sonyps4.ru

Виды телефонов: история создания, описание и классификация. Принцип работы мобильного телефона

Часть текста, а также схемы и диаграмма напряжений АТС-абонент взяты из книги Евсеева А.Н. «Радиолюбительские устройства телефонной связи» (М.: Радио и связь, Малип, 1999г) Параграф «Устройство телефонного аппарата и основы телефонной связи»

Основные компоненты телефонного аппарата использующего проводную связь.

В состав телефонных аппаратов, предназначаемых для работы в телефонных сетях, входят обязательные элементы: объединенные в микротелефонную трубку микрофон и телефон, вызывное устройство, трансформатор, разделительный конденсатор, номеронабиратель, рычажный переключатель.

Микрофон служит для преобразования звуковых колебаний речи и электрический сигнал звуковой частоты. Микрофоны могут быть угольными, конденсаторными, электродинамическими, электромагнитными, пьезоэлектрическими. Их можно классифицировать на активные и пассивные. Активные микрофоны непосредственно преобразуют звуковую энергию в электрическую. В пассивных же микрофонах звуковая энергия преобразуется в изменение какого-либо параметра (чаще всего - емкости и сопротивления). Для работы пассивного микрофона обязательно требуется вспомогательный источник питания. На принципиальных схемах микрофон обозначают латинскими буквами ВМ .

Устройство телефона
электромагнитного типа

Телефоном называют прибор, предназначенный для преобразования электрических сигналов в звуковые и рассчитанный для работы в условиях нагрузки на ухо человека. (Более расширенное определение на странице Телефон. Понятие и история)

В зависимости от конструкции телефоны подразделяют на электромагнитные, электродинамические, с дифференциальной магнитной системой и пьезоэлектрические. В старых телефонных аппаратах использовали телефоны электромагнитного типа. В них телефонах катушки закреплены неподвижно. Под действием протекающего в катушках тока возникает переменное магнитное поле, приводящее в движение подвижную мембрану, которая и излучает звуковые колебания.

Трубка от
старого
телефонного
аппарата

Полоса рабочих частот для микрофонов и телефонов, используемых в телефонных аппаратах, составляет примерно 300...3500 Гц. На принципиальных схемах телефон обозначают латинскими буквами BF .

Для удобства пользования микрофон и телефон объединены в микротелефонной трубке.

Вызывное устройство служит для преобразования вызывного сигнала переменного тока в звуковой сигнал. Применяют электромагнитные или электронные вызывные устройства.

В аппаратах старого типа вызывное устройство представляло собой одно- или двухкатушечный звонок. Звуковой сигнал образовывался в результате удара бойка о звонковые чашки. Протекающий в катушках ток частотой 16...50 Гц создавал переменное магнитное поле, которое приводило в движение якорь с бойком. В телефонных звонках использовали постоянные магниты, создававшие определенную полярность магнитопровода, поэтому такие звонки называли поляризованными. Сопротивление обмоток звонка постоянному току 1,5...3 кОм, рабочее напряжение 30...50 В. На принципиальных схемах звонок обозначают латинскими буквами НА .

Практически во всех современных телефонных аппаратах сейчас используется электронное вызывное устройство. Оно преобразует вызывной сигнал в звуковой тональный сигнал, который может имитировать, например, пение птицы. В качестве акустического излучателя при этом используют телефон, компактный динамик или пьезоэлектрический вызывной прибор. Схемы электронных вызывных устройств выполняют на транзисторах или интегральных микросхемах.

Трансформатор телефонного аппарата предназначен для связи отдельных элементов разговорной части и для согласования их сопротивлений с входным сопротивлением абонентской линии. Он, кроме того, позволяет устранять так называемый .

Разделительный конденсатор служит элементом подключения вызывного устройства к абонентской линии в режиме ожидания и приема вызова. При этом обеспечивается практически бесконечно большое сопротивление телефонного аппарата постоянному току и малое сопротивление - переменному. В телефонных аппаратах применяют разделительные конденсаторы емкостью 0,25...1 мкф и на номинальное напряжение 160...250 В.


Номеронабиратель
дисковый

Номеронабиратель при импульсном наборе обеспечивает подачу импульсов набора номера в абонентскую линию с целью установления требуемого соединения. То есть линия номеронабирателем периодически замыкается и размыкается. В телефонных аппаратах применяют механические и электронные номеронабиратели.Причём дисковый механический номеронабиратель (имеет диск с десятью отверстиями) в современных аппаратах уже не устанавливается, Но для понимания принципа работы системы АТС-абонент именно его работа более наглядна.

При вращении диска по часовой стрелке заводится пружина механизма номеронабирателя. После отпускания диска он вращается в обратную сторону под действием пружины, при этом происходит периодическое размыкание контактов, замыкающих абонентскую линию. Необходимая скорость и равномерность вращения диска достигаются наличием центробежного регулятора или фрикционного механизма. Формирование импульсов при свободном движении диска обеспечивает их стабильную частоту и необходимый интервал между импульсными посылками, соответствующими двум соседним цифрам набираемого номера. Необходимый интервал обеспечивается благодаря тому, что число размыканий импульсных контактов всегда выбирается на одно два больше, чем требуется подать импульсов в линию. Этим обеспечивается гарантированная пауза между пачками импульсов (0,2...0,8 с). При этом указанные лишние импульсы в линию не поступают, поскольку в это время импульсные контакты шунтируются одной из групп контактов номеронабирателя. Имеются также контакты, замыкающие телефон при наборе номера, чтобы исключить громкие щелчки в телефоне. Частота импульсов, формируемых номеронабирателем, должна составлять (10±1) имп./с. Число проводов, соединяющих номеронабиратель с другими элементами телефонного аппарата, может быть 3 - 5.

Электронные номеронабиратели , которыми комплектуются современные телефонные аппараты, выполнены на интегральных микросхемах и транзисторах. Набор номера осуществляют нажатием кнопок клавиатуры - так называемой тастатуры. Поскольку скорость нажатия кнопок может быть сколь угодно большой, в среднем на наборе одной цифры номера экономится 0,5 с. Кроме того, тастатурные номеронабиратели предоставляют пользователям различные удобства, экономящие время: запоминание последнего набранного номера, возможность запоминания нескольких десятков номеров и др. Питание электронных номеронабирателей осуществляется как от абонентской линии, так и от сети напряжением 220 В через блок питания.

В настоящее время всё большее распространение получает тональный набор номера . В этом случае в линию аппаратом абонента посылаются не пачки импульсов а кратковременные сигналы определённых частот, каждое значение которых соответствует определённой цифре. Тональный набор номера более быстрый, так как не требуется дожидаться прохождения пачек импульсов от цифр с большим значением и нуля. Но естественно для использования тонального набора должна использоваться современная АТС с поддержкой возможности такого набора.

Тональный набор , он же DTMF или тональный сигнал (англ. Dual-Tone Multi-Frequency) - двухтональный многочастотный аналоговый сигнал, используемый для набора телефонного номера. В DTMF передаваемая цифра кодируется сигналом полученным суммированием двух синусоидальных напряжений определенной частоты. Используется две группы по четыре частоты звукового диапазона в каждой.

