sonyps4.ru

Затвор сток исток. Что такое МДП-транзистор

Относится к «Про электронику и схемотехнику»

Полевой транзистор

История создания полевых транзисторов

Идея полевого транзистора с изолированным затвором была предложена Лилиенфельдом в 1926-1928 годах. Однако объективные трудности в реализации этой конструкции позволили создать первый работающий прибор этого типа только в 1960 году. В 1953 году Дейки и Росс предложили и реализовали другую конструкцию полевого транзистора - с управляющим p-n-переходом. Наконец, третья конструкция полевых транзисторов - полевых транзисторов с барьером Шоттки - была предложена и реализована Мидом в 1966 году.

Схемы включения полевых транзисторов

Классификация полевых транзисторов

По физической структуре и механизму работы полевые транзисторы условно делят на 2 группы. Первую образуют транзисторы с управляющим р-n переходом или переходом металл - полупроводник (барьер Шоттки), вторую - транзисторы с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (метал - диэлектрик - полупроводник).

Транзисторы с управляющим p-n переходом

Рис. 1. Устройство полевого транзистора с управляющим p-n переходом

Полевой транзистор с управляющим p-n переходом - это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом , смещённым в обратном направлении.

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды - исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика . Так как исходным полупроводником для полевых транзисторов обычно является кремний , то в качестве диэлектрика используется слой двуокиси кремния SiO 2 , выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод - затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Входное сопротивление МДП-транзисторов может достигать 10 10 …10 14 Ом (у полевых транзисторов с управляющим p-n-переходом 10 7 …10 9), что является преимуществом при построении высокоточных устройств.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (U ЗИпор ).

В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой - канал, который соединяет исток со стоком.

Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.

МДП-транзисторы с индуцированным каналом

При напряжении на затворе относительно истока, равном нулю, и при наличии напряжения на стоке, - ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциал е на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших U ЗИпор ) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших U ЗИпор , у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.

В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.

Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энерги и постоянного электрического поля (энерги и источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда - дырки . Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энерги я увеличивается за счёт энерги и источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энерги и.

МДП-транзисторы со встроенным каналом

Рис. 3. Выходные статические характеристики (a) и статические характеристики передачи (b) МДП-транзистора со встроенным каналом.

В данной схеме в качестве нелинейного элемента используется МДП транзистор с изолированным затвором и индуцированным каналом.

В связи с наличием встроенного канала в таком МДП-транзисторе при нулевом напряжении на затворе (см. рис. 2, б) поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).

Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки U ЗИотс , то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.

Формулы расчёта в зависимости от напряжения U ЗИ

1. Транзистор закрыт

Пороговое значение напряжения МДП транзистора

2. Параболический участок. src="electronica3_files/225a3fd373dd6b9811a34cdd9a08cd73.png">

Удельная крутизна транзистора.

3. Дальнейшее увеличение U 3 u приводит к переходу на пологий уровень.

- Уравнение Ховстайна.

МДП-структуры специального назначения

В структурах типа металл-нитрид-оксид-полупроводник (МНОП) диэлектрик под затвором выполняется двухслойным: слой оксида SiO 2 и толстый слой нитрида Si 3 N 4 . Между слоями образуются ловушки электронов, которые при подаче на затвор МНОП-структуры положительного напряжения (28..30 В) захватывают туннелирующие через тонкий слой SiO 2 электроны. Образующиеся отрицательно заряженные ионы повышают пороговое напряжение, причём их заряд может храниться до нескольких лет при отсутствии питания, так как слой SiO 2 предотвращает утечку заряда. При подаче на затвор большого отрицательного напряжения (28…30 В), накопленный заряд рассасывается, что существенно уменьшает пороговое напряжение.

Структуры типа металл-оксид-полупроводник (МОП) с плавающим затвором и лавинной инжекцией (ЛИЗМОП) имеют затвор, выполненный из поликристаллического кремния, изолированный от других частей структуры. Лавинный пробой p-n-перехода подложки и стока или истока, на которые подаётся высокое напряжение, позволяет электронам проникнуть через слой окисла на затвор, вследствие чего на нём появляется отрицательный заряд. Изолирующие свойства диэлектрика позволяют сохранять это заряд десятки лет. Удаление электрического заряда с затвора осуществляется с помощью ионизирующего ультрафиолетового облучения кварцевыми лампами, при этом фототок позволяет электронам рекомбинировать с дырками.

В дальнейшем были разработаны структуры запоминающих полевых транзисторов с двойным затвором. Встроенный в диэлектрик затвор используется для хранения заряда, определяющего состояние прибора, а внешний (обычный) затвор, управляемый разнополярными импульсами для ввода или удаления заряда на встроенном (внутреннем) затворе. Так появились ячейки, а затем и микросхемы флэш-памяти, получившие в наши дни большую популярнотсь и составившие заметную конкуренцию жестким дискам в компьютерах.

Для создания сверхбольших интегральных схем (СБИС) были созданы сверхминиатюрные полевые микротранзисторы. Они делаются с применением нанотехнологий с геометрическим разрешением менее 100 нм. У таких приборов толщина подзатворного диэлектрика доходит до нескольких атомных слоев. Используются различные, в том числе трехзатворные структуры. Приборы работают в микромощном режиме. В современных микропроцессорах корпорации Intel число приборов составляет от десятков миллионов до 2 миллиардов. Новейшие полевые микротранзисторы выполняются на напряженном кремнии, имеют металлический затвор и используют новый запатентованный материал для подзатворного диэлектрика на основе соединений гафния.

