sonyps4.ru

Функции протокола modbus rtu. Modbus протокол – как он устроен

Modbus -коммуникационный протокол, основан на архитектуре ведущий-ведомый (master-slave). Использует для передачи данных интерфейсы RS-485, RS-422, RS-232, а также Ethernet сети TCP/IP (протокол Modbus TCP).

Сообщение Modbus RTU состоит из адреса устройства SlaveID, кода функции, специальных данных в зависимости от кода функции и CRC контрольной суммы.

Если отбросить SlaveID адрес и CRC контрольную сумму, то получится PDU, Protocol Data Unit.

SlaveID – это адрес устройства, может принимать значение от 0 до 247, адреса с 248 до 255 зарезервированы.

Данные в модуле хранятся в 4 таблицах.

Две таблицы доступны только для чтения и две для чтения-записи.

В каждой таблице помещается 9999 значений.

Номер регистра Адрес регистра HEX Тип Название Тип
1-9999 0000 до 270E Чтение-запись Discrete Output Coils DO
10001-19999 0000 до 270E Чтение Discrete Input Contacts DI
30001-39999 0000 до 270E Чтение Analog Input Registers AI
40001-49999 0000 до 270E Чтение-запись Analog Output Holding Registers AO

В сообщении Modbus используется адрес регистра.

Например, первый регистр AO Holding Register, имеет номер 40001, но его адрес равен 0000.

Разница между этими двумя величинами есть смещение offset.

Каждая таблица имеет свое смещение, соответственно: 1, 10001, 30001 и 40001.

Ниже приведен пример запроса Modbus RTU для получения значения AO аналогового выхода (holding registers) из регистров от #40108 до 40110 с адресом устройства 17.

11 03 006B 0003 7687

В ответе от Modbus RTU Slave устройства мы получим:

11 03 06 AE41 5652 4340 49AD

11 Адрес устройства (17 = 11 hex) SlaveID
03 Функциональный код Function Code
06 Количество байт далее (6 байтов идут следом) Byte Count
AE (AE hex) Register value Hi (AO0)
41 (41 hex) Register value Lo (AO0)
56 Значение старшего разряда регистра (56 hex) Register value Hi (AO1)
52 Значение младшего разряда регистра (52 hex) Register value Lo (AO1)
43 Значение старшего разряда регистра (43 hex) Register value Hi (AO2)
40 Значение младшего разряда регистра (40 hex) Register value Lo (AO2)
49 Контрольная сумма CRC value Lo
AD Контрольная сумма CRC value Hi

Регистр аналогового выхода AO0 имеет значение AE 41 HEX или 44609 в десятичной системе.

Регистр аналогового выхода AO1 имеет значение 56 52 HEX или 22098 в десятичной системе.

Регистр аналогового выхода AO2 имеет значение 43 40 HEX или 17216 в десятичной системе.

Значение AE 41 HEX - это 16 бит 1010 1110 0100 0001, может принимать различное значение, в зависимости от типа представления.

Значение регистра 40108 при комбинации с регистром 40109 дает 32 бит значение.

Пример представления.

Тип представления Диапазон значений Пример в HEX Будет в десятичной форме
16-bit unsigned integer 0 до 65535 AE41 44,609
16-bit signed integer -32768 до 32767 AE41 -20,927
two character ASCII string 2 знака AE41 ® A
discrete on/off value 0 и 1 0001 0001
32-bit unsigned integer 0 до 4,294,967,295 AE41 5652 2,923,517,522
32-bit signed integer -2,147,483,648 до 2,147,483,647 AE41 5652 -1,371,449,774
32-bit single precision IEEE floating point number 1,2·10−38 до 3,4×10+38 AE41 5652 -4.395978 E-11
four character ASCII string 4 знака AE41 5652 ® A V R

Какие бывают команды Modbus RTU?

Приведем таблицу с кодами функций чтения и записи регистров Modbus RTU.

Код функции Что делает функция Тип значения Тип доступа
01 (0x01) Чтение DO Read Coil Status Дискретное Чтение
02 (0x02) Чтение DI Read Input Status Дискретное Чтение
03 (0x03) Чтение AO Read Holding Registers 16 битное Чтение
04 (0x04) Чтение AI Read Input Registers 16 битное Чтение
05 (0x05) Запись одного DO Force Single Coil Дискретное Запись
06 (0x06) Запись одного AO Preset Single Register 16 битное Запись
15 (0x0F) Запись нескольких DO Force Multiple Coils Дискретное Запись
16 (0x10) Запись нескольких AO Preset Multiple Registers 16 битное Запись

Как послать команду Modbus RTU на чтение дискретного вывода? Команда 0x01

Эта команда используется для чтения значений дискретных выходов DO.

В запросе PDU задается начальный адрес первого регистра DO и последующее количество необходимых значений DO. В PDU значения DO адресуются, начиная с нуля.

Значения DO в ответе находятся в одном байте и соответствуют значению битов.

Значения битов определяются как 1 = ON и 0 = OFF.

Младший бит первого байта данных содержит значение DO адрес которого указывался в запросе. Остальные значения DO следуют по нарастающей к старшему значению байта. Т.е. справа на лево.

Если запрашивалось меньше восьми значений DO, то оставшиеся биты в ответе будут заполнены нулями (в направлении от младшего к старшему байту). Поле Byte Count Количество байт далее указывает количество полных байтов данных в ответе.

Пример запроса DO с 20 по 56 для SlaveID адреса устройства 17. Адрес первого регистра будет 0013 hex = 19, т.к. счет ведется с 0 адреса (0014 hex = 20, -1 смещение нуля = получаем 0013 hex = 19).

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
01 Функциональный код 01 Функциональный код
00 05 Количество байт далее
13 CD Значение регистра DO 27-20 (1100 1101)
00 Количество регистров Hi байт 6B Значение регистра DO 35-28 (0110 1011)
25 Количество регистров Lo байт B2 Значение регистра DO 43-36 (1011 0010)
0E Контрольная сумма CRC 0E Значение регистра DO 51-44 (0000 1110)
84 Контрольная сумма CRC 1B Значение регистра DO 56-52 (0001 1011)
45 Контрольная сумма CRC
E6 Контрольная сумма CRC

Состояния выходов DO 27-20 показаны как значения байта CD hex, или в двоичной системе 1100 1101.

В регистре DO 56-52 5 битов справа были запрошены, а остальные биты заполнены нулями до полного байта (000 1 1011).

Модули с дискретным выводом: M-7065 , ioLogik R1214 , ADAM-4056S

Как послать команду Modbus RTU на чтение дискретного ввода? Команда 0x02

Эта команда используется для чтения значений дискретных входов DI.

Пример запроса DI с регистров от #10197 до 10218 для SlaveID адреса устройства 17. Адрес первого регистра будет 00C4 hex = 196, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
02 Функциональный код 02 Функциональный код
00 Адрес первого регистра Hi байт 03 Количество байт далее
C4 Адрес первого регистра Lo байт AC Значение регистра DI 10204-10197 (1010 1100)
00 Количество регистров Hi байт DB Значение регистра DI 10212-10205 (1101 1011)
16 Количество регистров Lo байт 35 Значение регистра DI 10218-10213 (0011 0101)
BA Контрольная сумма CRC 20 Контрольная сумма CRC
A9 Контрольная сумма CRC 18 Контрольная сумма CRC

Модули с дискретным вводом: M-7053 , ioLogik R1210 , ADAM-4051

Как послать команду Modbus RTU на чтение аналогового вывода? Команда 0x03

Эта команда используется для чтения значений аналоговых выходов AO.