Таблица частот тонального набора номера DTMF
1 2 3 A 697 Гц
4 5 6 B 770 Гц
7 8 9 C 852 Гц
* 0 # D 941 Гц
1209 Гц 1336 Гц 1477 Гц 1633 Гц

В современных проводных телефонных аппаратах часто реализуется возможность выбора стандарта набора номера. Это либо переключатель «PULSE/TONE » либо возможность программно изменить вид набора. Кстати возможность этого переключения часто создаёт проблемы у несведущих пользователей. Случайно переключив переключатель «PULSE/TONE» в неправильное положение люди несут аппараты в ремонтные мастерские с проблемой «не набирается номер».

Рычажный переключатель обеспечивает подключение к абонентской линии вызывного устройства телефонного аппарата в дежурном состоянии (трубка лежит) и разговорных цепей или номеронабирателя в рабочем состоянии (трубка снята). Рычажный переключатель представляет собой группы из нескольких переключающих контактов в старых аппаратах, срабатывающих при снятии телефонной трубки; или одного контакта (иногда геркона) в аппаратах современных.

Местный эффект в телефонах и способ его ослабления.

При работе телефонного аппарата в разговорном режиме возникает местный эффект , т.е. прослушивание собственной речи в телефоне аппарата. Местный эффект объясняется тем, что ток, протекающий через микрофон, поступает не только в абонентскую линию, но и в собственный телефон. Для устранения этого нежелательного явления в современных телефонных аппаратах используют противоместные устройства.

Существуют различные типы подобных устройств. Одно из них представлено на рис. 1.

Рис.1. Функциональная схема телефонного аппарата с противоместным эффектом

Микрофон ВМ1, телефон BF1, балансный контур Zб и линия Zл связаны между собой обмотками трансформатора Т1: линейной I, балансной II и телефонной III. Во время разговора, когда сопротивление микрофона изменяется, разговорные токи звуковой частоты протекают по двум цепям: линейной и балансной. Из схемы видно, что токи, протекающие через обмотки I и II, суммируются с противоположными знаками, поэтому ток в обмотке 111 будет отсутствовать в том случае, если токи в линейной и балансной обмотках равны по величине. Это достигается соответствующим выбором элементов балансного контура Zб, параметры которого зависят от параметров линии Zл. Сопротивление линии содержит активную и емкостную составляющие, поэтому балансный контур выполняют из резисторов и конденсаторов.

Полное устранение местного эффекта достигается только на одной определенной частоте и определенных параметрах линии, что в реальности невыполнимо, так как речевой сигнал содержит широкий спектр частот, а параметры линии изменяются в широких пределах (зависят от удаленности абонента от АТС, переходных сопротивлений и емкостей в кабелях и др.). Практически же местный эффект полностью не пропадает, а только ослабляется подобными схемами.

В состав телефонных аппаратов, предназначаемых для работы в телефонных сетях, входят следующие обязательные элементы: микрофон и телефон, объединенные в микротелефонную трубку, вызывное устройство, трансформатор, разделительный конденсатор, номеронабиратель, рычажный переключатель. На принципиальных электрических схемах телефонный аппарат обозначают буквой Е.

Кратко рассмотрим назначение основных элементов телефонного аппарата.

Микрофон служит для преобразования звуковых колебаний речи и электрический сигнал звуковой частоты. Микрофоны могут быть угольными, конденсаторными, электродинамическими, электромагнитными, пьезоэлектрическими. Их можно классифицировать на активные и пассивные. Активные микрофоны непосредственно преобразуют звуковую энергию в электрическую. В пассивных же микрофонах звуковая энергия преобразуется в изменение какого-либо параметра (чаще всего — емкости и сопротивления). Для работы такого микрофона обязательно требуется вспомогательный источник питания.

В массовых телефонных аппаратах применяют, как правило, угольные микрофоны, в которых под действием звуковых волн изменяется электрическое сопротивление угольного порошка, находящегося под мембраной. Наиболее широко используют микрофонные капсюли типов МК-10, МК-16, обладающие достаточно высокой чувствительностью (в описываемых устройствах применены в основном угольные микрофоны). На принципиальных схемах микрофон обозначают латинскими буквами ВМ.

Следует отметить, что в последнее время ряд телефонных аппаратов оснащают также конденсаторными микрофонами типов МКЭ-3, КМ-4, КМ-7.

Телефоном называют прибор, предназначенный для преобразования электрических сигналов в звуковые и рассчитанный для работы в условиях нагрузки на ухо человека. В зависимости от конструктивных особенностей телефоны подразделяют на электромагнитные, электродинамические, с дифференциальной магнитной системой и пьезоэлектрические. В телефонных аппаратах наибольшее распространение получили телефоны электромагнитного типа. В таких телефонах катушки закреплены неподвижно. Под действием протекающего в катушках тока возникает переменное магнитное поле, приводящее в движение подвижную мембрану, которая и излучает звуковые колебания. В современных телефонных аппаратах применяют в

основном телефонные капсюли типа ТК-67, а в аппаратах устаревших конструкций — также ТК-47 и ТА-4.

Полоса рабочих частот для микрофонов и телефонов, используемых в телефонных аппаратах, составляет примерно 300...3500 Гц. На принципиальных схемах телефон обозначают латинскими буквами BF.

Для удобства пользования микрофон и телефон объединены в микротелефонной трубке.

Вызывное устройство служит для преобразования вызывного сигнала переменного тока в звуковой сигнал. Применяют электромагнитные или электронные вызывные устройства. Первое из них представляет собой одно- или двухкатушечный звонок. Звуковой сигнал образуется в результате удара бойка о звонковые чашки. Протекающий в катушках ток частотой 16...50 Гц создаст переменное магнитное поле, которое приводит в движение якорь с бойком. Как правило, в телефонных звонках используют постоянные магниты, создающие определенную полярность магнитопровода, поэтому такие звонки называют поляризованными. Сопротивление обмоток звонка постоянному току составляет 1,5...3 кОм, рабочее напряжение 30...50 В. На принципиальных схемах звонок обозначают латинскими буквами НА.

Электронное вызывное устройство преобразует вызывной сигнал в звуковой тональный сигнал, который может имитировать, например, пение птицы. В качестве акустического излучателя при этом используют телефон или пьезоэлектрический вызывной прибор ВП-1. Такие вызывные устройства применяют, например, в современных телефонных аппаратах ТА-1131 "Лана", ТА-1165 "Стелла" и др. Электронные вызывные устройства выполняют на транзисторах.

Трансформатор телефонного аппарата предназначен для связи отдельных элементов разговорной части и для согласования их сопротивлений с входным сопротивлением абонентской линии. Он, кроме того, позволяет устранять так называемый местный эффект, о чем будет сказано ниже. Трансформаторы изготавливают с отдельными обмотками или в виде автотрансформаторов.

