sonyps4.ru

Амплитудная модуляция ам. Амплитудная модуляция произвольного сигнала

1. Введение.

2. Определение непрерывности функции.

3. Классификация точек разрыва

4. Свойства непрерывных функций.

5. Экономический смысл непрерывности.

6. Заключение.

10.1. Введение

Всякий раз, оценивая неизбежные с течением времени изменения в окружающем нас мире, мы пытаемся проанализировать происходящие процессы, чтобы выделить их наиболее существенные черты. Один из первых на этом пути встает вопрос: как происходят характерные для этого явления изменения – непрерывно или дискретно , т.е. скачкообразно. Равномерно ли понижается курс валюты или обваливается, происходит постепенная эволюция или революционный скачок? Чтобы унифицировать качественные и количественные оценки происходящего, следует абстрагироваться от конкретного содержания и изучить проблему в терминах функциональной зависимости. Это позволяет сделать теория пределов, которую мы рассматривали на прошлой лекции.

10.2. Определение непрерывности функции

Непрерывность функции интуитивно связано с тем, что ее графиком является сплошная, нигде не прерывающаяся кривая. Мы вычерчиваем график такой функции, не отрывая ручки от бумаги. Если функция задана таблично, то о ее непрерывности, строго говоря, судить нельзя, потому что при заданном шаге таблицы поведение функции в промежутках не определено.

В реальности при непрерывности имеет место следующее обстоятельство: если параметры, характеризующие ситуацию, немного изменить, то не много изменится и ситуация. Здесь важно не то, что ситуация изменится, а то, что она изменится «немного».

Сформулируем понятие непрерывности на языке приращений. Пусть некоторое явление описывается функцией и точка a принадлежит области определения функции. Разность называется приращением аргумента в точке a , разность – приращением функции в точке a .

Определение 10.1. Функция непрерывна в точке a, если она определена в этой точке и бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции :

Пример 10.1. Исследовать на непрерывность функцию в точке .

Решение. Построим график функции и отметим на нем приращения Dx и Dy (рис. 10.1).

Из графика видно, что чем меньше приращение Dx , тем меньше Dy . покажем это аналитически. Приращение аргумента равно , тогда приращение функции в этой точке будет равно

Отсюда видно, что если , то и :

.

Дадим еще одно определение непрерывности функции.

Определение 10.2. Функция называется непрерывной в точке а, если:

1) она определена в точке а, и некоторой ее окрестности;

2) односторонние пределы существуют и равны между собой:

;

3) предел функции при х ®а равен значению функции в этой точке:

.

Если хотя бы одно из этих условий нарушается, то говорят, что функция претерпевает разрыв .

Это определение является рабочим для установления непрерывности в точке. Следуя его алгоритму и отмечая совпадения и несовпадения требований определения и конкретного примера, можно сделать вывод о непрерывности функции в точке.

В определении 2 четко проступает идея близости, когда мы вводили понятие предела. При неограниченном приближении аргумента x к предельному значению a , непрерывная в точке a функция f (x ) сколь угодно близко приближается к предельному значению f (a ).

10.3. Классификация точек разрыва

Точки, в которых нарушаются условия непрерывности функции, называются точками разрыва этой функции. Если x 0 – точка разрыва функции , в ней не выполняется, по крайней мере, одно из условий непрерывности функции. Рассмотрим следующий пример.

1. Функция определена в некоторой окрестности точки a , но не определена в самой точке a . Например, функция не определена в точке a =2, поэтому претерпевает разрыв (см. рис. 10.2).

Рис. 10.2 Рис. 10.3

2. Функция определена в точке a и в некоторой ее окрестности, ее односторонние пределы существуют, но не равны другу:, то функция претерпевает разрыв. Например, функция

определена в точке , однако при функция испытывает разрыв (см. рис. 10.3), т.к.

и ().

3. Функция определена в точке a и в некоторой ее окрестности, существует предел функции при , но этот предел не равен значению функции в точке a :

.

Например, функция (см. рис. 10.4)

Здесь – точка разрыва:

,

Все точки разрыва делятся на точки устранимого разрыва, точки разрыва первого и второго рода.

Определение 10.1. Точка разрыва называется точкой устранимого разрыва , если в этой точке существуют конечные пределы функции слева и справа, равные друг другу:

.