Пример запроса AO с регистров от #40108 до 40110 для SlaveID адреса устройства 17. Адрес первого регистра будет 006B hex = 107, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
03 Функциональный код 03 Функциональный код
00 Адрес первого регистра Hi байт 06 Количество байт далее
6B Адрес первого регистра Lo байт AE Значение регистра Hi #40108
00 Количество регистров Hi байт 41 Значение регистра Lo #40108
03 Количество регистров Lo байт 56 Значение регистра Hi #40109
76 Контрольная сумма CRC 52 Значение регистра Lo #40109
87 Контрольная сумма CRC 43 Значение регистра Hi #40110
40 Значение регистра Lo #40110
49 Контрольная сумма CRC
AD Контрольная сумма CRC

Модули с аналоговым выводом: M-7024 , ioLogik R1241 , ADAM-4024

Как послать команду Modbus RTU на чтение аналогового ввода? Команда 0x04

Эта команда используется для чтения значений аналоговых входов AI.

Пример запроса AI с регистра #30009 для SlaveID адреса устройства 17. Адрес первого регистра будет 0008 hex = 8, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
04 Функциональный код 04 Функциональный код
00 Адрес первого регистра Hi байт 02 Количество байт далее
08 Адрес первого регистра Lo байт 00 Значение регистра Hi #30009
00 Количество регистров Hi байт 0A Значение регистра Lo #30009
01 Количество регистров Lo байт F8 Контрольная сумма CRC
B2 Контрольная сумма CRC F4 Контрольная сумма CRC
98 Контрольная сумма CRC

Модули с аналоговым вводом: M-7017 , ioLogik R1240 , ADAM-4017+

Как послать команду Modbus RTU на запись дискретного вывода? Команда 0x05

Эта команда используется для записи одного значения дискретного выхода DO.

Значение FF 00 hex устанавливает выход в значение включен ON.

Значение 00 00 hex устанавливает выход в значение выключен OFF.

Все остальные значения недопустимы и не будут влиять значение на выходе.

Нормальный ответ на такой запрос - это эхо (повтор запроса в ответе), возвращается после того, как состояние DO было изменено.

Пример записи в DO с регистром #173 для SlaveID адреса устройства 17. Адрес регистра будет 00AC hex = 172, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
05 Функциональный код 05 Функциональный код
00 Адрес первого регистра Hi байт 00 Адрес первого регистра Hi байт
AC Адрес первого регистра Lo байт AC Адрес первого регистра Lo байт
FF Значение Hi байт FF Значение Hi байт
00 Значение Lo байт 00 Значение Lo байт
4E Контрольная сумма CRC 4E Контрольная сумма CRC
8B Контрольная сумма CRC 8B Контрольная сумма CRC

Состояние выхода DO173 поменялось с выключен OFF на включен ON.

Модули с дискретным выводом: M-7053 , ioLogik R1210 , ADAM-4051

Как послать команду Modbus RTU на запись аналогового вывода? Команда 0x06

Эта команда используется для записи одного значения аналогового выхода AO.

Пример записи в AO с регистром #40002 для SlaveID адреса устройства 17. Адрес первого регистра будет 0001 hex = 1, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
06 Функциональный код 06 Функциональный код
00 Адрес первого регистра Hi байт 00 Адрес первого регистра Hi байт
01 Адрес первого регистра Lo байт 01 Адрес первого регистра Lo байт
00 Значение Hi байт 00 Значение Hi байт
03 Значение Lo байт 03 Значение Lo байт
9A Контрольная сумма CRC 9A Контрольная сумма CRC
9B Контрольная сумма CRC 9B Контрольная сумма CRC

Модули с аналоговым выводом: M-7024 , ioLogik R1241 , ADAM-4024

Как послать команду Modbus RTU на запись нескольких дискретных выводов? Команда 0x0F

Эта команда используется для записи нескольких значений дискретного выхода DO.

Пример записи в несколько DO с регистрами от #20 до #29 для SlaveID адреса устройства 17. Адрес регистра будет 0013 hex = 19, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
0F Функциональный код 0F Функциональный код
00 Адрес первого регистра Hi байт 00 Адрес первого регистра Hi байт
13 Адрес первого регистра Lo байт 13 Адрес первого регистра Lo байт
00 Количество регистров Hi байт 00
0A Количество регистров Lo байт 0A
02 Количество байт далее 26 Контрольная сумма CRC
CD Значение байт DO 27-20 (1100 1101) 99 Контрольная сумма CRC
01 Значение байт DO 29-28 (0000 0001)
BF Контрольная сумма CRC
0B Контрольная сумма CRC

В ответе возвращается количество записанных регистров.

Модули с дискретным выводом: M-7053 , ioLogik R1210 , ADAM-4051

Как послать команду Modbus RTU на запись нескольких аналоговых выводов? Команда 0x10

Эта команда используется для записи нескольких значений аналогового выхода AO.

Пример записи в несколько AO с регистрами #40002 и #40003 для SlaveID адреса устройства 17. Адрес первого регистра будет 0001 hex = 1, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
10 Функциональный код 10 Функциональный код
00 Адрес первого регистра Hi байт 00 Адрес первого регистра Hi байт
01 Адрес первого регистра Lo байт 01 Адрес первого регистра Lo байт
00 Количество регистров Hi байт 00 Кол-во записанных рег. Hi байт
02 Количество регистров Lo байт 02 Кол-во записанных рег. Lo байт
04 Количество байт далее 12 Контрольная сумма CRC
00 Значение Hi 40002 98 Контрольная сумма CRC
0A Значение Lo 40002
01 Значение Hi 40003
02 Значение Lo 40003
C6 Контрольная сумма CRC
F0 Контрольная сумма CRC

В этой статье я попытаюсь рассказать как устроен протокол Modbus , какие данные он может хранить, в каком виде они могут храниться, как они могут быть считаны. Эта статья даст представление о том, что же такое Modbus протокол и как он может применяться.

Адресация данных в Modbus протоколе

Для хранения информации в ведомых устройствах (slave device ) используются 4 таблицы (или массива). Каждая таблица хранит информацию для схожих переменных в регистрах. Каждый регистр имеет свой размер и адрес. Так же регистры могут быть только для чтения, или для чтения – записи. Давайте рассмотрим эти 4 типа данных, которые можно хранить в регистрах:

COILS

Это цифровые выходы (Digital Outputs ). Каждый coil можно записать или считать. Его размер – 1 бит (т.е. 0 или 1). Исторически эти регистры связаны с реальными цифровыми выходами на сенсорах или терминальных устройствах. Цифровые выходы используются для управления, например светодиодами, реле или моторами. Т.е. записывая в такой регистр 1 мы можем включить светодиод, а записав 0 – выключить его (это условно, на самом деле 0 может включать, а 1 – выключать).