Разделительный конденсатор служит элементом подключения вызывного устройства к абонентской линии в режиме ожидания и приема вызова. При этом обеспечивается практически бесконечно большое сопротивление телефонного аппарата постоянному току и малое сопротивление — переменному. В телефонных аппаратах применяют разделительные конденсаторы типов МБМ, К73-П емкостью 0,25...1 мкф и на номинальное напряжение 160...250 В.

Номеронабиратель обеспечивает подачу импульсов набора номера в абонентскую линию с целью установления требуемого соединения. Импульсы служат для периодических замыканий и размыканий линии. В современных телефонных аппаратах применяют механические и электронные номеронабиратели. Дисковый механический номеронабиратель имеет диск с десятью отверстиями. При вращении диска по часовой стрелке заводится пружина механизма номеронабирателя. После отпускания диска он вращается в обратную сторону под действием пружины, при этом происходит периодическое размыкание контактов, коммутирующих абонентскую линию. Необходимая скорость и равномерность вращения диска достигаются наличием центробежного регулятора или фрикционного механизма. Формирование импульсов при свободном движении диска обеспечивает их стабильную частоту и необходимый интервал между импульсными посылками, соответствующими двум соседним цифрам набираемого номера. Необходимый интервал обеспечивается благодаря тому, что число размыканий импульсных контактов всегда выбирается на одно-два больше, чем требуется подать импульсов в линию. Этим обеспечивается гарантированная пауза между пачками импульсов (0,2...0,8 с). При этом указанные лишние импульсы в линию нс поступают, поскольку в это время импульсные контакты шунтируются одной из групп контактов номеронабирателя. Имеются также контакты, замыкающие телефон при наборе номера, чтобы исключить неприятные щелчки. Частота импульсов, формируемых номеронабирателем, должна составлять (10±1) имп./с. Число проводов, соединяющих номеронабиратель с другими элементами телефонного аппарата, может быть 3 — 5.

Электронные номеронабиратели, которыми комплектуются многие современные телефонные аппараты (например, ТА-5, ТА-7, ТА-101), выполнены на интегральных микросхемах и транзисторах. Набор номера осуществляют нажатием кнопок клавиатуры — так называемой тастатуры. Поскольку скорость нажатия кнопок может быть сколь угодно большой, в среднем на наборе одной цифры номера экономится 0,5 с. Кроме того, тастатурные номеронабиратели предоставляют пользователям различные удобства, экономящие время:

запоминание последнего набранного номера, возможность запоминания нескольких десятков номеров и др. Питание электронных номеронабирателей осуществляется как от абонентской линии, так и от сети напряжением 220 В через блок питания.

Рычажный переключатель обеспечивает подключение к абонентской линии вызывного устройства телефонного аппарата в нерабочем состоянии (микротелефонная трубка лежит) и разговорных цепей или номеронабирателя в рабочем состоянии (трубка снята). Рычажный переключатель представляет собой группы из нескольких переключающих контактов, срабатывающих при снятии телефонной трубки.

Кроме перечисленных элементов в состав телефонного аппарата входят также резисторы, конденсаторы, диоды, транзисторы, образующие разговорную цепь аппарата.

Рассмотрим устройство телефонного аппарата (ТА) в целом.

При работе телефонного аппарата в разговорном режиме возникает местный эффект, т.е. прослушивание собственной речи в телефоне аппарата. Местный эффект объясняется тем, что ток, протекающий через микрофон, поступает нс только в абонентскую линию, но и в собственный телефон. Для устранения этого нежелательного явления в современных телефонных аппаратах используют противо-местные устройства.

Существуют различные типы подобных устройств. Рассмотрим одно из них — противоместное устройство мостового типа (рис. 1).

Микрофон ВМ1, телефон BF1, балансный контур Zб и линия Zл связаны между собой обмотками трансформатора Т1: линейной I, балансной II и телефонной III. Во время разговора, когда сопротивление микрофона изменяется, разговорные токи звуковой частоты протекают по двум цепям: линейной и балансной. Из схемы видно, что токи, протекающие через обмотки I и II, суммируются с противоположными знаками, поэтому ток в обмотке 111 будет отсутствовать в том случае, если токи в линейной и балансной обмотках равны по величине. Это достигается соответствующим выбором элементов балансного контура Zб, параметры которого зависят от параметров линии Zл. Сопротивление линии содержит активную и емкостную составляющие, поэтому балансный контур выполняют из резисторов и конденсаторов.

Полное устранение местного эффекта достигается только на одной определенной частоте и определенных параметрах линии, что в реальных условиях невыполнимо, поскольку речевой сигнал содержит широкий спектр частот, а параметры линии изменяются в широких пределах (зависят от удаленности абонента от АТС, переходных сопротивлений и емкостей в кабелях и др.), поэтому на практике местный эффект не уничтожается полностью, а только ослабляется.

Рассмотрим схему телефонного аппарата ТА-72М-5 (рис. 2), предназначенного для работы в городских сетях. Его коммутационно-вызывную часть образуют рычажный переключатель SA1, звонок НА1, разделительный конденсатор С1 и номеронабиратель SA2. Разговорная часть телефонного аппарата состоит из телефона BF1, микрофона ВМ 1, трансформатора Т 1, балансного контура (конденсаторы С1 и С2, резисторы R1—R3) и ограничительных диодов VD1, VD2. Разговорная часть выполнена по противоместной схеме мостового типа.

В исходном состоянии контактов рычажного переключателя SA1 и номеронабирателя SA2, показанном на схеме, к линии подключены последовательно соединенные между собой звонок НА1 и конденсатор С1, а разговорная часть отключена. При появлении вызывного напряжения на зажимах 1 и 4 телефонного аппарата ток протекает по цепи: зажим 1 — перемычка — зажим 3 — обмотка звонка — нормально замкнутые контакты SA1.2 рычажного переключателя — конденсатор С1 — зажим 4. (Направление тока выбрано условно — с таким же успехом его можно было бы считать протекающим от зажима 4 к зажиму 1.) Услышав звонок, абонент снимает трубку. При этом контакты SA1.1 и SA1.2 переключаются в другое положение, отключая вызывную цепь и подключая к линии разговорную цепь. Сопротивление постоянному току между зажимами 1 и 4 изменяется от очень большого (сотни килоом — мегаомы) до относительно малого (сотни ом), это фиксируется приборами телефонной станции, и они переключаются в разговорный режим.

При наборе номера контакты SA2.1 номеронабирателя находятся в замкнутом состоянии во время прямого и возвратного вращения диска, что обеспечивает шунтирование разговорной цепи и исключает прослушивание щелчков в телефоне. При возвратном вращении диска номеронабирателя контакты SA2.2 разрывают линейную цепь, и приборы станции по числу таких размыканий фиксируют номер вызываемого абонента.

Диоды VD1 и VD2 ограничивают выбросы напряжения на обмотках телефона и исключают резкие звуки, неприятные для уха.