Предел функции в этой точке существует, но не равен значению функции в предельной точке (если функция определена в предельной точке), или функция в предельной точке не определена.

На рис. 10.4 в точке условия непрерывности нарушены, и функция имеет разрыв. На графике точка (0; 1) выколота . Впрочем, этот разрыв легко устранить – достаточно переопределить данную функцию, положив ее равной своему пределу в этой точке, т.е. положить . Поэтому такие разрывы называются устранимыми.

Определение 10.2. Точка разрыва называется точкой разрыва 1-го рода , если в этой точке существуют конечные пределы функции слева и справа, но они не равны друг другу:

.

Говорят, что в этой точке функция испытывает скачок .

На рис. 10.3 функция имеет разрыв 1-го рода в точке . Пределы слева и справа в этой точке равны:

и .

Скачок функции в точке разрыва равен .

Доопределить такую функцию до непрерывной невозможно. График состоит из двух полупрямых, разделенных скачком.

Определение 10.3. Точка разрыва называется точкой разрыва 2-го рода , если, по крайней мере, один из односторонних пределов функции (слева или справа) не существуют или равны бесконечности.

На рис 10.3 функция в точке имеет разрыв 2-го рода. Рассмотренная функция при является бесконечно большой и конечного предела ни справа, ни слева не имеет. Поэтому говорить о непрерывности в такой точке не приходится.

Пример 10.2. Построить график и определить характер точек разрыва:

Решение. Построим график функции f (x ) (рис 10.5).

Из рисунка видно, что исходная функция имеет три точки разрыва: , x 2 = 1,
x 3 = 3. Рассмотрим их по порядку.

Поэтому точке имеется разрыв 2-го рода .

а) Функция определена в этой точке: f (1) = –1.

б) , ,

т.е. в точке x 2 = 1 имеется устранимый разрыв . Переопределив значение функции в этой точке: f (1) = 5, разрыв устраняется и функция в этой точке становится непрерывной.

а) Функция определена в этой точке: f (3) = 1.

Значит, в точке x 1 = 3 имеется разрыв 1-го рода . Функция в этой точке испытывает скачок, равный Dy = –2–1 = –3.

10.4. Свойства непрерывных функций

Вспоминая соответствующие свойства пределов, заключаем, что функция, являющаяся результатом арифметических действий над непрерывными в одной и той же точке функциями, также непрерывны. Отметим:

1) если функции и непрерывны в точке a , то функции , и (при условии, что ) также непрерывны в этой точке;

2) если функция непрерывна в точке a и функция непрерывна в точке , то сложная функция непрерывна в точке a и

,

т.е. знак предела можно вносить под знак непрерывной функции.

Говорят, что функция непрерывна на некотором множестве, если она непрерывна в каждой точке этого множества . График такой функции – непрерывная линия, которая вычеркивается одним росчерком пера.

Все основные элементарные функции непрерывны во всех точках, где они определены .

Функции, непрерывные на отрезке , обладают рядом важных отличительных свойств. Сформулируем теоремы, выражающие некоторые из этих свойств.

Теорема 10.1 (теорема Вейерштрасса ). Если функция непрерывна на отрезке, то она на этом отрезке достигает своих наименьшего и наибольшего значений.

Теорема 10.2 (теорема Коши ). Если функция непрерывна на отрезке, то она на этом отрезке все промежуточные значения между наименьшим и наибольшим значениями .

Из теоремы Коши следует следующее важное свойство.

Теорема 10.3 . Если функция непрерывна на отрезке и на концах отрезка принимает значения разных знаков, то между a и b найдется такая точка c, в которой функция обращается в нуль: .

Геометрический смысл этой теоремы очевиден: если график непрерывной функции переходит с нижней полуплоскости на верхнюю (или наоборот), то по крайней мере в одной точке она пересечет ось Ox (рис.10.6).

Пример 10.3. Приближенно вычислить корень уравнения

, (т.е. приближенно заменить) многочленном соответствующей степени.

Это очень важное для практики свойство непрерывных функций. Например, очень часто непрерывные функции задаются таблицами (данными наблюдений или экспериментов). Тогда используя какой-либо метод можно таблично заданную функцию заменить многочленом. В соответствии с теоремой 10.3 это можно всегда сделать с достаточно высокой точностью. Работать с аналитически заданной функцией (тем более с многочленом) гораздо проще.