В последние четверть века бурное развитие получили мощные полевые транзисторы, в основном МДП-типа. Они состоят из множества маломощных структур или из структур с разветвленной конфигурацией затвора. Такие ВЧ и СВЧ приборы впервые были созданы в CCCР специалистами НИИ «Пульсар» Бачуриным В. В. (кремниевые приборы) и Ваксембургом В. Я. (арсенид-галлиевые приборы) Исследование их импульсных свойств было выполнено научной школой проф. Дьяконова В. П. (Смоленский филиал МЭИ). Это открыло область разработки мощных ключевых (импульсных) полевых транзисторов со специальными структурами, имеюших высокие рабочие напряжения и токи (раздельно до 500-1000 В и 50-100 А). Такие приборы нередко управляются малыми (до 5 В) напряжениями, имеют малое сопротивление в открытом состоянии (до 0,01 Ом) у сильноточных приборов, высокую крутизну и малые (в единицы-десятки нс) времена переключения. У них отсутствует явление накопления носителей в структуре и явление насыщения, присушее биполярным транзисторам. Благодаря этому мощные полевые транзисторы успешно вытесняют мощные биполярные транзисторы в области силовой электроники малой и средней мощности.

Области применения полевых транзисторов

Значительная часть производимых в настоящий момент полевых транзисторов входит в состав КМОП-структур , которые строятся из полевых транзисторов с каналами разного (p- и n-) типа проводимости и широко используются в цифровых и аналоговых интегральных схемах .

За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энерги и, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).

Выдающиеся примеры устройств, построенных на полевых транзисторах, - наручные кварцевые часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет, потому что практически не потребляют энерги и.

Грандиозными темпами развиваются области применения мощных полевых транзисторов. Их применение в радиопередающих устройствах позволяет получить повышенную чистоту спектра излучаемых радиосигналов, уменьшить уровень помех и повысить надежность радиопередатчиков. В силовой электронике ключевые мощные полевые транзисторы успешно заменяют и вытесняют мощные биполярные транзисторы. В силовых преобразователях они позволяют на 1-2 поядка повысить частоту преобразования и резко уменьшить габариты и массу энергетических преобразователей. В устройствах большой мощности используются биполярные транзисторы с полевым управлением (IGBT) успешно вытесняющие тиристоры . В усилителях мощности звуковых частот высшего класса HiFi и HiEnd мощные полевые транзисторы успешно заменяют мощные электронные лампы, обладающие малыми нелинейными и динамическими искажениями.
Сегодня множество знаменитых брендов, занимающихся производством звуковой усилительной техники и их поставщики http://musicmag.com.ua/hi-fi-stereo/usiliteli-moschnosti используют полевые транзисторы как полноценную по качеству замену электронным лампам, но имеющие намного более технологичные параметры, в том числе компактность и неприхотливость к механическим воздействиям.

Лекция 14.

Такие транзисторы сокращенно называют МДП-транзисторами. Они могут быть двух типов: транзисторы с индуцированным каналом и транзисторы со встроенным каналом. В первых из них канал возникает под действием управляющего напряжения, подаваемого между затвором и истоком. В отсутствие такого напряжения эти транзисторы закрыты (поэтому называются нормально закрытыми транзисторами). В случаях, когда такой транзистор используется в качестве нормально закрытого электронного ключа, управление им не потребует каких либо напряжений для постоянного смещения потенциала затвора. Однако, если организовать соответствующее смещение, транзистор будет работать в качестве линейного усилителя сигналов переменного напряжения.

В транзисторах второго типа проводящий канал создается в процессе их изготовления. Поэтому они являются нормально открытыми и могут усиливать переменный сигнал даже без смещения потенциала затвора. Если транзисторы с индуцированным каналом могут работать только в режиме обогащения канала свободными носителями тока необходимого вида, то транзисторы со встроенным каналом способны работать как в режиме обогащения, так и в режиме обеднения. По сравнению с исходным состоянием сопротивление канала этих транзисторов может быть увеличено или уменьшено с помощью внешнего управляющего сигнала.

В МДП-транзисторах (в отличие от транзисторов с управляющим р-п- переходом) металлический затвор изолирован от канала в объеме полупроводника слоем диэлектрика. Кроме того, у МДП-транзисторов имеется еще и четвертый вывод, называемый подложкой (П).

Принципы действия МДП-транзисторов с индуцированными каналами р -типа и п- типа качественно не отличаются. Здесь, как и в любом МДП-транзисторе, управляющее напряжение можно подавать как между затвором и подложкой, так и независимо на подложку и затвор.

При подаче на затвор отрицательного напряжения U ЗИ электроны приповерхностного слоя отталкиваются в глубь полупроводника, а дырки движутся к поверхности. Приповерх­ностный слой приобретает дырочную электропроводность. В нем появляется тонкий слой с инверсным типом проводимости, который выступает в качестве канала. Если между истоком и стоком приложено напряжение, то дырки, перемещаясь по каналу, создают ток стока. Путем изменения напряжения на затворе можно расширять или сужать канал и тем самым увеличивать или уменьшать сопротивление канала и, следовательно, ток стока.

Напряжение на затворе, при котором появляется проводящий канал, называют пороговым напряжением U ЗИ. пор. Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения U ЗИ. пор .