Для работы в сетях телефонных станций ручного обслуживания используют телефонные аппараты без номеронабирателя. Схема одного из таких аппаратов (типа ТА-68ЦБ-2) показана на рис. 3. Основным отличием его от предыдущего аппарата является отсутствие контактов номеронабирателя и одной группы контактов рычажного переключателя, в связи с чем звонок и конденсатор С1 остаются подключенными к линии и в разговорном режиме. Однако они практически нс оказывают влияния на работу телефонного аппарата в таком режиме.

В устройствах телефонной связи, которые описаны в этой книге, можно использовать выпускаемые промышленностью телефонные аппараты как с номеронабирателем (ТА-68, ТА-72М-5, ТА-1146 и др.), так и без него (ТА-68ЦБ-2 и другие аналогичные). Но телефонные аппараты без номеронабирателя годятся только для телефонных коммутаторов с ручным управлением. Если в распоряжении радиолюбителя имеется телефонный аппарат, у которого исправны лишь трубка и звонок, его также можно использовать. В этом случае соединение элементов осуществляют в соответствии со схемой, приведенной на рис. 4. Конденсатор С1 — типа К73-17, МБМ, МБГО. Следует отметить, что в таком телефонном аппарате в полной мере будет проявляться местный эффект, но ради простоты можно несколько поступиться удобством.

Рассмотрим кратко, каким образом осуществляется коммутация телефонных линий в городских АТС. С 1876 г., когда шотландец А.Г.Белл изобрел первый в мире двухпроводный телефон, принцип телефонной связи нс претерпел существенных изменений.

Схема организации телефонной связи между двумя абонентами показана на рис. 5. Ток питания телефонных аппаратов El, E2 про-

ходит через дроссели L1 и L2. Дроссели необходимы для того, чтобы не происходило замыкание разговорного (переменного) тока через источник питания постоянного тока Uпит, внутреннее сопротивление которого очень мало и составляет доли ома. Источник постоянного тока принято называть центральной батареей (ЦБ). Дроссели L1 и L2 имеют относительно небольшое сопротивление постоянному току (обычно не более 1 кОм). Индуктивность дросселей достаточно велика и в диапазоне частот разговорных токов (300...3500 Гц) создаст столь значительное сопротивление разговорному (переменному) току, что он практически не ответвляется в ЦБ и протекает в контуре между аппаратами Е1 и Е2. На АТС в качестве дросселей обычно используются обмотки двухобмоточных реле, причем эти реле одновременно служат для получения сигнала о вызове станции абонентом и сигнала окончания разговора (отбоя).

Индуктор формирует переменное вызывное напряжение частотой 16...50 Гц, которое приводит в действие вызывное устройство нужного телефонного аппарата.

Коммутация абонентов первоначально выполнялась на АТС вручную, затем стали использовать шаговые искатели, а в настоящее время коммутация осуществляется квазиэлектронным или электронным способом. Устройства коммутации АТС управляются импульса

ми постоянного тока, которые создаются номеронабирателем телефонного аппарата при наборе абонентом цифр номера вызываемого абонента.

Рисунок 6 иллюстрирует простейший принцип установления соединения на АТС. Телефонный аппарат первого абонента Е1 подключен к ЦБ (Uпит) через обмотки двухобмоточного реле К1. При снятии первым абонентом микротелефонной трубки аппарата Е1 реле К1 срабатывает и контактами К 1.2 подаст питание на обмотку реле К2. Это реле устроено таким образом, что отпускание якоря происходит не сразу после снятия напряжения с его обмотки, а с некоторой задержкой (в данном случае эта задержка составляет около 0,1 с). Контакты реле К2.2 подготавливают цепь питания шагового искателя КЗ. При наборе абонентом Е1 номера вызываемого абонента цепи питания обмоток реле К1 будут прерываться контактами номеронабирателя телефонного аппарата Е1 (это происходит при возвратном движении диска номеронабирателя). Контактами К1.1 подаются импульсы питания на обмотку шагового искателя КЗ соответственно цифре номера вызываемого абонента. По окончании вращения диска номеронабирателя телефонного аппарата Е1 контакты шагового искателя соединят линию вызывающего абонента с линией вызываемого, после чего абоненты смогут вести разговор.

Когда по окончании разговора абонент положит микротелефонную трубку на аппарат Е1, реле К1 отпустит, его контакты К 1.2 разомкнут цепь питания реле К2, которое спустя 0,1 с также отпустит. При этом через контакты К2.1, КЗ.4 и КЗ.3 будет подано питание на обмотку шагового искателя КЗ. Контакт КЗ.4 скользит по сплошной ламели шагового искателя и разомкнется только тогда, когда шаговый искатель придет в исходное состояние. Контакт КЗ.3 — это самопрерывающий контакт шагового искателя, который прерывает цепь питания обмотки шагового искателя при притяжении якоря к сердеч-

нику. Благодаря этому контакту на обмотке КЗ формируется серия импульсов, которые последовательно устанавливают контакты КЗ.1 и КЗ.2 в исходное положение.

Четкость работы абонентских реле и шагового искателя зависит от времени размыкания контактов номеронабирателя, которое не должно превышать 0,1 с. В противном случае при размыкании контактов К 1.2 реле К2 не сможет удержать якорь, и соединения не произойдет. Поэтому параметры номеронабирателей телефонных аппаратов должны соответствовать следующим требованиям:

1) частота импульсов номеронабирателя 10±1 имп/с;

2) период повторения импульсов 0,95...0,105 с;

3) пауза между сериями импульсов не менее 0,64 с;

4) отношение времени размыкания к времени замыкания импульсного контакта номеронабирателя, называемое импульсным коэффициентом, в зависимости от типа АТС 1,3...1,9.

Центральная батарея АТС осуществляет питание линий абонентов постоянным напряжением Uпит = 60 В. При снятии микротелефонной трубки телефонного аппарата линия АТС оказывается нагруженной на внутреннее сопротивление телефонного аппарата, в результате напряжение на зажимах линии падает до 10...20 В (в зависимости от удаленности абонента от АТС и типа применяемого аппарата). Внутреннее сопротивление телефонного аппарата при снятой трубке может составлять 200...800 Ом, а рабочий (разговорный) ток через аппарат — 20...40 мА. Приведенное к гнездам абонента сопротивление АТС, которое включает сопротивления линии, обмоток реле К1 (см.рис. 5) и внутреннее сопротивление центральной батареи, может составлять от 600 Ом до 2 кОм.

Для телефонного аппарата с дисковым номеронабирателем набор номера абонента осуществляется следующим образом: при вращении

диска по часовой стрелке до пальцевого упора контакты номеронабирателя замыкают линию, а при возвратном вращении линия размыкается такое число раз, которое соответствует набранной цифре. На рис. 7 показана временная диаграмма работы телефонного аппарата.

В качестве вызывного сигнала на АТС используется переменное напряжение 80...120 В частотой 16...30 Гц.

В устройствах телефонной связи, описанных в книге, применяют два способа соединения линий телефонных аппаратов: параллельное и последовательное (рис. 8).