10.5. Экономический смысл непрерывности

Большинство функций, используемых в экономике, являются непрерывными и это позволяет высказывать вполне значимые утверждения экономического содержания.

В качестве иллюстрации рассмотрим следующий пример.

Налоговая ставка N имеет примерно такой график, как на рис. 10.7а.

На концах промежутков она разрывна и разрывы эти 1-го рода. Однако сама величина подоходного налога P (рис. 10.7б) является непрерывной функцией годового дохода Q . Отсюда, в частности, вытекает, что если годовые доходы двух людей различаются незначительно, то и различие в величинах подоходного налога, который они должны уплатить, также должны различаться не значительно. Интересно, что обстоятельство воспринимается огромным большинством людей как совершенно естественное, над которым они даже не задумываются.

10.6. Заключение

Под занавес позволим себе небольшое отступление.

Вот как можно графически выразить грустное наблюдение древних:

Sic transit Gloria mundi …

(Так проходит земная слава …)


Конец работы -

Эта тема принадлежит разделу:

Понятие функции

Понятие функции.. все течет и все меняется гераклит.. таблица х х х х y у у у у у..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Продолжаем серию общеобразовательных статей, под общим названием «Теория радиоволн».
В предыдущих статьях мы познакомились с радиоволнами и антеннами: Давайте ближе познакомимся с модуляцией радиосигнала.

В рамках этой статьи, будет рассмотрена аналоговая модуляция следующих видов:

  • Амплитудная модуляция
  • Амплитудная модуляция c одной боковой полосой
  • Частотная модуляция
  • Линейно-частотная модуляция
  • Фазовая модуляция
  • Дифференциально-фазовая модуляция
Амплитудная модуляция
При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.

Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции - это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

Спектр АМ

Данный спектр свойственен для модулирующего колебания постоянной частоты.

На графике, по оси Х представлена частота, по оси У - амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра .
В нормальном случае, при коэффициенте модуляции <=1, амплитуды боковых полос меньше или равны половине амплитуды несущей.
Полезная информация заключена только в верхней или нижней боковых полосах спектра. Основная спектральная составляющая - несущая, не несет полезной информации. Мощность передатчика при амплитудной модуляции в большей части расходуется на «обогрев воздуха», за счет не информативности самого основного элемента спектра.

Амплитудная модуляция с одной боковой полосой

В связи с неэффективностью классической амплитудной модуляции, была придумана амплитудная модуляция с одной боковой полосой.
Суть ее заключается в удалении из спектра несущей и одной из боковых полос, при этом вся необходимая информация передается по оставшейся боковой полосе.

Но в чистом виде в бытовом радиовещании этот вид не прижился, т.к. в приемнике нужно синтезировать несущую с очень высокой точностью. Используется в аппаратуре уплотнения и любительском радио.
В радиовещании чаще используют АМ с одной боковой полосой и частично подавленной несущей:

При такой модуляции соотношение качество/эффективность наилучшим образом достигается.

Частотная модуляция

Вид аналоговой модуляции, при которой, частота несущей изменяется по закону модулирующего низкочастотного сигнала. Амплитуда при этом остается постоянной.

а) - несущая частота, б) модулирующий сигнал, в) результат модуляции

Наибольшее отклонение частоты от среднего значения, называется девиацией .
В идеальном варианте, девиация должна быть прямо пропорционально амплитуде модулирующего колебания.

Спектр при частотной модуляции выглядит следующим образом:

Состоит из несущей и симметрично отстающей от нее вправо и влево гармоник боковых полос, на частоту кратную частоте модулирующего колебания.
Данный спектр представляет гармоническое колебание. В случае реальной модуляции, спектр имеет более сложные очертания.
Различают широкополосную и узкополосную ЧМ модуляцию.
В широкополосной - спектр частот, значительно превосходит частоту модулирующего сигнала. Применяется в ЧМ радиовещании.
В радиостанциях применяют в основном узкополосную ЧМ модуляцию, требующую более точной настройки приемника и соответственно более защищенную от помех.
Спектры широкополосной и узкополосной ЧМ представлены ниже

Спектр узкополосной ЧМ напоминает амплитудную модуляцию, но если учесть фазу боковых полос, то окажется, что эти волны имеют постоянную амплитуду и переменную частоту, а не постоянную частоту и переменную амплитуду (AM). При широкополосной ЧМ амплитуда несущей может быть очень малой, что обусловливает высокую эффективность ЧМ; это значит, что большая часть передаваемой энергии содержится в боковых частотах, несущих информацию.