При чтении данного регистра мы можем узнать состояние выхода (т.е. включен он или выключен). Результат чтения так же 1 бит, т.е. 1 или 0.

CONTACTS

Это цифровые входы (Digital Inputs ). Цифровой вход можно только читать, т.е считывая данный регистр мы узнаем состояние реального цифрового входа на сенсоре или устройстве. Цифровые входы используются для контроля состояние – например, включен свет или выключен, достигла жидкость нужного уровня или нет, включено реле или нет, и т.д.

ANALOG INPUT REGISTERS

Под этим обычно имеются в виду аналоговые входы (Analog Inputs ). Аналоговые входы можно только читать, т.е их нельзя записывать, а можно только считать текущее состояние налогового входа. Обычно аналоговые входы применяются на сенсорах для измерение некоторых значений: входного тока или входного напряжения. Затем, полученное значение можно конвертировать в некоторую реальную величину, например в температуру, влажность воздуха, давление или еще что то. Для этого используются специальные формулы, которые идут вместе с сенсором. Но чаще сенсор сразу возвращает реальное значение. Например, сенсор измеряющий температуру, может возвращать измеренное значение как градусы по Цельсию умноженные на 10. Т.е. 253 означает 25.3°С. Этот прием часто используется, если нужно вернуть дробные значения через целочисленный регистр.

ANALOG OUTPUT HOLDING REGISTERS

Под этим обычно имеются в виду аналоговые выходы (Analog Outputs ) но так же часто просто регистры, которые хранят некоторые значения, которые можно как записывать, так и считывать. Т.е. эти регистры можно как читать, так и писать. Наиболее часто используются для записи DAC устройств (Digital to Analog Converter) или просто как регистры, хранящие некоторые значения. DAC часто используются для управления чем либо, например: яркостью свечения светодиода, или громкостью сирены, или скоростью вращения двигателя.

Эти регистры 16 битные, т.е. каждый регистр может хранить всего 2 байта.

Вот эти четыре типа регистров поддерживаются в стандартном Modbus . И используя только их, нужно строить систему. Если взглянуть с точки зрения конечного устройства (slave device), то регистры логичнее всего использовать для следующих нужд:

Coils – для управления устройствами через цифровые порты вывода или булевыми флагами типа включен/выключен, открыт / закрыт и т.д.

Contacts – для хранения значений булевых флагов или для отображения информации с цифровых входов.

Inputs –для значений, которые нужно только читать на стороне мастера, и которые могут быть представлены как 16 битные целые числа. Например, входы ADC, или какие о значения, генерируемые системой которые нужно читать (например количество запущенных процессов или внутренняя температура устройства может быть считана через некий Input регистр)

Holding – эти регистры можно использовать для хранения конфигурации устройства, для управления DAC устройствами, для хранения некоторой служебной информации. В принципе, эти регистры можно использовать для чего угодно, на что хватит фантазии разработчика системы.

Кроме того, каждый регистр в схеме Modbus может иметь уникальный адрес, который определяется типом регистра. Посмотрите таблицу ниже:

Имя Тип Доступа Адреса Доступно Регистров
Coils Чтение / Запись 1 – 9999 9999
Contacts Чтение 10001 – 19999 9999
Inputs Чтение 30001 – 39999 9999
Holdings Чтение / Запись 40001 – 49999 9999

Как видно из таблицы, каждый тип регистров может вмещать максимум 9999 регистров. Но все они начинаются с некоторого смещения: 0, 10000, 30000, 40000.

На самом деле, внутри команд протокола Modbus , используется не полный адрес, а только его смещение относительно базового адреса. Т.е. для всех типов регистров реальный адрес внутри команды будет 0 -9998. А команда определяет какой именно базовый адрес может быть использован.

Проще всего представить себе, что устройство хранит 4 массива элементов по 9999 элементов в каждом. Индекс внутри массива – это и есть адрес, который задается внутри команды. А команда определяет, какой массив нужно использовать.

Если внимательно посмотреть на таблицу, то видно, что при желании можно использовать больше адресов для Holding регистров: 40001 – 105537, т.е. всего 65535 регистров. То же самое для Contacts : 10001 – 29999, т.е. всего 19999. Это так называемые расширенные регистры. Они не поддерживаются стандартными Modbus устройствами. Поэтому, если вы хотите, что бы ваше устройство могло работать со стандартными клиентами, то не нужно использовать расширенные регистры.

Но если вы уверены, что ваше устройство будет работать с вашим мастером, который знает как работать с расширенными регистрами, или вы точно знаете, что мастер устройство, которое будет использоваться для вашего продукта знает о расширенных регистрах, тогда используйте их.

Выше мы разобрались, как адресуются регистры внутри устройства. Теперь посмотрим, как адресуются сами устройства.

Адресация Modbus устройств

Для адресации устройств используется специальный идентификатор, который называется Slave Id . Это однобайтное значение, которое определяет уникальный адрес устройства на всей сети Modbus . По стандарту Modbus это может быть число от 1 до 247. Т.е. всего в сети может находиться 247 конечных устройств (slave device) с уникальными адресами.

Когда мастер посылает команду в сеть, первый байт – это Slave Id . Это позволяет устройствам уже после первого байта определить, должны они обрабатывать команду, или могут ее проигнорировать. Это справедливо для Modbus RTU . Для Modbus TCP протокола используется Unit Id значение. Хотя если разобраться, это просто другое название Slave Id . Unit Id – это так же однобайтный адрес устройства, от 1 до 247.

Это очень сильно ограничивает количество устройств, которые одновременно могут находиться в сети. Поэтому есть вариант, когда используется 2 байта для адресации устройств. В таком случае количество устройств увеличивается до 65535. Этого более чем достаточно. Но есть одно условие. Мастер и Конечное устройство должны использовать 2 байте для адресации. Т.е. они должны быть настроены, что бы использовать одинаковую схему адресации устройств: 1 или 2 байта. Так же, все устройства в сети должны использовать ту же самую схему адресации – 1 или 2 байта. Не может быть в сети устройств с разной схемой адресации.

Функции Modbus

Для того, что бы запросить данные или записать их, мастер должен указать функции, которую он хочет исполнить на конечном устройстве. Все доступные функции в стандартном Modbus протоколе приведены ниже:

Код Функции Тип Действия Описание
01 (01 hex) Чтение Читает значение Coil регистра
02 (02 hex) Чтение Читает значение Contact регистра
03 (03 hex) Чтение Читает значение Holding регистра
04 (04 hex) Чтение Читает значение Input регистра
05 (05 hex) Запись одного регистра Записывает значение в Coil регистр
06 (06 hex) Запись одного регистра Записывает значение в Holding регистр
15 (0F hex) Запись нескольких регистров Записывает значение в несколько Coil регистров
16 (10 hex) Запись нескольких регистров Записывает значение в несколько Holding регистров

Каждая функция будет рассмотрена позже, подробно и с примерами.

