ °С /Вт.

Определим значения В для подающего и обратного трубопроводов:

Определим требуемые толщины слоев тепловой изоляции для подающего δк1 и обратного δк2 трубопроводов:

Принимаем толщину основного слоя изоляции для подающего мм, обратного трубопроводов мм.

Расчет компенсатора

Компенсаторы предназначены для компенсации температурных удлинений и деформаций для предотвращения разрушения трубопроводов. Компенсаторы располагаются между неподвижными опорами.

Расчет компенсатора для 3го участка.

Приняв коэффициент температурного удлинения α=1,25 10⋅ − 2 мм/(м ⋅°С) , используя данные табл. 14.2 прил. 14 , определим максимальную длину участка, на которой может обеспечить компенсацию один сильфонный компенсатор:

Здесьλ– амплитуда осевого хода, мм, λ = 60мм

Необходимое количество компенсаторов n на расчетном участке составит

шт

Примем одинаковые пролеты между неподвижными опорами

83/2= L ф = 41,5м.

Определим фактическую амплитуду компенсатора λ ф при длине пролета между неподвижными опорами L ф = 41,5 м.

R с. к, приняв одинаковые пролеты между неподвижными опорами L = 41,5 м:

R c.к = R ж + R р,

где R ж – осевая реакция, возникающая вследствие жесткости осевого хо- да, определяется по формуле (1.85)

R ж = С λ λ ф = 278 · 36,31 =10094,2 Н

где С λ – жесткость волны, Н/мм, (С λ = 278 Н/мм);

R р – осевая реакция от внутреннего давления, Н , определяемая

Определим реакцию компенсатора Р с. к

R c.к = R ж + R р = 10094,2+ 17708 = 27802,2 Н.

В системе теплоснабжения тепловой пункт, связывающий тепловую сеть с потребителем теплоты, занимает важное место. Посредством теплового пункта (ТП) осуществляется управление местными системами потребления (отоплением, горячим водоснабжением, вентиляцией), в нем также производится трансформация параметров теплоносителя (температуры, давления, поддержание постоянства расхода, учет теплоты и др.). Одновременно в тепловом пункте осуществляется управление самой сетью, так как в нем производится по отношению к тепловой сети распределение теплоносителя и контроль его параметров

Проект теплового пункта выполняем для 5 этажного дома, подключенного на участке 6.

Схема индивидуального теплового пункта приведена

Подбор смесительных насосов

Подача насоса определяется согласно СП 41-101-95 по формуле:

где –расчетный максимальный расход воды на отопление из тепловой сети кг/с;

u – коэффициент смешения, определя­емый по формуле:

где – температура воды в подающем трубо­проводе тепловой сети при расчетной температуре наружного воздуха для про­ектирования отопления t н.о, °С;

–тоже, в подающем трубопроводе сис­темы отопления, °С;

– то же, в обратном трубопроводе от сис­темы отопления, °С;

;

Напор смесительного насоса при таких схемах установки определяется в зависимости от давления в тепловой сети, а так же требующегося давления в системе отопления и принимается с запасом в 2 -3 м.

Выбираем циркуляционные насосы WiloStratos ECO 30/1-5-BMS. Это стандартные насосы с мокрым ротором и фланцевым присоединением. Насосы предназначены для использования в системах отопления, промышленных циркуляционных системах, системах водоснабжения и кондиционирования.

WiloStratos ECO успешно используются в системах, где температура перекачиваемой жидкости составляет широкий диапазон: от -20 до +130°С. Многоступенчатый (2-х, 3-х) переключатель частоты вращения позволяет оборудованию подстраиваться под текущие условия системы отопления.

Устанавливаем 2 насоса фирмы Wilo марки ECO 30/1-5-BMSс подачей 3 м^3/ч, напором 6 м. Один из насосов находится в резерве.

Подбор циркуляционного насоса

Выбираем циркуляционный насос типа GrundfosComfort. Эти насосы обеспечивают циркуляцию воды в системе ГВС. Благодаря этому горячая вода течет сразу же после того, как открывается кран. Этот насос комплектуется встроенным термостатом, автоматически поддерживающим заданную температуру воды в диапазоне от 35 до 65 °С. Это насос с «мокрым ротором», но благодаря его сферической форме практически невозможна блокировка рабочего колеса вследствии загрязнения насоса содержащимися в воде примесями. Выбираем насос Grundfos UP 15-14 B с подачей 0,8 м 3 /час, напор 1,2 м, мощностью 25 Вт.