Основные преимущества ЧМ, перед АМ - энергоэффективность и помехоустойчивость.

Как разновидность ЧМ, выделяют Линейно-частотную модуляцию.
Суть ее заключается в том, что частота несущего сигнала изменяется по линейному закону.

Практическая значимость линейно-частотно-модулированных (ЛЧМ) сигналов заключается в возможности существенного сжатия сигнала при приеме с увеличением его амплитуды над уровнем помех.
ЛЧМ находят применение в радиолокации.

Фазовая модуляция
В реальности, больше применяют термин фазовая манипуляция, т.к. в основном производят модуляцию дискретных сигналов.
Смысл ФМ таков, что фаза несущей, изменяется скачкообразно, при приходе очередного дискретного сигнала, отличного от предыдущего.

Из спектра можно видеть, почти полное отсутствие несущей, что указывают на высокую энергоэффективность.
Недостаток данной модуляции в том, что ошибка в одном символе, может привести к некорректному приему всех последующих.

Дифференциально-фазовая манипуляция
В случае этой модуляции, фаза меняется не при каждом изменении значения модулирующего импульса, а при изменении разности. В данном примере при приходе каждой «1».

Преимущество этого вида модуляции в том, что в случае возникновения случайной ошибки в одном символе, это не влечет дальнейшую цепочку ошибок.

Стоит отметить, что существуют также фазовые манипуляции такие как квадратурная, где используется изменение фазы в пределах 90 градусов и ФМ более высоких порядков, но их рассмотрение выходит за рамки данной статьи.

PS: хочу еще раз отметить, что цель статей не заменить учебник, а рассказать «на пальцах» об основах радио.
Рассмотрены лишь основные виды модуляций для создания у читателя представления о теме.

Как сравнить различные методы модуляции с точки зрения производительности и применений? Давайте посмотрим.

Важно понимать основные характеристики трех типов радиочастотной модуляции. Но эта информация не существует изолировано - цель заключается в разработке реальных систем, которые эффективно отвечают требованиям производительности. Таким образом, мы должны иметь общее представление о том, какой метод модуляции подходит для конкретного приложения.

Амплитудная модуляция

Амплитудная модуляция проста в плане реализации и анализа. Кроме того, AM сигналы довольно легко демодулировать. В целом, тогда AM можно рассматривать как простую, недорогую схему модуляции. Однако, как обычно, простота и низкая стоимость сопровождаются компромиссами в производительности - мы никогда не ожидаем, что более простое и дешевое решение будет самым лучшим.

Возможно, я буду неточным, если опишу AM системы как «редкие», поскольку AM приемники присутствуют на бесчисленных транспортных средствах. Однако применения аналоговой амплитудной модуляции в настоящее время весьма ограничены, поскольку AM имеет два существенных недостатка.

Амплитудный шум

Шум - это постоянная проблема в беспроводных системах связи. В определенном смысле качество радиочастотного проекта можно суммировать по отношению сигнал/шум демодулированного сигнала: меньше шума в принятом сигнале означает более высокое качество (для аналоговых систем) или меньшее количество битовых ошибок (для цифровых систем). Шум присутствует всегда, и мы всегда должны признавать в нем основную угрозу для производительности системы.

Шум - случайный электрический шум, помехи, электрические и механические переходные процессы - воздействует на уровень сигнала. Другими словами, шум может создавать амплитудную модуляцию. И это является проблемой, поскольку случайную амплитудную модуляцию, возникающую из-за шума, нельзя отличить от преднамеренной амплитудной модуляции, выполняемой передатчиком. Шум является проблемой для любого радиосигнала, но AM системы особенно восприимчивы.

Линейность усилителя

Одной из основных проблем в разработке радиочастотных усилителей мощности является линейность (более конкретно, трудно добиться и высокой эффективности, и высокой линейности одновременно). Линейный усилитель применяет к входному сигналу определенный фиксированный коэффициент усиления; графически это выглядит так: передаточная функция линейного усилителя представляет собой просто прямую линию с наклоном, соответствующим коэффициенту усиления.