CRC 16 как способ избежать ошибок

Каждая команда в Modbus RTU протоколе заканчивается двумя байтами, которые содержать CRC16 значение всех байт команды. Добавление CRC16 позволяет найти поврежденные запросы и игнорировать их. Так как для вычисления контрольной суммы используется каждый байт в команде, то даже изменение одного бита в любом байте вызовет расхождение в переданной контрольной сумме и вычисленной на основе полученных байт. Это достаточно надежный способ обезопасить передаваемые данные от повреждений (имеется в виду, найти поврежденные данные). Клиент, как и мастер, должны проверять CRC16 из полученной команды с CRC16 сгенерированным на основе полученных байт. Если контрольные суммы не совпадают, значит полученный запрос содержит поврежденные байты, что искажает смысл посланной команды. Такая команда должна быть проигнорирована.

Нужно заметить, CRC16 не используется в Modbus TCP протоколе. Так как TCP пакеты уже имеют свою встроенную контрольную сумму и проверяются на целостность данных, нет никакой необходимости для вычисления CRC16.

Еще в одной разновидности Modbus протокола, Modbus ASCII , используется LRC (Longitudinal Redundancy Check) вместо CRC16. LRC намного проще чем CRC16 и результатом является 1 байт. LRC менее надежно для детектирования ошибок повреждения данных, но исторически так сложилось что Modbus ASCII использует именно этот метод.

О том, как вычислять CRC16 для Modbus RTU протокола и LRC для Modbus ASCII протокола, я напишу отдельно.

Типы данных, которые хранятся в регистрах.

Поговорим о том, какие данные могут храниться в регистрах. Самый простой случай – это Coil и Contac регистры. В этих регистрах может храниться 1 бит информации – 0 или 1. Когда мастер читает эти регистры, он получает в результате 0 или 1. Для записи регистров используются специальные константы:

0xFF00 – означает логическую 1

0x0000 – означает логический 0

Если используется команда для записи нескольких регистров, то каждый регистр будет записан при помощи 1 бита: 0 или 1.

Все остальные регистры – это 16 битные данные (2 байта)

И вот тут самое интересное.

Интерпретация данных должна быть задана в описании Modbus регистров (так называемом Modbus Map документе). В этом документе нужно точно прописать, какой регистр хранит какие джанные, и какие значение для него приемлемы.

Начнём с простых случаев.

Если мы считываем 1 Input или Holding регистр, то мы получаем 16 бит данных. Например, это может быть значение 0x8D05 – два байта 0x8D и 0x05 .

В самом простом случае это может быть без знаковое целое значение: 36101

Но это может быть целое число со знаком: -29435

Другой пример. Мы прочитали значение 0x4D4F

Это может быть как целое без знака, целое со знаком, так и 2 символа в кодировке ASCII:

0x4D = M

0x4F = O

Теперь случай поинтереснее. Комбинируя несколько регистров вместе, мы можем хранить типы данных, размер которых больше 16 бит.

К примеру, мы прочитали 2 регистра, и получили следующие данные: 0xAE53 0x544D

Это может быть:

32 битное целое без знака

0xAE53 0x544D = 2924696653

32 битное целое со знаком

0xAE53 0x544D = -1370270643

32 битный float – число с плавающей точкой

0xAE53 0x544D = -4.80507e-11

Или хранить 4 символа в кодировке ASCII

0xAE53 0x544D = 0xAE 0x53 0x54 0x4D = ®STM

Если продолжать, то комбинируя больше регистров, можно хранить 64 битные значения, 128 битные значения, строки и в принципе любые типы данных.

Но, комбинируя регистры, у нас встает следующий вопрос:

Порядок байт и слов

К сожалению протокол Modbus не определяет как должны храниться байты внутри регистра. Т.е. различные устройства от различных производителей могут хранить байты в произвольном порядке.

Например, читая регистр, мы получили значение 0xA543

В зависимости от того, в каком порядке хранились байты в исходном регистре, это могут быть два абсолютно разных значения:

Если использовался Big Endian формат (старший байт первый), то у нас будет значение 42307

Но если использовался Little Endian формат (младший байт первым), то у нас будет значение 17317

Еще интереснее, когда мы формируем 32 битное значение из двух регистров.

Вариантов комбинации байтов становится 4. К примеру 32 битное число 4014323619 (0xEF45B7A3 ) может быть передано 4 следующими последовательностями байтов:

0xEF45 0xB7A3

0x45EF 0x A3B7

0xB7A3 0xEF45

0x A3B7 0x45EF

На самом деле это не важно, какой порядок байт / слов реализован на конечном устройстве. Главное, мастер должен знать этот порядок, и уметь формировать правильные значения из полученных байтов. Зная точный формат данных на конечном устройстве, мастер всегда будет правильно формировать значения регистров. И именно для этого существует такое понятие как Modbus Map (Карта Modbus ).

Modbus Map

Modbus Map – это документация, которая полностью описывает все возможные Modbus регистры на устройстве, их адреса, назначение, доступные значения, значения по умолчанию, способ доступа.

Некоторые устройства поставляются с фиксированным описанием регистров. Т.е. список регистров, их адресов, хранимых данных и т.д. жестко задан производителем и описан в документации.

А есть настраиваемая конфигурация. Т.е. на устройстве нет фиксированных адресов для регистров. Пользователь может сконфигурировать Modbus Map так, как ему нужно (например соединив некоторые регистры в непрерывную последовательность адресов, что бы считывать их одной командой).

Пример фиксированного Modbus Map , который имеет смысл применять для своих устройств, может выглядеть так, как в таблице ниже.

Адрес Описание Доступ Значение по умолчанию Доступные значения
40001 Код продукта Чтение 1 1
40002 Командный регистр, для записи команд Запись 0 – сброс устройства
1 – Разблокировать uSD карту для записи
2 – Заблокировать uSD карту для записи
3 – Созранить конфигурацию на uSD карту
40003 Время работы, в секундах
Младшее слово
Чтение 0 0 .. 0xFFFF
40004 Время работы, в секундах
Старшее слово
Чтение 0 0 .. 0xFFFF
40005 Системная ошибка Чтение / Запись 0 Смотри приложение с кодами ошибок.
Запись 0 для сброса ошибки и выключения ERROR LED

Чего не может Modbus

Modbus очень простой протокол, поэтому он поддерживает далеко не все, что может потребоваться.

Modbus не поддерживает сообщения (events). Т.е. конечное устройство не может послать сообщение мастеру. Только мастер может опросить конечное устройство.

Modbus не поддерживает чтение исторических данных (накопленных за некоторый промежуток времени). Хотя это ограничение можно легко обойти, создав командные регистры, регистры адреса и перегружаемые регистры. Это будет обсуждаться в одной из следующих статей.

Стандартный Modbus не может хранить сложные структурированные данные (по крайней мере это не так просто реализовать).

Кроме того, Modbus не поддерживает идентификации и шифрования. Т.е вся коммуникация идет в незащищённом режиме. Хотя, при некотором желании можно реализовать некоторое подобие идентификации в Modbus TCP в большинстве случаев это сделать невозможно. Есть некоторые варианты как защитить данные от несанкционированного доступа и изменения, но они все не очень надежные (хотя и могут применятся). Я опишу их в следующих статьях.

И кажется, это все явные недостатки для этого протокола. В остальном он очень прост и отлично подходит для простых систем мониторинга, которые должны следить за некоторыми показателями системы и предоставлять доступ к ним через чтение регистров.

В следующей статье мы рассмотрим все основные функции, которые поддерживаются протоколом Modbus .