Схема с параллельным соединением телефонных аппаратов была рассмотрена выше (рис. 5). Отличие схемы, приведенной на рис. 8,а, состоит в том, что вместо двух катушек индуктивности включен стабилизатор тока СТ, т.е. двухполюсник, ток через который сохраняется неизменным при изменении параметров внешней цепи в определенных пределах.

В любом случае справедливо соотношение L1 + L2 = L= const. поэтому изменение тока в цепи первого абонента вызывает точно такое же изменение тока в цепи второго абонента, но с противоположным знаком. При этом обеспечивается максимально возможная громкость разговора. Практически в переговорных устройствах вместо стабилизатора тока можно использовать резистор сопротивлением 1...5 кОм, однако следует учесть, что при этом громкость разговора несколько снизится.

На рис. 8,6 приведена схема последовательного соединения телефонных аппаратов. При таком соединении разговорный ток одного аппарата полностью протекает через второй аппарат, что обеспечивает максимально возможную громкость разговора (при данных условиях).

Следует заметить, что в городских АТС последовательный способ соединения линий телефонных аппаратов нс используется из-за сложности коммутации аппаратов. (В книге данный способ применяется в переговорных устройствах и коммутаторах с ручным управлением.)

Доброго времени суток, дорогой читатель! Мужской журнал 18+ рад вновь приветствовать Вас. Сегодня, мы продолжим наш разговор о том, что находится внутри наших смартфонов и планшетов. В прошлый раз, мы с вами остановились на том, что обсудили экран нашего, условного смартфона. В этой части мы залезем внутрь нашего устройства: рассмотрим батарейку, поговорим о камерах, кардридерах и радиомодулях, а так же о многом другом. Поехали!

Снимаем заднюю крышку телефона

На задней панели мы можем видеть камеру , опционально вспышку, и прорезь для динамика (aka громкоговорителя).

Про камеры. У них существует великое множество параметров, которыми можно охарактеризовать камеру. Для нас же интересны только два из них: фиксированность фокуса и разрешение матрицы . Фокус у камер бывает фиксированный и нефиксированный. Фиксированный фокус – это когда камера всегда фокусируется в одну точку, вне зависимости от внешних условий. Нефиксированный фокус (aka плавающий) – это когда камера может фокусироваться в любую точку (естественно в рамках угла, который камерой охватывается).

Следующий пункт, то есть разрешение матрицы , требует некоторого отступления. Как работает камера? Свет, через диафрагму и энное количество линз проникает в основную часть камеры, в которой этот самый свет падает на светочувствительную матрицу. Матрица воспринимает этот свет сенсорами, и кодирует его в читаемые для электроники данные. И вот мы получили нашу цифровую фотографию. Матрица в свою очередь представляет из себя огромное количество сенсоров, которые способны воспринимать свет. Чем больше этих сенсоров, тем выше качество цифровой фотографии.

Разрешение матрицы показывает нам количество этих самых сенсоров. Измеряется в пикселях (Px), в случае с камерами мегапикселях (mPx). Как уже было сказано выше, чем их больше, тем картинка лучше и детальнее. К слову, интерполяция (то есть добавление пикселей на этапе пост обработки) не увеличивает количество деталей, а лишь сглаживает углы.

И вот, мы наконец снимаем заднюю крышку нашего телефона. Нашему взору предстают слоты для симок и карт памяти, а так же батарейка (aka аккумулятор).

Остановимся по подробнее на батарейке

Батарейка имеет два основных параметра, выдаваемое напряжение (V – вольты ), которое батарейка выдаёт, и ток (A – амперы ). Время автономной работы зависит от тока (хотя вообще от мощности, но, так как на практически всех батарейках сейчас один и тот же уровень напряжение, то его просто не учитывают). Ток на батарейках измеряется не просто в амперах, а в ампер часах. Чем этих самых ампер часов больше, тем дольше ваш девайс будет работать без дозарядки.

Снимаем заднюю панель

И вот, насмотревшись на батарейку и слоты для всякой мелочи, и так же взяв фигурную отвёртку и медиатор у друга-гитариста, мы снимаем заднюю панель нашего смартфона.
Нашему взору предстало великое множество разных проводов, контактов, шлейфов, и маленьких схем и приборов. Весь этот винегрет размещается на зелёной плате из кремния. эта самая зелёная плата называется материнской платой (aka мама, мать etc).
Материнская плата – это по сути дела весь остальной телефон. Здесь происходит всё, что вообще может происходить на вашем устройстве. На материнской плате располагается огромное количество разных элементов, повреждение хотя бы одного из которых приведёт ваше устройство в полную негодность.

Копаемся в материнской плате

Давайте рассмотрим, что находится на материнской плате, и что за что отвечает. От материнской платы идёт несколько шлейфов (обычно 3), шлейф камеры, шлейф экрана и шлейф тача (см. часть 1). Эти шлейфы несут в себе функцию передачи данных от модуля камеры, экрана, и тача к программной составляющей девайса. Стоит отметить, что некоторые проблемы, связанные с камерой или экраном могут решаться банальным отсоединением и присоединением шлейфа к модулю, в котором есть неполадки.

Характеристик у всего этого добра навалом, но большинство из них нужны только технарям и прочим заинтересованным. Нам же нужно знать следующее:

Во-первых, чем выше версия Bluetooth, тем сильнее сигнал, и быстрее скорость передачи данных .

Во-вторых, чем больше пропускная способность Wi-Fi модуля, тем быстрее интернет . Пропускная способность измеряется в битах в секунду (b/s), обычно к этому прибавляется приставка мега (Mb/s).

В-третьих, если модуль сотовой связи может в VCDMA (3G) , а тем более в LTE (4G) , связь будет более качественной и интернет будет быстрее, чем через стандартный GSM протокол.

Подбираемся к самому главному

В прочем, не будем тратить время на всякую мелочёвку, а поговорим о самом главном. На материнской плате располагаются четыре основных элемента, внутренняя память, процессор, оперативная память а так же графическое ядро (иногда идёт в связке с процессором).

– самый главный в этой четвёрке. В процессоре происходят все, нет, ВСЕ операции, которые вы производите на своём устройстве. Более того, процессор управляет даже теми процессами, которые не видны пользователю. Процессор занимается обработкой данных от всех периферийных и центральных устройств, но, процессор не считает графику и графический интерфейс. Процессор имеет тысячу характеристик (да, да, знаю, что повторяюсь), но для нас важны лишь некоторые из них. Важными для нас характеристиками процессора являются: количество ядер и тактовая частота.

Тактовая частота процессора показывает то количество математических операций, которое процессор способен выполнить за одну секунду. Измеряется в гигагерцах (GHz), иногда её пишут в мегагерцах (MHz), а вообще частота в физике измеряется в герцах (Hz), но, это так, к слову.