Прямая линия представляет собой отклик идеального линейного усилителя: выходное напряжение всегда равно входному напряжению, умноженному на фиксированный коэффициент усиления

У реальных усилителей всегда есть некоторая степень нелинейности, что означает, что на усиление, применяемое к входному сигналу, влияют характеристики входного сигнала. Результатом нелинейного усиления являются искажения, т.е. создание энергии на частотах гармоник.

Любая схема модуляции, которая включает в себя изменения амплитуды, более восприимчива к влиянию нелинейности. Это включает в себя как обычную аналоговую амплитудную модуляцию, так и широко используемые цифровые схемы, известные в совокупности как квадратурная амплитудная модуляция (QAM).

Угловая модуляция

Частотная и фазовая модуляции кодируют информацию во временны́х характеристиках передаваемого сигнала и, следовательно, устойчивы к амплитудному шуму и нелинейности усилителя. Частота сигнала не может быть изменена шумом или искажением. Могут быть добавлены дополнительные частотные составляющие, но исходная частота всё равно будет присутствовать. Разумеется, шум оказывает негативное влияние на FM и PM системы, но шум напрямую не искажает характеристики сигнала, которые использовались для кодирования низкочастотных данных.

Как упоминалось выше, разработка усилителя мощности включает в себя компромисс между эффективностью и линейностью. Угловая модуляция совместима с низколинейными усилителями, и эти низколинейные усилители более эффективны с точки зрения энергопотребления. Таким образом, угловая модуляция является хорошим выбором для маломощных радиочастотных систем.

Ширина полосы частот

Эффекты в частотной области от амплитудной модуляции более просты, чем от частотной и фазовой модуляций. Это можно считать преимуществом AM: важно иметь возможность прогнозировать ширину полосы частот, занимаемую модулированным сигналом.

Однако сложность прогнозирования спектральных характеристик FM и PM актуальна больше для теоретической части проектирования. Если мы сосредоточимся на практических соображениях, угловая модуляция может считаться выгодной, поскольку она может преобразовывать заданную ширину полосы частот низкочастотного сигнала в несколько меньшую (по сравнению с AM) ширину полосы частот передаваемого сигнала.

Частота против фазы

Частотная и фазовая модуляции тесно связаны; тем не менее, есть ситуации, когда одна из них лучше другой. Различия между ними более выражены при цифровой модуляции.

Аналоговые частотная и фазовая модуляции

Как мы видели в статье про фазовую модуляцию , когда низкочастотный модулирующий сигнал является синусоидой, PM сигнал представляет собой просто сдвинутую версию соответствующего FM сигнала. Поэтому неудивительно, что ни у FM, ни у PM нет никаких серьезных плюсов или минусов, связанных со спектральными характеристиками или восприимчивостью к помехам.

Однако аналоговая частотная модуляция гораздо более распространена, чем аналоговая фазовая модуляция, и причина в том, что схемотехника FM модуляции и демодуляции более проста. Например, частотная модуляция может быть реализована чем-то простым, таким как генератор, построенный с использованием катушки индуктивности и конденсатора, управляемого напряжением (т.е. конденсатора, который изменяет свою емкость в зависимости от напряжения низкочастотного модулирующего сигнала).

Цифровые частотная и фазовая модуляции

Различия между PM и FM становятся весьма значительными, когда мы входим в область цифровой модуляции. При первом рассмотрении - это частота битовых ошибок. Очевидно, что частота битовых ошибок любой системы будет зависеть от разных факторов, но если мы математически сравниваем двоичную PSK систему с эквивалентной двоичной FSK системой, мы обнаружим, что для двоичной FSK требуется передавать значительно больше энергии для достижения той же частоты битовых ошибок. Это является преимуществом цифровой фазовой модуляции.

Но обычная цифровая фазовая модуляция также имеет два существенных недостатка:

  • Как обсуждалось в статье про цифровую фазовую модуляцию , обычная (то есть недифференциальная) PSK несовместима с некогерентными приемниками. FSK, напротив, не требует когерентного детектирования.
  • Обычные схемы PSK, особенно QPSK, включают в себя резкие изменения фазы, которые приводят к резким изменениям амплитуды модулированного сигнала, а участки с высоким наклоном формы сигнала уменьшаются по амплитуде, когда сигнал обрабатывается фильтром нижних частот. Эти изменения амплитуды в сочетании с нелинейным усилением приводят к проблеме, называемой внеполосным излучением. Чтобы уменьшить внеполосное излучение, мы можем использовать более линейный (и, следовательно, менее эффективный) усилитель мощности или реализовать специализированную версию PSK. Или мы можем перейти на FSK, которая не требует резких изменений фазы.