Данная статья описывает основы работы с протоколом Modbus. В статье вы можете найти:

  • Описание Modbus
  • Пример применения
  • Описание программы Onitex Modbus Terminal

Основные принципы Modbus

Modbus — коммуникационный протокол, основанный на клиент-серверной архитектуре. В данной статье мы рассмотрим основы протокола и базовые принципы работы. Кроме того, вы можете ознакомиться с конкретными примерами работы протокола Modbus, изучив описания контроллеров, использующих этот протокол, к примеру, OSM-17RA, а так же скачав программу Modbus Terminal, позволяющую удобно работать с различными регистрами Modbus.

Протокол Modbus разработан для использования в программируемых логических контроллерах, таких, как управление электроприводом. В настоящее время является очень распространенным протоколом, используемых в различных промышленных системах. К примеру, данный протокол используется в контроллерах шаговых двигателей Онитекс. Широко используется для передачи данных последовательные линии связи, основанных на интерфейсах RS-485, RS-422, RS-232. В начале развития применялся интерфейс RS-232, как один из наиболее простых промышленных интерфейсов для последовательной передачи данных. В настоящее время протокол часто используется поверх интерфейса RS-485, что позволяет добиться высокой скорости передачи, больших расстояний и объединения нескольких устройств в единую сеть, тем более что протокол Modbus поддерживает адресацию. Широкая распространенность протокола Modbus, обусловленная его простотой и надежностью, позволяет легко интегрировать устройства, поддерживающие Modbus, в единую сеть.

Основной особенностью протокола является наличие в сети одного ведущего устройства - master. Только ведущее устройство может опрашивать остальные устройства сети, которые являются ведомыми (slave). Подчиненное устройство не может самостоятельно инициировать передачу данных или запрашивать какие-либо данные у других устройств, работа сети строится только по принципу "запрос-ответ". Мастер может так же выдать широковещательный запрос, адресованный всем устройствам в сети, в таком случае ответное сообщение не посылается.

Существует три типа протокола Modbus: Modbus ASCII, Modbus RTU и Modbus TCP. Устройства Onitex поддерживают протокол Modbus RTU, поэтому мы в дальнейшем будем иметь в виду прежде всего этот протокол.

Пакет данных в Modbus выглядит следующим образом:

Адрес | Код функции | Данные | Контрольная сумма.

Адрес - это поле, содержащее номер устройства, которому адресован запрос. Каждое устройство в сети должно иметь уникальный адрес. Устройство отвечает только на те запросы, которые поступают по его адресу, во избежание конфликтов. При этом, ведомое устройство в своем ответе так же посылает поле Адрес , кроме широковещательного запроса (когда ответа от ведомого быть вообще не должно).

Код функции содержит номер функции модбаса (о функциях будет сказано ниже). Функция может запрашивать данные или давать команду на определенные действия. Коды функций являются числами в диапазоне от 1 до 127. Функции с номерами от 128 до являются зарезервированными для пересылки в ответном сообщении информации об ошибках.

В поле Данные содержится информация, которую передает мастер слэйву, либо наоборот в случае ответного сообщения. Длина этого поля зависит от типа передаваемых данных.

Поле Контрольная сумма является важным элементом протокола: в нем содержится информация, необходимая для проверки целостности сообщения и отсутствия ошибок передачи.

Максимальный размер пакета для сетей RS232/RS485 — 256 байт, для сетей TCP — 260 байт.

Существует три типа функций:

  1. Стандартные. Описание этих функций опубликовано и утверждено Modbus-IDA. Эта категория включает в себя как опубликованные, так и свободные в настоящее время коды.
  2. Пользовательские. Два диапазона кодов (от 65 до 72 и от 100 до 110), для которых пользователь может создать произвольную функцию.
  3. Зарезервированные. В эту категорию входят коды функций, не являющиеся стандартными, но уже используемые в устройствах, производимых различными компаниями. К этим кодам относятся 9, 10, 13, 14, 41, 42, 90, 91, 125, 126 и 127.

Modbus RTU

При использовании режима Modbus RTU сообщение начинается с так называемого интервала тишины, равного времени передачи 3.5 символов, при заданной скорости обмена. Первым полем передается адрес устройства. Вслед за последним передаваемым символом также следует интервал тишины продолжительностью не менее 3.5 символов. Новое сообщение может начинаться после этого интервала. Фрейм сообщения передаётся непрерывно. Если интервал тишины продолжительностью 1.5 возник во время передачи фрейма, принимающее устройство должно игнорировать этот фрейм как неполный. Если новое сообщение начнется раньше интервала 3.5 символа, принимающее устройство воспримет его как продолжение предыдущего сообщения. В этом случае устанавливается ошибка CRC (несовпадение контрольной суммы).

Типы данных и стандартные функции Modbus

Типы данных протокола Modbus представлены в таблице:

Для чтения значений из этих выше таблиц данных используются функции с кодами 1—4 (0x01—0x04) :
1 (0x01) — чтение значений из нескольких регистров флагов (Read Coil Status)
2 (0x02) — чтение значений из нескольких дискретных входов (Read Discrete Inputs)
3 (0x03) — чтение значений из нескольких регистров хранения (Read Holding Registers)
4 (0x04) — чтение значений из нескольких регистров ввода (Read Input Registers)

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.
В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Запись одного значения происходит при помощи следующих функций:
5 (0x05) — запись значения одного флага (Force Single Coil)
6 (0x06) — запись значения в один регистр хранения (Preset Single Register)

Команда состоит из адреса элемента (2 байта) и устанавливаемого значения (2 байта). Если команда выполнена успешно, ведомое устройство возвращает копию запроса.

Запись нескольких значений задается функциями:
15 (0x0F) — запись значений в несколько регистров флагов (Force Multiple Coils)
16 (0x10) — запись значений в несколько регистров хранения (Preset Multiple Registers)

Команда состоит из адреса элемента, количества изменяемых элементов, количества передаваемых байт устанавливаемых значений и самих устанавливаемых значений. В ответе ведомый передает начальный адрес и количество изменённых элементов.

Пример устройства Modbus

Рассмотрим работу протокола на примере контроллера шагового двигателя. В документации на контроллер описано назначение регистров Modbus, которые в нем использованы. Для управления двигателем необходимо задать параметры контроллера, параметры вращения и непосредственно команду. Вся работа с контроллером при использовании протокола Модбас сводится к работе с регистрами, то есть чтению и записи. Наш контроллер имеет всего один тип регистров: Holding Registers. Этот тип регистров предназначен как для чтения, так и для записи параметров. В контроллере использовано три типа регистров: 8, 16 и 32 бита. Таким образом, для работы с ним нам понадобится использование всего лишь нескольких функций: Read Holding Registers для чтения, Preset Single Register для записи регистров размерностью 8 и 16 бит, и Preset Multiple Registers для записи дначений в регистры длиной 32 бита.

Для начала работы с контроллером необходимо установить параметры контроллера и вращения. Делается это последовательной записью нужных параметров в регистры согласно документации, используя необходимые функции. При этом, каждая запись параметра вызывает соответствующий обработчик в контроллере, который по необходимости проверяет диапазоны значений или проводит другие необходимые действия. По сути, контроллер производит прерывание по изменению значения в регистре. Такая возможность существенно расширяет возможности применения протокола Modbus.