Про количество ядер стоит сказать отдельно. Примерно до середины 2000-х все процессоры были одноядерными, то есть в корпусе процессора был только один модуль, производящий математические вычисления. В последствии стали появляться многоядерные процессоры, то есть в одном корпусе несколько модулей, которые производят вычисления. Чем больше ядер, тем быстрее.

Графическое ядро занимается тем, что просчитывает графику и графические интерфейсы, а так же регулирует работу экрана устройства. Графическое ядро обладает двумя основными характеристиками: количеством ядер и графической оперативной памятью. Чем больше и того и другого, тем лучше, быстрее и красивее.

Но, перед тем, как двигаться дальше, стоит затронуть тему тепловыделения . Тепловыделение является одним из главных критериев при выборе аппаратуры. «Почему?» – спросите Вы. Вот вам ответ. Во-первых, высокое тепловыделение способно легко превратить ваш девайс в кусок жжёного пластика, или может взорваться батарейка (не прям уж взорваться, как динамит, но, всё равно будет не приятно). Во-вторых, избыточное тепло замедляет работу процессора, графического ядра, да и вообще всего.

Теперь про память

На мобильных устройствах присутствует два вида памяти: постоянная и оперативная.

Мобильный телефон является многофункциональным устройством, главная задача которого – обеспечение сотовой связи. На современном этапе производители оснастили его большим количеством функций, что приближает изделия данного типа к смартфонам. В результате сотовый телефон сегодня обеспечивает пользователя необходимыми инструментами, без которых многие уже не могут обойтись. Среди них видеокамеры, плееры, редакторы и серфинг в Интернете.

Соответственно, такой маленький портативный помощник, «под капотом» которого собраны различные возможности – незаменимое устройство в любом путешествии. С его помощью можно:

Выйти на связь
Отправить электронную почту.
Записать видео и аудио.
Решить вопросы с помощью органайзера.
Сделать фото и т.п.

Но даже устройства в защищенном исполнении, могут выходить из строя. В таком случае для приобретения пришедших в негодность компонентов потребуется посетить интернет магазин запчастей для сотовых телефонов . Чтобы лучше понимать, какие запчасти потребуются для ремонта туристического телефона во время путешествия, рассмотрим его аппаратный функционал подробнее.

Основные детали телефона

Важнейшей деталью любого дэвайса является его материнская плата. Сегодня она выглядит как небольшая пластина, часто расположенная по всей внутренней длине и ширине изделия с учетом наличия аккумулятора и дисплея. Большинство других компонентов крепится непосредственно к ней, а интерфейсы и прочие детали и модули имеют с платой непосредственное соединение. Это основа телефона.

На втором месте после «материнки» по важности идет микропроцессор. Это «двигатель» устройства, его основная вычислительная мощность, с которой связана оперативная память. Оперативная (системная) память отвечает за одновременное использование (активацию) различных предустановленных программных возможностей.

Не менее важный компонент – встроенная память (ПЗУ). Если в устройстве нет ПЗУ, то оно не имеет возможности обрабатывать информацию, выводить ее на дисплей и т.п. – потому что данных просто нет. Все программные компоненты сосредоточены на постоянной памяти. Данный модуль может иметь расширение в виде слота для карт памяти, который обычно принимает накопители в несколько раз больше, чем емкость ПЗУ.

Прочие компоненты смартфона

Модуль сотовой связи. Отвечает за соединение через вышки сотовых операторов.
Вибромотор. Передает сигнал пользователю посредством вибрации смартфона.
Аудиомодуль. Обычно представлен внешним и внутренним динамиками.
Дисплей. Позволяет получать визуальную информацию и легко ориентироваться в программной составляющей.
Внешние защитные элементы (заглушки, пленки, прокладки, закаленные стекла и т.п.).
Компоненты камер. Это датчики, вспышки и т.п.
Микрофон. Отвечает за передачу аудио в телефон.
Клавиатура. Механическая часть управления функционалом.
Вспомогательные модули – акселерометр, гигрометр и т.п.
Беспроводные модули. Позволяют синхронизироваться с другими устройствами «по воздуху».
Модули ГНСС.
АКБ.
Коаксильные кабели, всевозможные шлейфы и т.п.

Помимо этого существуют дополнительные детали для телефонов с расширенным функционалом. Например, для ремонта понадобится соответствующий радиомодуль и разъем для внешней антенны. Так же есть большое количество мелких, но не менее значимых компонентов – внешних коннекторов, болтов для защитных корпусов и т.п.

Как становится понятно, современный сотовый телефон – сложное электронное и электротехническое устройство, совмещающее в себе мощный функционал и имеющее огромный потенциал для дальнейшего развития. Поэтому умение ориентироваться в его устройстве хотя бы поверхностно пригодится любому путешественнику. Это позволит быстро сориентироваться и приобрести нужную деталь, тем более что опытные туристы могут заменять многие компоненты самостоятельно.

В теоретической части я не буду углубляться в историю создания сотовой связи, о её основателях, хронологию стандартов и т.д. Кому это интересно – материала предостаточно как в печатных изданиях, так и в сети интернет.

Рассмотрим, что же из себя представляет мобильный (сотовый) телефон.

На рисунке очень упрощённо показан принцип работы:

Рис.1 Принцип работы сотового телефона

Сотовый телефон – это приёмо-передатчик, работающий на одной из частот в диапазоне 850МГц, 900МГц, 1800МГц, 1900МГц. Причём приём и передача разнесены по частотам.

Система GSM состоит из 3-х основных компонентов, таких как:

Подсистема базовых станций (BSS – Base Station Subsystem);

Подсистема переключения/коммутации (NSS –NetworkSwitchingSubsystem);

Центр управления и обслуживания (OMC – Operation and Maintenance Centre);

В двух словах работает это так:

Сотовый (мобильный) телефон взаимодействует с сетью базовых станций (БС). Вышки БС обычно устанавливают либо на своих наземных мачтах, либо на крышах домов или других сооружений, или же на арендованных уже существующих вышках всяческих ретрансляторов радио/ТВ и т.п., а также на высотных трубах котелен и других промышленных сооружений.

Телефон после включения и всё остальное время мониторит (прослушивает, сканирует) эфир на наличие GSM-сигнала своей базовой станции. Сигнал своей сети телефон определяет по специальному идентификатору. Если таковой имеется (телефон находится в зоне покрытия сети), то телефон выбирает лучшую по уровню сигнала частоту и на этой частоте посылает БС запрос на регистрацию в сети.

Процесс регистрации по сути является процессом аутентификации (авторизации). Его суть заключается в том, что каждая SIM-карта, вставленная в телефон, имеет свои уникальные идентификаторы IMSI (International Mobile Subscriber Identity) и Ki (Key for Identification). Эти самые IMSI и Ki заносятся в базу центра аутентификации (AuC) при поступлении изготовленных SIM-карт оператору связи. При регистрации телефона в сети идентификаторы передаются БС, а именно AuC. Дальше AuC (центр идентификации) передаёт телефону некоторое случайное число, которое является ключом для выполнения вычислений по специальному алгоритму. Это вычисление происходит одновременно в мобильном телефоне и AuC, после чего оба результата сравниваются. Если они совпадают, то SIM-карта признаётся подлинной и телефон регистрируется в сети.