Резюме

  • Амплитудная модуляция проста, но она очень чувствительна к шуму и требует высоколинейного усилителя мощности.
  • Частотная модуляция менее восприимчива к амплитудному шуму и может использоваться с более высокоэффективными усилителями с более низкой линейностью.
  • Цифровая фазовая модуляция обеспечивает лучшую теоретическую производительность с точки зрения частоты битовых ошибок, чем цифровая частотная модуляция, но цифровая FM более выгодна в маломощных системах, поскольку не требует усилителя с высокой линейностью.

Введение

В данной статье речь пойдет о разновидностях аналоговой амплитудной модуляции. Предполагается, что читатель понимает смысл комплексной огибающей полосового радиосигнала , а также понятия аналитического сигнала и преобразования Гильберта .

Как было отмечено ранее, процесс модуляции заключается в формировании низкочастотной комплексной огибающей Также было отмечено, что все виды модуляции различаются только способом формирования комплексной огибающей на основе модулирующего сигнала

Формирование сигналов с амплитудной модуляцией

Рассмотрим как производится формирование комплексной огибающей в случае с амплитудной модуляцией (АМ).

При АМ производится изменение только амплитуды несущего колебания при постоянной начальной фазе:

(3)
где - закон изменения амплитуды, а - постоянная начальная фаза несущего колебания. Потребуем, чтобы модулирующий сигнал имел нулевую постоянную составляющую и Тогда где носит название глубины АМ и радиосигнал с АМ имеет вид:
(4)
Поясним смысл глубины АМ, для этого возьмем частный случай модулирующего сигнала где В этом случае получим так называемую однотональную АМ. При амплитуда несущего колебания не меняется. На рисунках 1 - 4 приведены графики АМ сигнала при различной глубине модуляции: от 0 до 1,5. Синим показана амплитуда При глубине модуляции от 0 до 1 амплитуда несущего колебания совпадает с , однако при наблюдается перемодуляция, так как пересекает ось абсцисс.

Если глубина АМ выбрана так, что перемодуляции не наблюдается, то измерить глубину АМ можно по осциллограмме радиосигнала. Для этого необходимо померить максимальную и минимальную амплитуду несущего колебания как это показано на рисунке 5, и по ним рассчитать глубину АМ по формуле: Таким образом, комплексная огибающая равна , тогда квадратурные составляющие комплексной огибающей равны: Таким образом, квадратурная составляющая не учитывается, и радиосигнал формируется простым умножением несущего колебания на как это показано на рисунке 7.


Рисунок 7: Упрощенная схема АМ

Спектр сигналов с амплитудной модуляцией

Рассмотрим теперь спектр однотональной АМ. Для этого представим АМ сигнал в виде:
(9)
Таким образом, можно сделать вывод о том, что спектр однотональной АМ имеет три гармоники. Амплитудный и фазовый спектры сигнала с АМ представлены на рисунке 8.


Рисунок 8: Амплитудный и фазовый спектр сигнала с АМ

Центральная гармоника не несет никакой информации, однако ее амплитуда максимальна и не зависит от глубины АМ. Информация заключена в боковых гармониках, при этом их уровень зависит от глубины АМ, чем она выше, тем уровень боковых гармоник больше. Максимальное значение глубины АМ при котором не наблюдается перемодуляции , это означает, что максимальный уровень боковых гармоник в 2 раза ниже уровня несущей частоты. При этом как нетрудно заметить при суммарная мощность информационных гармоник будет в 2 раза ниже мощности несущей частоты, другими словами передатчик бОльшую часть энергии тратит на излучение неинформационной несущей, то есть просто обогревает космос. Также необходимо сделать замечание: спектр АМ сигнала всегда симметричен относительно центральной частоты, если модулирующий сигнал чисто вещественный.