По мере удаления от поверхности полупроводника концен­трация индуцированных дырок уменьшается. На расстоянии, приблизительно равном толщине канала, электропроводность становится собственной. Затем идет слой, обедненный основными носителями заряда (т.е. р-п -переход). Благодаря ему сток, исток и канал изолированы от подложки, поскольку р-п -переход смещен приложенным напряжением в обратном направлении. Очевидно, что его ширину и, следовательно, ширину канала можно изменять за счет подачи на подложку дополнительного напряжения относительно электродов стока и истока. Сле­довательно, током стока можно управлять не только пу­тем изменения напряжения на затворе, но и за счет из­менения напряжения на подложке. В последнем случае управ­ление МДП-транзистором аналогично управлению полевым транзистором с управляющим р-п -переходом.

Для образова­ния канала на затвор должно быть подано напряжение, большее U ЗИ. пор . При этом толщина образующегося инверсного слоя оказывается значительно меньше толщины обедненного слоя; если толщина обедненного слоя колеблется от сотен до тыся­ч нанометров, то толщина индуцированного канала составляет всего 1¸5 нанометров. Другими словами, дырки индуцированного канала «прижаты» к поверхности полупроводника, поэтому структура и свойства границы полупроводник - диэлектрик играют в МДП-транзисторах очень важную роль.

Рассмотрим семейство выходных вольтамперных характеристик (ВАХ) МДП-транзистора с индуцированным каналом. На рис. 13.1 видно, что каждый из графиков, соответствующий определенному значению напряжения U ЗИ, имеет три участка. На начальном участке ток стока быстро возрастает (крутая или омическая область). Затем идет слабая зависимость тока стока от напряжения U СИ (пологая область или область насыщения тока стока) и завершает график участок пробоя.


Можно заметить, что выходные ВАХ транзисторов рассматриваемого здесь вида похожи на выходные ВАХ полевых транзисторов с управляющим р-п- переходом. Как и транзисторы с управляющим р-п -переходом, МДП-транзисторы при малых напряжениях U СИ (в области I; рис. 13.1)ведут себя подобно линеаризованному управля­емому сопротивлению. При увеличении напряжения U СИ ши­рина канала уменьшается вследствие падения на нем напряже­ния и изменения результирующего электрического поля. Это особенно сильно проявляется в той части канала, которая находится вблизи стока.

Аналитичес­кие аппроксимации вольтамперных характеристик МДП-тран­зисторов не очень удобны и мало применяются в инженерной практике. Однако, при ориентировочных оценках тока стока в области насыщения можно использовать уравнение

, (13.1)

.

Управляющее действие подложки можно учесть путем введения коэффициента влияния по подложке

, (13.2)

называется крутизной характеристики на подложке. Она показывает, насколько следовало бы изменить напряжение на затворе, чтобы при изменении напряжения подложки U ПИ ток стока I C остался неизменным. Если одновременно действуют напряжения на затворе и подложке, то в выражения (13.1) и (13.2) вместо U ЗИ следует подставить

U ЗИ. эф = U ЗИ - hU ПИ. (13.3)

Инерционные свойства МДП-транзисторов зависят от ско­рости движения носителей заряда в канале, а также от межэлектродных емкостей между стоком и истоком (С СИ), между подложкой и истоком (С ПИ) и между подложкой и стоком (С ПС). Кроме того, быстродействие транзисторов зависит от значений сопротивлений, через которые эти емкости заряжаются и разряжаются. При этом ввиду малого времени пробега носителей заряда через канал, который обычно имеет длину 0,1¸5 мкм, влиянием последнего обычно пренебрегают.

При расчете схем, построенных на МДП-транзисторах с индуцированным каналом, используют эквивалентные схемы замещения этих транзисторов, в которых за инерционные свойства отвечают электрические емкости. На рис. 13.2 показана одна из таких схем. Необходимо сказать, что значения емкостей, входящих в эквивалентную схему (например, в такую, что представлена на рис. 13.2)не всегда известны. К тому же часть из них (в частности, С ПС и С ПИ) меняется в зависимости от напряжений на электродах. Поэтому на практике часто измеряют входную емкость транзистора для схемы с общим истоком (С 11И), его выходную (С 22И) и проходную (С 12И) емкости. Эти емкости характеризуют параметры полевого транзистора, который при заданном режиме измерения представлен эк­вивалентной схемой рис. 13.3. Эта схема не очень точно отражает особен­ности транзистора, но ее параметры известны или легко могут быть измерены. Обычно значения емкостей схемы с рис. 13.3 бывают следующими: входная емкость С 11И » 1¸5пФ, проход­ная емкость С 12И = 0,22 пФ, выходная емкость С 22И = 2¸6 пФ.




Кроме включения в эквивалентную схему транзистора межэлектродных емкостей, для учета инерционности используют частотную зависимость крутизны стоко-затворной характеристики. Операторное уравнение крутизны характеристики МДП-транзисторов имеет тот же вид, что и для полевых тран­зисторов с управляющим р-п -переходом:

, (13.4)

где w гр » w З = 1/t З, и t З » R СИ.откр ×С 3 . В типовом слу­чае при длине канала 5 мкм предельная частота, на ко­торой крутизна характеристики уменьшается в 0,7 раза, лежит в пределах нескольких сотен ме­гагерц.