Выбор магнитных фланцевых фильтров

Магнитные фильтры предназначены для улавливания стойких механических примесей (в том числе ферромагнетиков) в неагрессивных жидкостях с температурой до 150 °С и давлением 1,6 МПа (16 кгс/см 2). Они устанавливаются перед счетчиками холодной и горячей воды. Принимаем фильтр ФМФ.

Выбор грязевика

Грязевики предназначены для очистки воды в системах теплоснабжения от взвешенных частиц грязи, песка и других примесей.

Устанавливаем грязевик серии Ду65 Ру25 Т34.01 с.4.903-10 на подающем трубопроводе при вводе в тепловой пункт.

Выбор регулятора расхода и давления

Регулятор применяют как регулятор прямого действия для автоматизации абонентских вводов жилых зданий. Он подбирается по коэффициенту пропускной способности клапана:

где DР = 0,03…0,05 МПа – перепад давления на клапане, принимаем DР = 0,04 МПа.

м 3 /ч.

Выбор регулятора расхода и давленияDanfoss AVP с условным диаметром, D y – 65 мм, - 2 м 3 /ч

Выбор терморегулятора

Предназначен для автоматического регулирования температуры в открытых системах ГВС. Регулятор снабжен блокировочным устройством, защищающим систему отопления от опорожнения в часы пиковых нагрузок ГВС и в аварийных ситуациях.

Выбираем терморегуляторDanfossAVT/VGс условным диаметром, D y – 65 мм, - 2 м 3 /ч.

Выбор обратных клапанов

Обратные клапаны являются запорной арматурой. Они предотвращают обратный ток воды.

Обратные клапаны типа 402 фирмы Danfoss устанавливаем на трубопроводе после РР, на перемычке после насосов, после циркуляционного насоса, на трубопроводе ГВС.

Выбор предохранительного клапана

Предохранительные клапаны – это вид трубопроводной арматуры, предназначенный для автоматической защиты технологической системы и трубопроводов от недопустимого повышения давления рабочей среды путем частичного ее сброса из защищаемой системы. Наиболее распространены пружинные предохранительные клапаны, в которых давлению рабочей среды противодействует сила сжатой пружины. Направление подачи рабочей среды - под золотник. Клапан предохранительный чаще всего присоединяется к трубопроводу с помощью фланца, колпаком вверх.

Выбираем клапан предохранительный пружинный без ручного подрыва 17нж21нж (СППК4) с D у = 65 мм.

Выбор шаровых кранов

На подающем трубопроводе из тепловой сети, а также на обратке, на трубопроводах к терморегулятору и после него устанавливаем шаровые краны, из углеродистой стали (шар – нержавеющая сталь), сварные, с рукояткой, фланцевые, (Р у = 2,5 МПа) типа Jip, фирмы Danfoss, с D у = 65 мм. На циркуляционном трубопроводе линии ГВС до и после циркуляционного насоса, устанавливаем шаровые краны с D у = 65 мм. Перед подающей линии системы отопления и после обратной линии шаровые краны с D у = 65 мм и с D у = 65 мм. На перемычке насосов смешения устанавливаем шаровые краны с D у = 65 мм.

Выбор теплосчетчика

Теплосчетчики для закрытых систем теплоснабжения предназначены для измерения суммарного количества тепловой энергии и суммарного объемного количества теплоносителя. Устанавливаем тепловычислитель Логика 9943-У4 срасходомером SONO 2500 CT; Dу= 32 мм.

Тепловычиситель рассчитан на работу в открытых и закрытых системах водяного теплоснабжения от 0 до 175 ºС и давления до 1,6 МПа. Разность температур воды в подающем и обратном трубопроводе системы от 2 до 175 ºС. Прибор обеспечивает подключение двух однотипных платиновых термопреобразователей сопротивления и одного или двух расходомеров. Обеспечивает регистрацию показаний параметров в электронном архиве. Прибор формирует месячные и суточные отчеты, где в табличной форме представлены все необходимые сведения о потреблении тепловой энергии и теплоносителя.

Комплект термопреобразователей КТПТР-01-1-80 платиновый предназначен для измерения разности температур в подающем и обратном трубопроводах систем теплоснабжения. Применяется в составе теплосчетчиков. Принцип работы комплекта основан на пропорциональном изменении электрического сопротивления двух подобранных по сопротивлению и температурному коэффициенту термопреобразователей в зависимости от измеряемой температуры. Диапазон измерения температуры от 0 до 180 о С .