Сигналы с балансной АМ (DSB) и их спектр

Давайте теперь допустим, что у нас есть перемодуляция, т.е. . Тогда при уровень информационных гармоник сравняется с уровнем несущей и при дальнейшем росте глубины модуляции уровень информационных гармоник уже начнет превосходить уровень несущей. Если позволить глубине модуляции расти неограниченно, то можно сделать предельный переход:
(10)
В выражении (10) множитель введен для того, чтобы зафиксировать уровень боковых информационных гармоник (это легко понять рассмотрев выражение ). В результате при увеличении будет наблюдаться падение уровня несущей при фиксированном уровне информационных гармоник, так как все гармоники делятся на Такой предельный переход приводит к балансной АМ с подавлением несущей (DSB). Действительно, уровень несущей будет: Таким образом, спектр однотональной балансной АМ с подавлением несущей содержит всего две гармоники как это представлено на рисунке 9.


Рисунок 9: Спектр однотональной балансной АМ с подавлением несущей

Комплексная огибающая балансной АМ имеет вид где

Cигнал с балансной АМ (10) имеет вид, представленный на рисунке 10. При этом можно заметить, что на осциллограмме видна несущая частота, которая отсутствует в спектре. Однако при пересечении модулирующим сигналом оси абсцисс, несущее колебание меняет знак (фаза сдвигается на ), это видно из рисунка 11 и в результате при излучении несущее колебание скомпенсируется, хотя на осциллограмме его можно увидеть.

всегда направлен в одну сторону и амплитуда меняется в зависимости от глубины АМ от до согласно (5), а при балансной АМ вектор меняется по амплитуде в пределах , причем в зависимости от модулирующего сигнала, вектор комплексной огибающей меняет знак на противоположный, что означает что фаза меняется на радиан (смотри рисунок 12 б).

Главное преимущество балансной АМ — полное подавление несущей частоты. Вся мощность передатчика идет на излучение информационных составляющих. Как и в случае с АМ, спектр радиосигнала с балансной АМ симметричен относительно несущей частоты. Ширина спектра радиосигнала с балансной АМ равна удвоенной верхней частоте модулирующего сигнала, или в случае однотональной модуляции ширина спектра равна

Выводы

Таким образом, мы рассмотрели формирование АМ радиосигнала. Можно сделать выводы:

АМ сигнал формируется путем управления амплитудой несущего колебания по закону модулирующего сигнала.

Введено понятие глубины АМ, показано, что при слишком больших значениях глубины АМ может возникнуть перемодуляция, искажающая модулирующий сигнал.

При отсутствии перемодуляции на излучение информации приходится не более 33% мощности сигнала, остальное — излучение несущей, а при балансной АМ несущая подавлена и вся мощность расходуется на излучение информации.

Показано, что спектр АМ всегда симметричен относительно несущей при вещественном модулирующем сигнале и имеет ширину равную удвоенной верхней частоте модулирующего сигнала.

Как известно, АМ - вид модуляции, при которой амплитуда несущего сигнала изменяется по закону модулирующего (информационного) сигнала. Существует немало источников с теоретическим и практическим описанием АМ. Описание даётся, прежде всего, для того, чтобы показать частотный состав АМ сигнала. В качестве модулирующего сигнала обычно рассматривают однотональный сигнал. Данный сигнал задаётся простой функцией синуса. У меня всегда спрашивали, да и я задавался вопросом, как описать АМ на случай, если в качестве модулирующего сигнала будет произвольный сигнал. Именно произвольный сигнал, частотный спектр которого состоит из множества компонент, представляет интерес, так как АМ применяется в радиовещании для передачи звука.

Попробуем описать АМ для вышесказанного случая, принимая во внимание, что модулирующий сигнал можно представить, как непрерывную сумму простых однотональных сигналов разных частот с различными амплитудами и фазами. Не вдаваясь в тонкости математического анализа, данный сигнал можно записать как непрерывную сумму (интеграл) Фурье:

Где – верхний предел частоты сигнала (полоса модулирующего сигнала), - переменная интегрирования, отвечающая за частоту, причём . Функции и - амплитуда и фаза компоненты сигнала на частоте .

Подынтегральное выражение данной формулы представляет собой т.н. тригонометрическую свёртку в амплитудно-фазовый вид слагаемого ряда Фурье, в который можно разложить сигнал. Интеграл в (1) можно назвать интегралом Фурье, так как, фактически, это непрерывная сумма, т.е. непрерывный ряд Фурье, в который раскладывается исходный сигнал. Разложение сигнала в подобный ряд даёт представление о частотном составе этого сигнала. Таким образом, исходный модулирующий сигнал представлен в виде непрерывной суммы синусоид (в данном случае для удобства - ) различных частот от до , каждая из них имеет свою амплитуду фазовый сдвиг . Функция представляет собой частотный спектр исходного сигнала .