Температурная зависимость порогового напряжения и на­пряжения отсечки обусловлена изменением положения уровня Ферми, изменением объемного заряда в обедненной области и влиянием температуры на величину заряда в диэлектрике. У МДП-транзисторов можно найти термостабильную рабочую точку, в которой ток стока мало зависит от температуры. У разных транзисторов значение тока стока в термостабильной точке находится в пределах I C = 0,05¸0,5 мА. Важным преимуществом МДП-транзисторов перед биполярными транзисторами является малое падение напряжения на них при коммутации малых сигналов. Так, если в биполярных тран­зисторах в режиме насыщения напряжение U КЭ принципиально не может быть меньше нескольких десятков - сотен милливольт, то у МДП-транзисторов при малых токах I C это падение напряже­ния (поскольку в этом случае транзистор работает в крутой области) мало и определяется током I С и сопротивлением канала R СИ. откр:

U СИ = I С ×R СИ.откр при | U СИ | < | U СИ. нас |. (13.5)

При уменьшении I C оно может быть сведено до значения, стремящегося к нулю.

МДП-транзисторы со встроенным каналом.Здесь, как и выше, мы рассмотрим транзистор с каналом только одного типа (р-типа), поскольку принципы действия транзисторов с каналами р- или п-типа одинаковы.

Такой транзистор изготавливается из пластинки полупроводникового кристалла с невысоким уровнем легирования донорами, имеющего слабо выраженную проводимость п -типа. На одной из поверхностей пластинки методом высокотемпературной диффузии устраивают слой с повышенным содержанием донорной примеси (проводимость п + ). На поверхность этого слоя напыляют металлический слой (электрод подложки). На противоположной поверхности полупроводниковой пластинки методом локальной диффузии акцепторной примеси изготавливают две отделенные друг от друга области полупроводника с р + -типом проводимости (области стока и истока), а затем, также методом диффузии, между ними изготавливают тонкий слой канала, имеющий слабо выраженную проводимость р -типа.

Таким образом, стоковая и истоковая области оказываются связанными гальванически (между ними нет р-п- перехода). Между областями с р -типом проводимости и основным объемом полупроводниковой пластинки (подложкой) образуется р -п -переход. На поверхности стоковой и истоковой областей напыляются металлические электроды, к которым припаиваются выводы стока и истока, соответственно. Поверхность полупроводниковой пластинки в месте нахождения канала покрывают слоем изолятора (диоксида кремния), а на этот слой напыляют металлический электрод (затвор). В зависимости от полярности напряжения между каналом и затвором происходит расширение или сужение встроенного канала и, следовательно, уменьшение или увеличение сопротивления канала.

Подчеркнем, что в транзисторах со встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для его прекращения необходимо к затвору приложить положитель­ное напряжение (при структуре с каналом р -типа), равное или большее напряжения отсечки U ЗИ.отс . При этом дырки из инверсного слоя будут вытеснены, практически полностью, в глубь полупроводника и канал исчезнет. При приложении отрицательного напряжения канал расширяется и ток увели­чивается. Следовательно, МДП-транзисторы со встроенными каналами работают как в режиме обеднения, так и в режиме обогащения.

При ориентировочных оценках тока стока транзистора со встроенным каналом в области насыщения можно использовать уравнение

, (13.6)

.

Графики семейства выходных ВАХ МДП-транзистора со встроенным каналом отличаются от соответствующих графиков МДП-транзисторов с индуцированным каналом лишь тем, что здесь напряжение U ЗИ может принимать как положительные значения, так и отрицательные. По форме те и другие графики идентичны. Здесь тоже имеются крутая (омическая) область I, область насыщения тока стока II и область пробоя канала транзистора в наиболее суженном месте, III.

Для расчетов усилительных схем на МДП-транзисторах со встроенным каналом рекомендуется схема замещения транзистора, показанная на рис. 6.17. В нее входят элементы: входная емкость транзистора в схеме с общим истоком (С 11И), его выходная емкость (С 22И), проходная емкость (С 12И), выходное дифференциальное сопротивление (R СИ. диф) и источник тока, определяющий усилительные свойства транзистора.



Обычно величины емкостей схемы замещения транзистора имеют следующие значения: С 11И » 1¸5пФ, С 12И = 0,22 пФ, С 22И = 2¸6 пФ. Величина сопротивления R СИ. диф находится в пределах от десятков до сотен кОм.

Рассмотрим некоторые параметры МДП-транзисторов и их ориентировочные значения. Среди них основными являются:

1. Крутизна характеристики

(при U СИ = const и U ПИ = const; S = 0,1¸500 мА/В);

1. Крутизна характеристики по подложке

(при U СИ = const и U ЗИ = const; S П = 0,1¸1 мА/В);

2. Начальный ток стока I C нач (ток стока при нулевом напряжении U ЗИ;у транзисторов с управляющим р-п -переходом I C нач = 0,2¸600 мА; для транзисторов с технологически встроенным каналом I C нач = 0,1¸100 мА; с индуцированным каналом I C . нач = 0,01¸0,5 мкА);

4. Пороговое напряжение U ЗИ. пор (U ЗИ. пор = 1¸6 В);

5. Сопротивление сток – исток в открытом состоянии R СИ.откр

(R СИ. откр = 2¸300 Ом);

6. Максимальный постоянный ток стока I C . макс (I C . макс = 10¸700 мА);

7. Остаточный ток стока I C . ост – ток стока при напряжении U ЗИ. отс (I C . ост = 0,001¸10 мА);

8. Максимальная частота усиления f р – частота, на которой коэффициент усиления по мощности К у Р равен единице (f р может принимать значения от десятков до сотен МГц).