Для телефона же идентификатором в сети является его уникальный номер IMEI (International Mobile Equipment Identity). Этот номер обычно состоит из 15 цифр в десятичном представлении. Например 35366300/758647/0. Первые восемь цифр описывают модель телефона и его происхождение. Оставшиеся – серийный номер телефона и контрольное число.

Данный номер хранится в энергонезависимой памяти телефона. В устаревших моделях этот номер можно сменить с помощью специального программного обеспечения (ПО) и соответствующего программатора (иногда и дата-кабеля), а в современных телефонах он дублируется. Один экземпляр номера хранится в области памяти, которую можно программировать, а дубликат – в зоне памяти OTP (One Time Programming), которая программируется производителем один раз и не имеет возможности перепрограммирования.

Так вот, если даже изменить номер в первой области памяти, то телефон, при включении, сравнивает данные обеих областей памяти, и, если обнаруживаются разные номера IMEI – телефон блокируется. Для чего всё это менять, спросите вы? На самом деле законодательство большинства стран запрещает это делать. Телефон по номеру IMEI отслеживается в сети. Соответственно при краже телефона его можно отследить и изъять. А если успеть изменить этот номер на любой другой (рабочий), то шансы найти телефон сводятся к нулю. Этими вопросами занимаются спецслужбы при соответствующей помощи оператора сети и т.д. Поэтому углубляться в эту тему не стану. Нас интересует чисто технический момент смены номера IMEI.

Дело в том, что при определённых обстоятельствах данный номер может повредиться в результате сбоя ПО или неправильного его обновления и тогда телефон абсолютно не пригоден для эксплуатации. Вот тут на помощь и приходят все средства, чтобы восстановить IMEI и работоспособность аппарата. Подробнее этот момент будет рассмотрен в разделе программного ремонта телефона.

Теперь кратенько о передаче голоса от абонента к абоненту в стандарте GSM. На самом деле это технически очень сложный процесс, который абсолютно отличается от привычной передачи голоса по аналоговым сетям как, например, домашний проводной/радио телефон. Чем-то отдалённо похожи цифровые DECT-радиотелефоны, но реализация всё равно другая.

Дело в том, что голос абонента, прежде чем будет передан в эфир, подвергается множеству преобразований. Аналоговый сигнал разбивается на отрезки длительностью 20мс, после чего преобразовывается в цифровой, после чего кодируется путём применения алгоритмов шифрования с т.н. открытым ключом – система EFR (Enhanced Full Rate - усовершенствованная система кодирования речи, разработанная финской компанией Nokia).

Все сигналы кодека обрабатываются очень полезным алгоритмом на основе принципа DTX (Discontinuous Transmission) –прерывистой передачи речи. Его полезность заключается в том, что он управляет передатчиком телефона, включая его только в том момент, когда начинается произношение речи и отключает в паузах между разговором. Всё это достигается с помощью включенного в кодек VAD (Voice Activated Detector) –детектор активности речи.

У принимаемого абонента все преобразования происходят в обратном порядке.

Устройство мобильного телефона и его основные функциональные узлы (модули).

Любой мобильный телефон – это сложное техническое устройство, состоящее из множества функционально законченных модулей, которые взаимосвязаны между собой и в целом обеспечивают нормальную работу аппарата. Выход из строя хотя бы одного модуля влечёт за собой минимум – частичную неисправность аппарата, максимум – телефон полностью неработоспособен.

Схематически мобильный телефон выглядит так:

Рис.2 Устройство сотового телефона

Назначение и работа отдельных узлов.

1. Аккумуляторная батарея (АКБ) – основной (первичный) источник питания телефона. В процессе эксплуатации имеет одно неприятное свойство – старение, т.е. потеря ёмкости, увеличение внутреннего сопротивления. Это необратимый процесс и скорость старения аккумулятора зависит от многих факторов, ключевыми из которых является правильная эксплуатация и хранение.

Раньше основная масса АКБ для телефонов производилась по технологиям NiCd (на основе никеля и кадмия), NiMH (никель-металлгидрид). В настоящее время данные аккумуляторы сняты с производства. С распространением АКБ на основе технологии Li-Ion (литий-ион), последние показали лучшее соотношение цена-качество, а также имели ряд преимуществ, в частности отсутствие т.н. «эффекта памяти». Продолжительность срока службы составляет примерно 3-4 года. Не так давно на рынке появились Li-Pol (литий-полимерные) аккумуляторы. Они стоят дешевле литий-ионных, но срок службы у них тоже меньше – примерно 2 года.

Современные АКБ признаются работоспособными, если у них сохранилось не менее 80% от номинальной ёмкости. На практике же встречаются АКБ с 50% и меньше. То есть многие пользователи пытаются «выжать» из аккумулятора последние миллиамперы, из-за чего сами потом и страдают, так как нередко изношенный аккумулятор начинает вздуваться, что может приводить к поломкам корпуса телефона, а иногда даже к выходу из строя сетевого зарядного устройства, цепей зарядки телефона, контролера питания. Так что, на АКБ денег экономить не стоит. Телефону тоже нужно хорошее питание

Особого ухода АКБ не требуют. Главное, не допускать переохлаждения в зимнее время (до -10°С), т.к. ускоряется разряд и старение. А так же нагрев до 50-60°С и выше. Это опасно – АКБ может попросту вздуться и даже взорваться (именно для литиевых АКБ это критично)!!!

АКБ мобильного телефона состоит из 2-х частей: собственно батареи и маленькой платы электроники-автоматики.

Рис.3 Устройство аккумуляторной батареи

На рисунке для наглядности я показал уже испорченную вздувшуюся батарею. Чаще всего это происходит в результате использования дешёвых зарядных устройств, при неисправностях схемы зарядки телефона, а также при выбранных производителем больших зарядных токов (для сокращения времени заряда АКБ). Ну и, конечно же, дешёвые неоригинальные батареи «толстеют» очень быстро.

Что касается платы электроники, то она выполняет защитную функцию, предотвращая как саму батарею, так и телефон от внештатных ситуаций, таких как:

Короткое замыкание (КЗ) питающих клемм аккумулятора;

Перегрев батареи в процессе зарядки и эксплуатации;

Разряд батареи ниже установленной минимально допустимой нормы;

Перезаряд батареи;

При возникновении одной из них, срабатывает т.н. электронное реле и выходные клеммы АКБ обесточиваются.

Как правило, современная АКБ имеет минимум 3 контактных вывода для подключения к батарейному разъему мобильного телефона. Это соответственно «+», «-», и «TEMP» (датчик температуры, с помощью которого контроллер батареи совместно с контроллером питания телефона управляют процессом зарядки батареи, уменьшая или увеличивая зарядный ток, а при перегревах или КЗ вообще отключают батарею от клемм платы электроники).

Рис.4 Расположение контактов АКБ

Следует заметить, что у разных производителей расположение контактов может отличаться!!!