Стоит отметить, что сигнал рассматривается на ограниченном промежутке времени . Вообще говоря, если речь идёт о звуковом сигнале, то, как правило, частотный спектр имеет практический смысл рассматривать для очень коротких фрагментов сигнала. Очевидно, чем больше по времени продолжительность сигнала, тем больше низкочастотных (приближающихся к нулю) компонент будут фигурировать в спектральном составе, что нельзя сопоставить со звуковыми частотами в слышимом диапазоне.

Кроме модулирующего сигнала имеется тональный сигнал, представляющий собой несущее колебание с частотой , амплитудой и нулевой начальной фазой:

Причём . Действительно, в радиовещании частота несущей во много раз больше полосы передаваемого сигнала.

Теперь перейдём непосредственно к процессу амплитудной модуляции.

Известно, что АМ сигнал есть результат перемножения сигнала несущей и модулирующего сигнала, предварительно смещённого и «проиндексированного» индексом модуляции , т.е.

Во избежание так называемой перемодуляции .

Подставим исходные данные (1) и (2) в выражение (3), раскроем скобки, внесём под интеграл независящие от переменной интегрирования некоторые множители:

Применим известную школьную тригонометрическую формулу преобразования произведения для подынтегральных функций:

Данная формула носит ключевой характер при АМ и подчёркивает эти самые «две боковые» в спектральном составе АМ сигнала.

Продолжив равенство, разобьём интеграл получившейся суммы на сумму двух интегралов, раскроем скобки и вынесем за скобку нужные множители в аргументах функций:

Три получившихся слагаемых соответственно представляют собой, как видно из равенства, сигнал несущей, сигналы «нижней» и «верхней» боковой. Прежде чем дать конкретное пояснение, продолжим равенство, применив метод замены переменной в следующей конфигурации:

Воспользуемся этой самой заменой:

Поменяв в первом интеграле пределы интегрирования местами (в результате чего изменится знак перед интегралом на противоположный), можно два интеграла объединить в один. Более того, туда же можно внести и первое слагаемое, описывающее сигнал несущей. При этом, естественно, подынтегральные функции амплитуды и фазы необходимо обобщить. Это всё делается условно и для более детальной наглядности, не вдаваясь в тонкости математического анализа. Таким образом, получится:

Таким образом, были введены новые кусочнозаданные функции (4) и (5), описывающие изменение амплитуды и фазы в зависимости от частоты. Глядя на компоненты функции (4), можно заметить, что третья компонента получена путём параллельного переноса функции на , а первая - ещё и с предварительным зеркальным разворотом. Множители-константы перед функциями, уменьшающие амплитуду, я не беру во внимание. То есть, в спектре АМ сигнала имеются три компоненты: несущая, верхняя боковая и нижняя боковая, что и было отражено в (4).

В заключение стоит отметить, что АМ можно описать, применяя более сложный подход, основанный на комплексных сигналах и комплексных числах. Обычный сигнал, о котором шла речь в этой статье, не имеет мнимой компоненты. Принимая во внимание представление с помощью векторных диаграмм на комплексной плоскости, сигнал без мнимой компоненты складывается из двух комплексных сигналов с обоими компонентами. Это очевидно, если представлять однотональный сигнал в виде суммы двух векторов, которые вращаются в противоположные стороны симметрично относительно оси x (Re). Скорость вращения данных векторов эквивалентна частоте сигнала, а направление - знаку частоты (положительная или отрицательная). Из этого следует, что частотный спектр сигнала без мнимой компоненты имеет не только положительную, но и отрицательную составляющую. И, конечно же, он симметричен относительно нуля. Именно при таком представлении можно утвердить, что в процессе амплитудной модуляции спектр модулирующего сигнала переносится по шкале частот вправо от нуля на частоту несущей (и влево тоже). При этом «нижняя боковая» не возникает, она в исходном модулирующем сигнале уже существует, правда располагается в отрицательной области частот. Звучит на первый взгляд странно, так как в природе, казалось бы, не существует отрицательных частот. Но математика преподносит немало сюрпризов.

Теги: Добавить метки



Загрузка...