Похожая информация.


Полевой транзистор – электрический полупроводниковый прибор, выходной ток которого управляется полем, следовательно, напряжением, одного знака. Формирующий сигнал подается на затвор, регулирует проводимость канала n или p-типа. В отличие от биполярных транзисторов, где сигнал переменной полярности. Вторым признаком назовем формирование тока исключительно основными носителями (одного знака).

Классификация полевых транзисторов

Начнём классификацией. Разновидности полевых транзисторов многочисленны, каждая работает сообразно алгоритму:

Помимо общей классификации придумана специализированная, определяющая принципы работы. Различают:

  1. Полевые транзисторы с управляющим p-n-переходом.
  2. Полевые транзисторы с барьером Шоттки.
  3. Полевые транзисторы с изолированным затвором:
  • С встроенным каналом.
  • С индуцированным каналом.

В литературе дополнительно упорядочивают структуры следующим образом: применять обозначение МОП нецелесообразно, конструкции на оксидах считают частным случаем МДП (металл, диэлектрик, полупроводник). Барьер Шоттки (МеП) следует отдельно выделять, поскольку это иная структура. Напоминает свойствами p-n-переход. Добавим, что конструктивно в состав транзистора способны входить одновременно диэлектрик (нитрид кремния), оксид (четырехвалентный кремния), как это случилось с КП305. Такие технические решения используются людьми, ищущими методы получения уникальных свойств изделия, удешевления.

Среди зарубежных аббревиатур для полевых транзисторов зарезервировано сочетание FET, иногда обозначает тип управления – с p-n-переходом. В последнем случае наравне с этим встретим JFET. Слова-синонимы. За рубежом принято отделять оксидные (MOSFET, MOS, MOST – синонимы), нитридные (MNS, MNSFET) полевые транзисторы. Наличие барьера Шоттки маркируется SBGT. По-видимому, материал значение, отечественная литература значение факта замалчивает.

Электроды полевых транзисторов на схемах обозначаются: D (drain) – сток, S (source) – исток, G (gate) – затвор. Подложку принято именовать substrate.

Устройство полевого транзистора

Управляющий электрод полевого транзистора называется затвором. Канал образован полупроводником произвольного типа проводимости. Сообразно полярность управляющего напряжения положительная или отрицательная. Поле соответствующего знака вытесняет свободные носители, пока перешеек под электродом затвора не опустеет вовсе. Достигается путем воздействия поля либо на p-n-переход, либо на однородный полупроводник. Ток становится равным нулю. Так работает полевой транзистор.

Ток протекает от истока к стоку, новичков традиционно мучает вопрос различения двух указанных электродов. Отсутствует разница, в каком направлении движутся заряды. Полевой транзистор обратим. Униполярность носителей заряда объясняет малый уровень шумов. Поэтому в технике полевые транзисторы занимают доминирующую позицию.

Ключевой особенностью приборов назовем большое входное сопротивление, в особенности, переменному току. Очевидный факт, проистекающий из управления обратно смещённым p-n-переходом (переходом Шоттки), либо емкости технологического конденсатора в районе изолированного затвора.

Подложки часто выступает нелегированный полупроводник. Для полевых транзисторов с затвором Шоттки — арсенид галлия. В чистом виде неплохой изолятор, к которому в составе изделия предъявляются требования:

Сложно создать значительной толщины слой, отвечающий перечню условий. Поэтому добавляется пятое требование, заключающееся в возможности постепенного наращивания подложки до нужных размеров.

Полевые транзисторы с управляющим p-n-переходом и МеП

В этом случае тип проводимости материала затвора отличается от используемого каналом. На практике встретите разные улучшения. Затвор составлен пятью областями, утопленными в канале. Меньшим напряжением удается управлять протеканием тока. Означая увеличение коэффициента усиления.

Биполярный транзистор

В схемах используется обратное смещение p-n-перехода, чем сильнее, тем уже канал для протекания тока. При некотором значении напряжения транзистор запирается. Прямое смещение опасно использовать по той причине, что мощная управляемая цепь может повлиять на контур затвора. Если переход открыт, потечет большой ток, либо приложится высокое напряжение. Нормальный режим обеспечивается правильным подбором полярности и других характеристик источника питания, выбором рабочей точки транзистора.

Однако в некоторых случаях намеренно используются прямые токи затвора. Примечательно, что этот режим могут использовать те МДП-транзисторы, где подложка образует с каналом p-n-переход. Движущийся заряд истока делится между затвором и стоком. Можно найти область, где получается значительный коэффициент усиления по току. Управляется режим затвором. При росте тока iз (до 100 мкА) параметры схемы резко ухудшаются.

Аналогичное включение используется схемой так называемого затворного частотного детектора. Конструкция эксплуатирует выпрямительные свойства p-n-перехода между затвором и каналом. Прямое смещение мало или вовсе нулевое. Прибор по-прежнему управляется током затвора. В цепи стока получается значительное усиление сигнала. Выпрямленное напряжение для затвора является запирающим, изменяется по входному закону. Одновременно с детектированием достигается усиление сигнала. Напряжение цепи стока содержит компоненты:

  • Постоянная составляющая. Никак не используется.
  • Сигнал с частотой несущей. Заводится на землю путем использования фильтрующих емкостей.
  • Сигнал с частотой модулирующего сигнала. Обрабатывается для извлечения заложенной информации.