После записи всех параметров производится запись самой команды в соответствующий регистр. Такая организация работы с протоколом Modbus весьма удобна для практического применения, так как позволяет обходиться всего лишь тремя стандартными функциями. Во время выполнения команды доступ во все регистры сохраняется, в частности, мы можем прочитать значение счетчика позиции, при необходимости обнулить его, изменить скорость, либо задать новую команду, не дожидаясь выполнения старой. Еще одной особенностью применения протокола Modbus является то, что все регистры сохраняют свои значения до их перезаписи, поэтому, если нам необходимо повторить движение с теми же параметрами, мы протсо записываем команду движения в регистр команд и двигатель повторяет прошлое задание. Это не только упрощает управление, но и уменьшает траффик между контроллером двигателя и управляющим устройством.

Таким образом, использование протокола Modbus позволило сделать управление шаговым двигателем очень простым, качественным и надежным.

Для отладки устройств с протоколом Modbus нами разработана программа OSM Modbus Terminal. Данная программа позволяет быстро освоить основные принципы управления устройствами OSM MB по протоколу Modbus RTU, проверить корректную работу устройства и быст-рее написать собственное программное обеспечение. Скачать программу можно в разделе Программное обеспечение на нашем сайте.

Программа представляет собой карту регистров, каждому из которых можно задать адрес, тип значения и название. В каждом регистре имеется возмож-ность чтения и записи значения. В окне «LogOut» можно наблюдать вывод лога по результатам каждого действия, в т. ч. и возникшие ошибки.

Для начала работы с программой необходимо установить адрес порта ПК и адрес устройства, и нажать кнопку «Connect». После этого можно производить чтение и запись в требуемые регистры. При необходимости можно сохранить названия и адреса используемых регистров кнопкой «Save». Программа написана с использованием OsmModbusDriver_SDK и может служить примером использования SDK.

Все права защищены. Перепечатка материалов с сайта возможно только с разрешения администрации

Modbus - открытый протокол последовательной связи. Был разработан в 1979 году для использования с устройствами программируемого логического контроллера (PLC), в настоящее время широко используется для подключения многих типов промышленных электронных устройств, подключенных к различным типам сетей.

Наиболее широко используемый протокол в промышленной автоматизации (исключение - локальные предприятия). Modbus очень популярен. Это достаточно простое и понятное в использовании устройство со стандартной последовательной связью. В сети Modbus каждое устройство смотрит в сеть как набор катушек (бит) и регистров. Мастер считывает и записывает эти катушки и регистры, используя очень простой и сжатый набор команд. Коммуникация движется только в одном направлении за раз.

Реализация протокола Modbus, установленная на практике, является очень краткой. Хотя есть двадцать основных команд, только некоторые из них действительно реализованы. Наиболее распространенными командами считаются считываемые катушки, записываемые катушки, считывание регистра, установка регистров. Небольшой набор команд - еще одна причина популярности протокола.

Modbus — протокол расширенного применения

Преобразователь протоколов широко используется по ряду причин:

  • Modbus — протокол с открытым исходным кодом. Это означает, что он может быть включен в широкий диапазон типов устройств от любого поставщика оборудования.
  • Использует простую структуру сообщений, что делает ее менее сложной для развертывания. Может потребовать всего несколько дней для реализации. Это явное конкурентное преимущество в сравнении с другими протоколами, которые могут потребовать месяцев для изучения и развертывания.
  • Поддерживает последовательные или Ethernet-соединения.
  • Используется с двумя типами последовательных соединений: RS-232 и RS-485. Некоторые версии протокола Modbus tcp также могут быть отправлены через Ethernet или TCP/IP. Эти сообщения Modbus упакованы как однобитовые или 16-битные пакеты слов.

Modbus не является частью физического уровня в сети. Связь передается над физическими уровнями, что позволяет использовать ее во многих различных типах сетей. Это свойство нефизического уровня делает Modbus протоколом прикладного характера.

Протокол передачи данных Modbus — это общий способ сбора данных из разных источников для просмотра операций, архивирования и устранения неполадок с центрального удаленного места. Он широко используется и является довольно простой технологией. В зависимости от приложения, более новый протокол может иметь больше преимуществ.

Как правило, ПК настроен на запуск таких программ, как Wonderware, Intellution или LabVIEW в одном месте для сбора данных из разных процессов по всему предприятию. Другое приложение предназначено для настройки удаленных контроллеров производственных процессов (ПЛК, Allen-Bradley, Siemens, PLCDirect и другие). Для реагирования на различные уровни или режимы, которые передаются с устройства.

Два варианта протокола

Существует два варианта протокола, которые проходят через последовательные соединения. Одним из них является протокол Modbus RTU. Описание этого варианта: оно более компактное, использует двоичную связь. В данном формате передача данных всегда сопровождается циклической контрольной суммой избыточности, которая используется для обнаружения проблем передачи.

Второй вариант — Modbus ASCII. Эта версия более подробная, использует шестнадцатеричное кодирование ASCII-данных, которое может быть прочитано операторами. Modbus ASCII является менее защищенным протоколом. Поскольку он менее эффективен, чем Modbus RTU, операторы должны использовать ASCII только для передачи данных на устройства, которые не поддерживают формат RTU. ASCII также может быть полезным, если сообщение RTU не может быть правильно применено.

Протокол Modbus для чайников

Modbus - это протокол последовательной связи, используемый для передачи информации по последовательным линиям между электронными устройствами. То, которое запрашивает информацию, называется ведущим (Master), а информация о поставке устройств — подчиненные устройства (Slaves). В стандартной сети Modbus есть один Master и до 247 Slaves, каждый из которых имеет уникальный подчиненный адрес от 1 до 247. Master может также записывать информацию в Slaves.

Для чего его используют?

Modbus является открытым протоколом. Это означает, что производители бесплатно могут встраивать его в свое оборудование. Он стал стандартным протоколом связи в промышленности, а в настоящее время является наиболее распространенным средством подключения промышленных электронных устройств. Он широко используется многими производителями во многих отраслях.

Modbus обычно используется для передачи сигналов от приборов и устройств управления обратно в главный контроллер или систему сбора данных, например, систему, которая измеряет температуру и влажность, передает результаты на компьютер. Modbus часто используется для подключения контрольного компьютера с удаленным терминальным блоком (RTU) в системах диспетчерского управления и сбора данных (SCADA). Версии протокола Modbus существуют для последовательных линий (RTU и ASCII) и для Ethernet (TCP).

Как это работает?

Modbus передается по последовательным линиям между устройствами. Самой простой установкой был бы один последовательный кабель, соединяющий последовательные порты на двух устройствах: Master и Slave.

Данные отправляются как серия единиц и нулей, называемых битами. Каждый бит передается как напряжение, нули - положительные, а единицы - отрицательные напряжения. Биты отправляются очень быстро. Типичная скорость передачи составляет 9600 бод (бит в секунду).