Заключение

Целью работы являлась разработка системы теплоснабжения жилого микрорайона. Район состоит из тринадцати зданий, одиннадцать жилых, один детский сад и одна школа., место расположения района г. Омск.

Разрабатываемая система теплоснабжения закрытая с центральным качественным регулированием с температурным графиком 130/70 . По роду подачи тепла двухступенчатая – здания непосредственно присоединяются к тепловой сети через автоматизированные ИТП, ЦТП отсутствуют.

При разработке тепловой сети были выполнены следующие необходимые расчеты:

Определенны тепловые нагрузки на отопление, вентиляцию и ГВС всех абонентов. В качестве метода определения нагрузок отопления и вентиляции использован метод по укрупненным показателям. Исходя из типа и объема здания задавались удельными тепловыми потерями здания. Расчетные температуры приняты согласно наружной температуре по СНиП «Строительная климатология». Температура внутри помещения по справочным данным согласно СанПиН исходя из назначения помещения. Нагрузку на ГВС определяли по нормативному расходу горячей воды на одного человека согласно справочных данных исходя из типа здания.

Рассчитан график центрального качественного регулирования

Определенны расчетные расходы сетевой воды (абонентов)

Разработана гидравлическая схема тепловой сети и выполнен гидравлический расчет, цель которого определить диаметры трубопроводов и падение давления на участках тепловой сети

Выполнен тепловой расчет теплопроводов, т.е. расчет изоляции для снижения теплопотерь в сети. Расчет выполнен по методу непревышения нормируемых тепловых потерь. В качестве теплопроводов выбрана предизолированная труба с изоляцией из пенополиуретана. Способ прокладки трубопровода бесканальный

Выполнен подбор компенсаторов для компенсации удлинения трубопроводов вследствие температурного расширения. В качестве компенсаторов применены сильфонные компенсаторы.

-был разработана схема индивидуального теплового пункта и подобраны основные элементы, т.е. насосы, регулирующие клапана, терморегуляторы и.т.д.

Библиографический список

1. Соколов Е.Я. Теплофикация и тепловые сети/ Е.Я.Соколов; .– М.: Издательство МЭИ, 2001. – 472 с.:ил.

2. Тихомиров А.К. Теплоснабжение района города: учеб. Пособие/ А.К. Тихомиров.- Хабаровск: Изд-во Тхоокеан. Гос. Ун-та, 2006.-135с.

3. Манюк В.И. Наладка и эксплуатация водяных тепловых сетей: Справочник./ В.И. Манюк, Э.Б.Хиж и др. М.:Стройиздат,1988. 432с.

4. Справочник проектировщика. Проектирование тепловых сетей./Под.ред. А.А. Николаева. М. 1965. 359с.

5. Зингер Н.М. Гидравлические и тепловые режимы теплофикационных систем. М.: Энергоатомиздат, 1986. 320с.

6. Златопольский А.Н. Экономика, организация и планирование теплосилового хозяйства промышленного предприятия/ Златопольский А.Н., Прузнер С.Л., Калинина Е.И., Ворошилов Б.С. М.: Энергоатомиздат, 1995. 320с.

7. Сборник №24 «Теплоснабжение и газопроводы – наружные сети» ТЕР 81-02-24-2001 (г. Омск), 2002г.

8. СНиП 41-03-2003 Тепловая изоляция.

9. И.В. Беляйкина Водяные тепловые сети/ И.В. Беляйкина, В.П. Витальев, Н.К. Громов и др.; Под ред. Н.К.Громова, Е.П. Шубина. М.: Энергоатомиздат, 1988г. 376с.

10. СНиП 41-02-2003 Тепловые сети.

11. Козин В.Е. Теплоснабжение/ Козин В.Е., Левина Т.А., Марков А.П., Пронина И.Б., Слемзин В.А. М.: Высшая школа, 1980. 408с.

12.Теплоснабжение (курсовое проектирование): Учебное пособие/ В. М. Копко, Н.К. Зайцев, Г. И. Базыленко-Мн,1985-139 с.

13. СНиП 23-01-99* «Строительная климатология»

14 Применение средств автоматизации Danfoss в тепловых пунктах систем централизованного теплоснабжения зданий, В.В. Невский, 2005г.

15. Cтандартные автоматизированные блочные тепловые пункты фирмы Danfoss, В.В. Невский, Д.А. Васильев, 2008г.

16 Проектирование распределительных сетей теплоснабжения микрорайона,
Е.В. Корепанов, М.:Высш.школа, 2002г.,

17. СНиП 23-05-95 «Естественное и искусственное освещение»


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20



Загрузка...