Недостатком затворного частотного детектора считают большой коэффициент нелинейных искажений. Причем результаты одинаково плохи для слабых (квадратичная зависимость рабочей характеристики) и сильных (выход в режим отсечки) сигналов. Несколько лучшие демонстрирует фазовый детектор на двухзатворном транзисторе. На один управляющий электрод подают опорный сигнал, на стоке образуется информационная составляющая, усиленная полевым транзистором.

Несмотря на большие линейные искажения эффект находит применение. Например, в избирательных усилителях мощности, дозировано пропускающих узкий спектр частот. Гармоники фильтруются, не оказывают большого влияния на итоговое качество работы схемы.

Транзисторы металл-полупроводник (МеП) с барьером Шоттки почти не отличаются от имеющих p-n-переход. По крайней мере, когда дело касается принципов работы. Но благодаря особым качествам перехода металл-полупроводник, изделия способны работать на повышенной частоте (десятки ГГц, граничные частоты в районе 100 ГГц). Одновременно МеП структура проще в реализации, когда дело касается производства и технологических процессов. Частотные характеристики определяются временем заряда затвора и подвижностью носителей (для GaAs свыше 10000 кв. см/В с).

МДП-транзисторы

В МДП-структурах затвор надежно изолирован от канала, управление происходит полностью за счет воздействия поля. Изоляция ведётся за счет оксида кремния или нитрида. Именно эти покрытия проще нанести на поверхности кристалла. Примечательно, что в этом случае также имеются переходы металл-полупроводник в районе истока и стока, как и в любом полярном транзисторе. Об этом факте забывают многие авторы, либо упоминают вскользь путем применения загадочного словосочетания омические контакты.

В теме про диод Шоттки поднимался этот вопрос. Не всегда на стыке металла и полупроводника возникает барьер. В некоторых случаях контакт омический. Это зависит по большей части от особенностей технологической обработки и геометрических размеров. Технические характеристики реальных приборов сильно зависят от различных дефектов оксидного (нитридного) слоя. Вот некоторые:

  1. Несовершенство кристаллической решетки в поверхностной области обусловлено разорванными связями на границе смены материалов. Влияние оказывают как свободные атомы полупроводника, там и примесей наподобие кислорода, который имеется в любом случае. Например, при использовании методов эпитаксии. В результате появляются энергетические уровни, лежащие в глубине запрещенной зоны.
  2. На границе оксида и полупроводника (толщиной 3 нм) образуется избыточный заряд, природа которого на сегодняшний день еще не объяснена. Предположительно, роль играют положительные свободные места (дырки) дефектных атомов самого полупроводника и кислорода.
  3. Дрейф ионизированных атомов натрия, калия и других щелочных металлов происходит при низких напряжениях на электроде. Это увеличивает заряд, скопившийся на границе слоев. Для блокировки этого эффекта в оксиде кремния используют окись фосфора (ангидрид).

На принципиальных схемах можно встретить обозначения полевого транзистора той или иной разновидности.

Чтобы не запутаться и получить наиболее полное представление о том, какой всё-таки транзистор используется в схеме, сопоставим условное графическое обозначение униполярного транзистора и его отличительные свойства, и особенности.

Независимо от разновидности полевого транзистора он имеет три вывода. Один из них называется Затвор (З). Затвор является управляющим электродом, на него подают управляющее напряжение. Следующий вывод зовётся Исток (И). Исток аналогичен эмиттеру у биполярных транзисторов. Третий вывод именуется Сток (С). Сток является выводом, с которого снимается выходной ток.

На зарубежных электронных схемах можно увидеть следующее обозначение выводов униполярных транзисторов:

    G – затвор (от англ. – G ate «затвор», «ворота»);

    S – исток (от англ. – S ource «источник», «начало»);

    D – сток (от англ. – D rain «отток», «утечка»).

Зная зарубежные обозначения выводов полевого транзистора, будет легко разобраться в схемах импортной электроники.

Обозначение полевого транзистора с управляющим p-n – переходом (J-FET).

Итак. Транзистор с управляющим p-n – переходом обозначается на схемах так:


n-канальный J-FET


p-канальный J-FET

В зависимости от типа носителей, которые используются для формирования проводящего канала (область, через которую течёт регулируемый ток), данные транзисторы могут быть n-канальные и p-канальные. На графическом обозначении видно, что n-канальные изображаются со стрелкой, направленной внутрь, а p-канальные наружу.

Обозначение МДП-транзистора.

Униполярные транзисторы МДП типа (MOSFET) имеют немного иное условное графическое обозначение, нежели J-FET"ы c управляющим p-n переходом. MOSFET"ы также могут быть как n-канальными, так и p-канальными.

MOSFET"ы существуют двух типов: со встроенным каналом и индуцированным каналом .

В чём разница?

Разница в том, что транзистор с индуцированным каналом открывается только при подаче на затвор положительного или только отрицательного порогового напряжения. Пороговое напряжение (U пор ) – это напряжение между выводом затвора и истока, при котором полевой транзистор открывается и через него начинает протекать ток стока (I c ).

Полярность порогового напряжения зависит от типа канала. Для мосфетов с p-каналом к затвору необходимо приложить отрицательное «-» напряжение, а для тех, что с n-каналом, положительное «+» напряжение. Мосфеты с индуцированным каналом ещё называют транзисторами обогащённого типа . Поэтому, если услышите, что говориться о мосфете обогащенного типа – знайте, это транзистор с индуцированным каналом. Далее показано его условное обозначение.


n-канальный MOSFET


p-канальный MOSFET

Основное отличие МДП-транзистора с индуцированным каналом от полевого транзистора со встроенным каналом заключается в том, что он открывается только при определённом значении (U пороговое) положительного, либо отрицательного напряжения (зависит от типа канала – n или p).