Протокол Master/Slave

При описании протокола Modbus RTU связь осуществляется между централизованным ведущим оборудованием, 247 подключенными электронными устройствами в одной сети. Конструкцию обычно называют протоколом «ведущий/ведомый», поскольку система Master запрашивает информацию у подключенных устройств, которые называются «подчиненными». Ведомые устройства отправляют информацию только мастеру в ответ на эти запросы, они не работают автономно. Ведущий может также записывать информацию на подчиненные устройства, но подчиненные устройства не могут записывать информацию ведущему устройству.

Когда ведомое устройство передает сообщение Modbus, оно начинает формировать сообщение с уникальным идентификатором адреса. Это число от 1 до 247, что позволяет мастеру определять, какое конкретное устройство отвечает запрошенной информации.

Связь и устройства

Каждому устройству, предназначенному для связи с использованием Modbus, присваивается уникальный адрес. В последовательных сетях только узел, назначенный мастером, может инициировать команду. В Ethernet любое устройство может отправлять команду Modbus, хотя обычно это делает только одно ведущее. Команда содержит адрес устройства, для которого он предназначен (от 1 до 247). Все команды включают информацию контрольной суммы, чтобы позволить получателю обнаруживать ошибки передачи. Базовые команды Modbus указывают RTU на изменение значения в одном из своих регистров, управление или чтение порта ввода-вывода, команду устройству отправить обратно одно или несколько значений, содержащихся в его регистрах.

Существует много модемов и шлюзов, поддерживающих Modbus, поскольку это очень простой протокол и часто копируется. Некоторые из них были специально разработаны для него. Различные реализации используют проводную, беспроводную связь, например, в диапазоне ISM, и даже службу коротких сообщений (SMS), а также услугу общей пакетной радиосвязи (GPRS). Типичные проблемы, с которыми приходится сталкиваться дизайнерам, включают проблемы с высокой задержкой и временем.

Обзор типов регистра Modbus

Типы регистров, на которые ссылаются устройства, включают:

Катушку (дискретный выход); . дискретный вход; . входной регистр; . регистрацию холдинга.

Коды функций

  • Коды общих функций - от 1 до 127, за исключением пользовательских кодов, проверенных сообществом Modbus, публично задокументированы и гарантированно уникальны.
  • Пользовательские коды функций - находятся в двух диапазонах от 65 до 72, от 100 до 110.
  • Коды зарезервированных функций - используются некоторыми компаниями для устаревших продуктов, недоступны для общего пользования.

Преимущества

Некоторые преимущества использования протокола Modbus:

  • Если драйвер уже установлен, а пользователь знаком с Ethernet и сокетами TCP/IP, драйвер может работать и обмениваться данными с ПК через несколько часов. Расходы на разработку считаются низкими. Требуется минимальное число оборудования. Драйвер совместим с любой операционной системой.
  • Нет необходимости в «экзотических» наборах микросхем, поэтому система может использовать стандартные ПК-карты Ethernet для общения с недавно реализованным устройством. Поскольку стоимость Ethernet падает, сокращаются затраты на аппаратное обеспечение. Пользователи не привязаны к одному поставщику услуг для поддержки, но могут воспользоваться нынешними разработками.
  • Спецификация доступна бесплатно для скачивания, никаких дополнительных лицензионных сборов, необходимых для использования протоколов Modbus, не требуется.
  • Взаимодействие между устройствами разных производителей и совместимость с установленной базой совместимых устройств.

Стоят преобразователи протоколов Modbus дорого. Цена промышленных шлюзов составляет 1000 долларов.

Ограничения

Поскольку Modbus был разработан в конце 1970-х годов для связи с численность типов данных ограничена теми, которые были поняты ПЛК в то время. Большие двоичные объекты не поддерживаются.

Нет стандартного способа для узла, чтобы найти описание объекта данных, например, чтобы определить, представляет ли значение регистра - значение температуры между 30 и 175 градусами.

Поскольку Modbus является протоколом типа «ведущий/ведомый», для устройства нет возможности «сообщать об исключении» (кроме Ethernet TCP/IP, называемого open-mbus). Главный узел должен регулярно получать данные с дочерних устройств, а также искать изменения в данных. Это нагружает полосу пропускания, увеличивает время подключения к сети в приложениях, где пропускная способность может быть дорогой, например, в каналах с низкой скоростью передачи данных.

Modbus ограничивается адресацией 254 устройств на одной линии передачи данных, что ограничивает число устройств, которые могут быть подключены к мастер-станции (Ethernet TCP/IP является исключением). Передачи должны быть непрерывными, что ограничивает типы удаленных коммуникационных устройств теми, которые могут буферизовать данные, чтобы избежать пробелов в передаче. Сам протокол Modbus не обеспечивает защиту от несанкционированных команд или перехвата данных. Важно понимать, что в процессе передачи информации возникают логические ошибки, а также связанные с искажениями при обмене.

Интерфейс RS-48


Стандарт ANSI TIA/EIA-485, более известный как RS485, определяет сбалансированный способ надёжной передачи данных на длинные расстояния в условиях промышленных помех. Также стандарт определяет топологию сети и описывает способы согласования полного сопротивления линии интерфейса и предоставляет результаты лабораторных тестов.

Физически, интерфейс RS485 является дифференциальным, обеспечивает многоточечные соединения и позволяет передавать и принимать данные в обоих направлениях.

Упрощённо, сеть интерфейса RS485 представляет собой приемопередатчики, соединенные при помощи витой пары - двух скрученных проводов (см. рис. 2.1).


Типовая разница напряжений между линиями A и B передатчика равна 3В, минимальная 1.5В, максимальная 5В.

Разница напряжений между линиями A и B на приёмнике должна быть не менее 0.2В и абсолютная разница потенциалов относительно общего провода должно быть в диапазоне (-7…+12)В.

Таким образом, между двумя проводами витой пары всегда есть разность потенциалов. Именно этой разностью потенциалов и передается сигнал. Такой способ передачи обеспечивает высокую устойчивость к синфазной помехе. Максимальная скорость связи прибора по интерфейсу RS485 может достигать нескольких Мбод. Максимальное расстояние - 1200 метров. Если необходимо организовать связь на расстоянии больше чем 1200 метров или подключить больше устройств, чем допускает нагрузочная способность передатчика - применяют специальные повторители (репитеры). Типовое правило для расчёта максимальной длины линии связи таково: произведение скорости передачи в бодах на длину в метрах должно дать результат не более чем 108.

При значительных расстояниях между устройствами, связанными по витой паре или высоких скоростях передачи начинают проявляться так называемые эффекты длинных линий. Электромагнитный сигнал имеет свойство отражаться от открытых концов линии передачи и ее ответвлений. Фронт сигнала, отразившийся от конца линии, может исказить текущий или следующий сигнал. В таких случаях нужно подавлять эффект отражения.

Существуют стандартные решения этой проблемы (R, RC - терминаторы). У любой линии связи есть такой параметр, как волновое сопротивление Zв. Оно зависит от характеристик используемого кабеля и не зависит от его длины. Для обычно применяемых в линиях связи витых пар волновое сопротивление Zв составляет (90-120) Ом. Рассмотрим варианты:

  1. Если на удаленном конце линии, между проводниками витой пары включить резистор с номинальным омическим сопротивлением равным волновому сопротивлению линии, то электромагнитная волна, дошедшая до ≪тупика≫ поглощается на таком резисторе. Отсюда его названия - согласующий резистор или ≪терминатор≫ . Помимо достоинств этого метода (повышение скорости, увеличение длины и подавление отражений), есть и недостатки (дополнительная нагрузка на драйверы повышает энергопотребление, остальные ответвления линии продолжают вносить искажения, драйвер приёмника находится в неоднозначном состоянии: либо режим ожидания, либо режим приёма).
  2. Если на удалённом конце вместо резистора установить RC цепочку R=(90-120) Ом, С=1000 пФ, то можно устранить проблему повышенного энергопотребления и проблему неопределённости драйвера приёмника (для приёмников с функциями open-line и failsafe). Но из-за постоянной времени RC цепи, максимальная скорость передачи и длинна линии будут меньшими.

Эффект отражения и необходимость правильного согласования накладывают ограничения на конфигурацию линии связи (топология сети). Линия связи должна представлять собой один кабель витой пары. К этому кабелю присоединяются все приемники и передатчики (гирлянда). Расстояние от линии до микросхем интерфейса RS485 должно быть как можно короче, так как длинные ответвления вносят рассогласование и вызывают отражения. В оба наиболее удаленных конца кабеля включают терминаторы. Калибр витой пары достаточно не более AWG24.


Следует также сказать, что к линии интерфейса все устройства подключаются через специализированные микросхемы (драйверы интерфейса RS485). Они могут быть разных производителей и с различными техническими параметрами и как следствие различной стоимости. Эти драйверы в значительной степени могут определять эксплуатационные свойства приборов: дальность передачи, количество приборов в одном участке сети и надёжность передачи.


Протокол MODBUS


MODBUS - это протокол уровня приложений (уровень 7 модели OSI), что обеспечивает связь между устройствами, соединёнными различными каналами связи и сетями.

Де-факто, MODBUS является стандартом в сетях промышленного назначения с 1979 года. Он обеспечивает связь миллионам устройств во всём мире, в том числе и через Интернет. Есть различные реализации протокола:

  • Для асинхронных беспроводных, оптических и проводных каналов связи (RS-232, RS-485, RS-422)
  • Для TCP/IP (порт 502) через интернет
  • MODBUS-PLUS - для высокоскоростных сетей с передачей меток (high speed token passing network)

Кроме того, разнородные участки сетей могут объединяться шлюзами (специальными конверторами).

Для асинхронных последовательных каналов связи существует две реализации MODBUS-SERIAL-LINE протокола МODBUS-RTU и MODBUS-ASCII (уровень 1 и 2 модели OSI). Разница между ними заключается в способе кодировки данных, способе синхронизации фреймов, и алгоритме обеспечения целостности данных. В нашем случае, в сети RS485 обмен данными реализован посредством протокола MODBUS-RTU. Далее по тексту будем рассматривать ситуацию только в этом аспекте.

MODBUS-SERIAL-LINE протокол - это протокол типа MASTER-SLAVE (протокол запросов-ответов). Ведущий в сети (MASTER) всегда один. Каждый подчинённый (SLAVE) должен иметь уникальный номер 1-247. Адрес 0 - это широковещательный запрос, адресованный сразу всем подчинённым. Таким образом, логически в одном участке сети может быть до 248 устройств (включая MASTER). Каждый запрос содержит код функции. Под MODBUS функциями понимают определённые сервисы предоставляемые подчинёнными ведущему. Таким образом, роль клиента играет MASTER, а роль сервера, с определённым набором функций-сервисов, SLAVE.


Функции протокола MODBUS


Каждый SLAVE может содержать уникальный набор функций-сервисов, но есть и ряд стандартных функций, которые подробно описаны в документе (www.modbus.org ). Также полезная информация может быть найдена в документе “MODBUS over serial line specification and implementation guide” (www.modbus.org ).

Поддерживаемые нами функции (см. табл. 4.1 - 4.2).



В более ранних версиях приборов (до 2010г) были реализованы лишь пользовательские функции, но со временем стало понятно, что для обеспечения совместного использования приборов с ПЛК (минуя ПК) необходимы и стандартные функции.

Будьте внимательны и обратите внимание на то, что стандартные функции оперируют только со словами (16-бит) и в формате big-endian, но при этом формат контрольной суммы CRC16 little-endian! Поэтому, для исключения разночтений в описании протокола MODBUS, в части порядка следования байт контрольной суммы CRC16, стоит пользоваться нехитрым правилом: правильно посчитанная контрольная сумма неповреждённого пакета (с участием 2-ух последних байт CRC16) всегда равна нулю.

Правильный запрос: CRC16 (1 104 0 0 8 0 103 195) = 0

Неверный запрос: CRC16 (1 104 0 0 8 0 195 103) <> 0

Стандартные функции (см. таб. 4.1) подробно описаны в документе “MODBUS Application Protocol Specification” (www.modbus.org ).






Функция 108 «Служебные команды» имеет следующие коды подфункций (см. таб. 4.8).
Подфункции, возвращающие какие-либо данные, имеют префикс GET. Подфункции, не возвращающие данных, не содержат поля данных и, при удачном выполнении, возвращаются эхом.


Подфункции 1 и 2, возвращающие номер тома всегда возвращают 4-х байтное значение типа DWORD.

Подфункции 3 и 4, возвращающие номера страниц могут возвращать как 2-х байтные (WORD), так и 4-х байтные (DWORD) значения, в зависимости от модели прибора.


Карты распределения памяти приборов


В следующих таблицах представлены карты распределения памяти приборов. Следует отметить тот факт, что в стандартных MODBUS функциях размеры типов данных могут отличаться от типов данных пользовательских функций (в большую сторону) в случае, если размер типа данных не кратен типу WORD (2 байта).

Порядок следования байт указан в столбце Order. Обозначение BE соответствует порядку big endian, а LE - little endian.

Операции, доступные для данной переменной, указываются в последнем столбце rw (read-write). R - разрешается только чтение, W - разрешается только запись, RW - разрешается, как чтение, так и запись.

Массивы обозначены словом array, а количество элементов массив указано в квадратных скобках [n].






Однофазный прибор OMIX измеряет 7 параметров качества электроэнергии, в массивах памяти (array) они расположены в следующем порядке -напряжение, -ток, - частота, - полная мощность, - активная мощность, - реактивная мощность, - cos(Φ).







Использованные источники информации
  • Electrical Characteristics of Balanced Voltage Digital Interface Circuits, ANSI/TIA/EIA-422-B-1994, Telecommunications Industry Association, 1994
  • Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems, ANSI/TIA/EIA-485-A-1998, Telecommunications Industry Association, 1998
  • Application Guidelines for TIA/EIA-485-A, TIA/EIA Telecommunications Systems Bulletin, Telecommunications Industry Association, 1998
  • A Comparison of Differential Termination Techniques, Joe Vo, National Semiconductor, Application Note AN-903
  • Data Transmission Design Seminar Reference Manual, 1998, Texas Instruments, literature number SLLE01
  • Data Transmission Line Circuits Data Book, 1998, Texas Instruments, literature number SLLD001
  • MODBUS Application Protocol Specification
  • MODBUS over serial line specification and implementation guide

ООО «Автоматика» 2012



Загрузка...