Транзистор же со встроенным каналом открывается уже при «0», а при отрицательном напряжении на затворе работает в обеднённом режиме (тоже открыт, но пропускает меньше тока). Если же к затвору приложить положительное «+» напряжение, то он продолжит открываться и перейдёт в так называемый режим обогащения - ток стока будет увеличиваться. Данный пример описывает работу n-канального mosfet"а со встроенным каналом. Их ещё называют транзисторами обеднённого типа . Далее показано их условное изображение на схемах.



На условном графическом обозначении отличить транзистор с индуцированным каналом от транзистора со встроенным каналом можно по разрыву вертикальной черты.

Иногда в технической литературе можно увидеть изображение МОП-транзистора с четвёртым выводом, который является продолжением линии стрелки указывающей тип канала. Так вот, четвёртый вывод – это вывод подложки (substrate). Такое изображение мосфета применяется, как правило, для описания дискретного (т.е. отдельного) транзистора и используется лишь как наглядная модель. В процессе производства подложку обычно соединяют с выводом истока.


MOSFET с выводом подложки (substrate)


Обозначение мощного МОП-транзистора

В результате соединения истока и подложки в структуре полевого mosfet"а между истоком и стоком образуется встроенный диод . На работу прибора данный диод не влияет, поскольку в схему он включен в обратном направлении. В некоторых случаях, встроенный диод, который образуется из-за технологических особенностей изготовления мощного MOSFET"а можно использовать на практике. В последних поколениях мощных МОП-транзисторов встроенный диод используется для защиты самого элемента.


Встроенный диод на условном обозначении мощного МДП-транзистора может и не указываться, хотя реально такой диод присутствует в любом мощном полевике.

А теперь давайте поговорим о полевых транзисторах. Что можно предположить уже по одному их названию? Во-первых, поскольку они транзисторы, то с их помощью можно как-то управлять выходным током. Во-вторых, у них предполагается наличие трех контактов. И в-третьих, в основе их работы лежит p-n переход. Что нам на это скажут официальные источники?
Полевыми транзисторами называют активные полупроводниковые приборы, обычно с тремя выводами, в которых выходным током управляют с помощью электрического поля. (electrono.ru)

Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов - управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов , как мы помним, выходным током управляет входной ток базы.

Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название - униполярные . Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).

Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором .

Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.

Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два .

Полевой транзистор с управляющим p-n-переходом

Итак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противополжных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод - затвор. Естественно, что между затвором и p-областью под ним (каналом ) возникает p-n переход. А поскольку n-слой значительно у же канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора.

Можно провести следующую аналогию: p-n переход - это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).

Итак, в рабочем режиме полевого транзистора с управляющим p-n переходом напряжение на затворе должно быть либо нулевым (канал открыт полностью), либо обратным.
Если величина обратного напряжения станет настолько большой, что запирающий слой закроет канал, то транзистор перейдет в режим отсечки .

Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока.

Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.

Условные графические изображения полевых транзисторов приведены на рисунке (а - с каналом p-типа, б - с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.

Статические характеристики полевого транзистора с управляющим p-n-переходом
Поскольку в рабочем режиме ток затвора обычно невелик или вообще равен нулю, то графики входных характеристик полевых транзисторов мы рассматривать не будем. Перейдем сразу к выходным или стоковым. Кстати, статическими их называют потому, что на затвор подается постоянное напряжение. Т.е. нет необходимости учитывать частотные моменты, переходные процессы и т.п.


Выходной (стоковой ) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток. На рисунке - график слева.

На графике можно четко выделить три зоны. Первая из них - зона резкого возрастания тока стока. Это так называемая «омическая» область . Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора.

Вторая зона - область насыщения . Она имеет почти линейный вид. Здесь происходит перекрытие канала в области стока, которое увеличивается при дальнейшем росте напряжения исток-сток. Соответственно, растет и сопротивление канала, а стоковый ток меняется очень слабо (закон Ома, однако). Именно этот участок характеристики используют в усилительной технике, поскольку здесь наименьшие нелинейные искажения сигналов и оптимальные значения малосигнальных параметров, существенных для усиления. К таким параметрам относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления. Значения всех этих непонятных словосочетаний будут раскрыты ниже.

Третья зона графика - область пробоя , чье название говорит само за себя.

С правой стороны рисунка показан график еще одной важной зависимости - стоко-затворной характеристики . Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора.

Полевой транзистор с изолированным затвором

Такие транзисторы также часто называют МДП (металл-диэлектрик-полупроводник)- или МОП (металл-оксид-полупроводник)-транзисторами (англ. metall-oxide-semiconductor field effect transistor, MOSFET). У таких устройств затвор отделен от канала тонким слоем диэлектрика. Физической основой их работы является эффект изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.
Устройство транзисторов такого вида следующее. Есть подложка из полупроводника с p-проводимостью, в которой сделаны две сильно легированные области с n-проводимостью (исток и сток). Между ними пролегает узкая приповерхностнаяя перемычка, проводимость которой также n-типа. Над ней на поверхности пластины имеется тонкий слой диэлектрика (чаще всего из диоксида кремния - отсюда, кстати, аббревиатура МОП). А уже на этом слое и расположен затвор - тонкая металлическая пленка. Сам кристалл обычно соединен с истоком, хотя бывает, что его подключают и отдельно.

Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт.

А теперь подадим на затвор отрицательное относительно истока напряжение. Возникшее поперечное электрическое поле «вытолкнет» электроны из канала в подложку. Соответственно, возрастет сопротивление канала и уменьшится текущий через него ток. Такой режим, при котором с возрастанием напряжения на затворе выходной ток падает, называют режимом обеднения .
Если же мы подадим на затвор напряжение, которое будет способствовать возникновению «помогающего» электронам поля «приходить» в канал из подложки, то транзистор будет работать в режиме обогащения . При этом сопротивление канала будет падать, а ток через него расти.

Рассмотренная выше конструкция транзистора с изолированным затвором похожа на конструкцию с управляющим p-n переходом тем, что даже при нулевом токе на затворе при ненулевом напряжении исток-сток между ними существует так называемый начальный ток стока . В обоих случаях это происходит из-за того, что канал для этого тока встроен в конструкцию транзистора. Т.е., строго говоря, только что мы рассматривали такой подтип МДП-транзисторов, как транзисторы с встроенным каналом .

Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором - транзистор с индуцированным (инверсным) каналом . Из названия уже понятно его отличие от предыдущего - у него канал между сильнолегированными областями стока и истока появляется только при подаче на затвор напряжения определенной полярности.

Итак, мы подаем напряжение только на исток и сток. Ток между ними течь не будет, поскольку один из p-n переходов между ними и подложкой закрыт.
Подадим на затвор (прямое относительно истока) напряжение. Возникшее электрическое поле «потянет» электроны из сильнолегированных областей в подложку в направлении затвора. И по достижении напряжением на затворе определенного значения в приповерхностной зоне произойдет так называемая инверсия типа проводимости. Т.е. концентрация электронов превысит концентрацию дырок, и между стоком и истоком возникнет тонкий канал n-типа. Транзистор начнет проводить ток, тем сильнее, чем выше напряжение на затворе.
Из такой его конструкции понятно, что работать транзистор с индуцированным каналом может только находясь в режиме обогащения. Поэтому они часто встречаются в устройствах переключения.

Условные обозначения транзисторов с изолированным затвором следующие:


Здесь
а − со встроенным каналом n- типа;
б − со встроенным каналом р- типа;
в − с выводом от подложки;
г − с индуцированным каналом n- типа;
д − с индуцированным каналом р- типа;
е − с выводом от подложки.

Статические характеристики МДП-транзисторов
Семейство стоковых и стоко-затворная характеристики транзистора с встроенным каналом предсталены на следующем рисунке:


Те же характеристики для транзистора с идуцированным каналом:
Экзотические МДП-структуры
Чтобы не запутывать изложение, хочу просто посоветовать ссылки, по которым о них можно почитать. В первую очередь, это всеми любимая википедия , раздел «МДП-структуры специального назначения». А здесь теория и формулы: учебное пособие по твердотельной электронике, глава 6 , подглавы 6.12-6.15. Почитайте, это интересно!

Общие параметры полевых транзисторов

  1. Максимальный ток стока при фиксированном напряжении затвор-исток.
  2. Максимальное напряжение сток-исток , после которого уже наступает пробой.
  3. Внутреннее (выходное) сопротивление . Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток - константа).
  4. Крутизна стоко-затворной характеристики . Чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе.
  5. Входное сопротивление . Оно определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»). А среди самих полевых транзисторов пальма первенства принадлежит устройствам с изолированным затвором.
  6. Коэффициент усиления - отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока.

Схемы включения


Как и биполярный, полевой транзистор можно рассматривать как четырехполюсник, у которого два из четырех контактов совпадают. Таким образом, можно выделить три вида схем включения: с общим истоком, с общим затвором и с общим стоком. По характеристикам они очень похожи на схемы с общим эмиттером, общей базой и общим коллектором для биполярных транзисторов.
Чаще всего применяется схема с общим истоком (а ), как дающая большее усиление по току и мощности.
Схема с общим затвором (б ) усиления тока почти не дает и имеет маленькое входное сопротивление. Из-за этого такая схема включения имеет ограниченное практическое применение.
Схему с общим стоком (в ) также называют истоковым повторителем . Ее коэффициент усиления по напряжению близок к единице, входное сопротивление велико, а выходное мало.

Отличия полевых транзисторов от биполярных. Области применения

Как уже было сказано выше, первое и главное отличие этих двух видов транзисторов в том, что вторые управляются с помощью изменения тока, а первые - напряжения. И из этого следуют прочие преимущества полевых транзисторов по сравнению с биполярными:
  • высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление;
  • высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей);
  • поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных;
  • высокая температурная стабильность;
  • малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»;
  • малое потребление мощности.
Однако, привсем при этом у полевых транзисторов есть и недостаток - они «боятся» статического электричества, поэтому при работе с ними предъявляют особо жесткие требования по защите от этой напасти.

Где применяются полевые транзисторы? Да практически везде. Цифровые и аналоговые интегральные схемы, следящие и логические устройства, энергосберегающие схемы, флеш-память… Да что там, даже кварцевые часы и пульт управления телевизором работают на полевых транзисторах. Они повсюду, %хабраюзер %. Но теперь ты знаешь, как они работают!



Загрузка...