Основными характеристиками АКБ являются:

Номинальное напряжение – как правило 3,6 – 3,7Вольт. Для полностью заряженного аккумулятора 4,2 – 4,3 Вольт.

- ёмкость – для современных телефонов примерно от 700мА до 2000мА и более.

Внутреннее сопротивление - чем меньше - тем лучше (примерно до 200 миллиОм)

2. Контроллер питания – служит для преобразования напряжения АКБ в несколько видов напряжений для питания отдельных узлов и устройств телефона, таких, как CPU (центральный процессор), RAM и ROM (микросхемы памяти), всевозможных усилителей, иногда подсветок клавиатуры и дисплея и т.д., а так же управляет процессом зарядки АКБ. Совместно с процессором активирует встроенные в него или же внешние усилители звука разговорного динамика, микрофона, буззера (полифонического громкоговорителя). Плюс ко всему обеспечивает обмен данными с SIM-картой.

Конструктивно выполнен в виде отдельного чипа. Иногда может быть совмещён с процессором (китайские подделки известных брендов типа Nokia N95 и т.д.)

При нормальной эксплуатации телефона контроллер питания редко выходит из строя. Чаще всего это случается во время зарядки при перегреве или при использовании неоригинального или неисправного зарядного устройства(ЗУ). Реже - если телефон подвергся воздействию влаги, был сильно ударен.

Внешний вид представлен на рис.2 и может отличаться (зависит от конкретной модели телефона и его производителя).

3. SIM-holder (sim – коннектор) – держатель SIM – карты. Исходя из названия – служит для подключения SIM – карты к телефону. Конструкция практически одинакова для всех телефонов, так как современные SIM – карты приведены к одному стандарту. Имеет в себе 6 (редко 8) подпружиненных контактов, с помощью которых осуществляется электрическая связь SIM – карты и контроллера питания либо процессора. Отличаются лишь конструкцией крепления (удерживания) SIM – карты. К поломкам можно отнести обламливание контактов при частой смене SIM – карт или же неумелом (неправильном) их извлечении, когда пользователь начинает применять подручные средства для подковыривания SIM – карты для дальнейшего захвата пальцами и извлечения из держателя. Часто к этому прибегают наши прекрасные дамы, используя свои длинные, с дорогим маникюром ногти. В итоге – страдает и телефон и маникюр

Специального ухода коннектор не требует. Но бывают случаи (опять таки зависит от пользователя), когда контакты окисляются, засоряются, теряют свои пружинящие свойства. В таком случае допускается ОЧЕНЬ ОСТОРОЖНО!!! протереть их стирательной резинкой (ластиком) и ОЧЕНЬ ОСТОРОЖНО!!!, слегка, иголкой или деревянной зубочисткой подогнуть контакты вверх.

При описанных выше неисправностях SIM – холдера (держателя), телефон не будет «видеть» вашу SIM – карту и постоянно будет выводить на дисплей сообщение типа: «Вставьте SIM – карту». Сломанные держатели ремонту не подлежат и требуют замены на новые.

4. Микрофон – служит для преобразования голоса пользователя в слабые электрические сигналы с целью их дальнейшего усиления, преобразования и отправки в эфир. В сотовых телефонах бывают двух типов: аналоговые и цифровые. Последние имеют более сложную конструкцию и требуют больше трудозатрат при демонтаже и замене.

Микрофоны теряют свои эксплуатационные характеристики или выходят из строя в основном при загрязнении, попадании воды, при ударах телефона (особенно это касается цифровых микрофонов, т.к. они сами по себе очень хрупкие).

При неисправностях микрофона в телефоне могут быть такие дефекты:

Второй абонент не слышит пользователя вообще;

Второй абонент слышит пользователя очень слабо;

В слуховом (разговорном) динамике слышен треск (т.н. наводка GSM – сигнала). Такой же шум можно услышать, поднеся сотовый телефон в режиме разговора или отправки sms к работающему радиоприёмнику, усилителю, компьютерным колонкам и т.д. Как привило, микрофоны не ремонтируются и подлежат замене (кроме случаев засорения отверстий, звуководов корпуса мобильного телефона. Их следует просто очистить от пыли, грязи и т.д.)

5. Динамик (разговорный динамик) – служит для преобразования электрических сигналов в звуковые колебания. То есть работает в обратном порядке микрофона. Один абонент говорит в микрофон, который преобразовывает голос в эл. сигналы, далее эти сигналы преобразовываются (см. описание выше), излучаются в эфир. Второй абонент принимает эти сигналы телефоном и слышит их в динамике телефона.

В большинстве телефонов установлено несколько динамиков – отдельно разговорный и отдельно полифонический. Полифонический динамик воспроизводит мелодию при входящем вызове, смс и т.д. Но есть телефоны (в большинстве фирмы Samsung), где роль разговорного и полифонического выполняет один и тот же динамик. Только при воспроизведении мелодии или других сигналов активируется дополнительный усилитель мощности звука. К неисправностям динамиков можно отнести частичную неисправность и полную. Частичная – это воспроизведение речи или музыки очень тихо, с хрипами и неприятным звоном. Это можно устранить, но лишь в тех случаях, когда, после внешнего осмотра будет видно, что динамик засорён посторонними предметами. Например такими, как очень мелкая металлическая стружка, которая любит проникать через специально отведённые отверстия для выхода звука динамика. Это обусловлено тем, что динамик в своей конструкции содержит постоянный магнит. Вот он и примагничивает к себе мелкие металлические предметы. Лично я сторонник замены таких динамиков на новые. Во-первых, это сэкономит вам время, которое вы будете тратить на чистку, а его вам понадобиться немало. Во-вторых, редко бывает, что после чистки динамик работает так же чисто, без искажений и так же громко. Так что, не думайте – сразу меняйте на новый. Особенно, если это телефон не ваш, а пришёл в ремонт.

Полная – отсутствие звука вообще. Причина – обрыв провода звуковой катушки динамика. Решается только заменой динамика. О том, как проверить динамик на исправность (целостность) я напишу ниже.

6. Спикер(буззер, звонок, полифонический динамик – это всё одно и то же) – тот же динамик, только в большинстве случаев предназначен для воспроизведения мелодии звонка, смс, MP3 и т.д. Но, как говорилось выше, может использоваться и для разговора. Неисправности и способы устранение такие же, как и для разговорного динамика.

7. Центральный процессор (CPU) – является основным устройством мобильного телефона. Это тот же процессор, который присутствует в любом персональном компьютере, ноутбуке и т.д., только немножко поменьше и попримитивнее. Предназначен для выполнения машинных команд, инструкций и операций, предусмотренных программным обеспечением (прошивкой –разг.) телефона, а также чёткого взаимодействия с остальными модулями и устройствами и последующего управления ими. Одним словом, процессор – это «мозг», который полностью управляет работой мобильного телефона. Конструктивно выполнен в виде отдельного чипа. Отвечает за множество процессов, происходящих во время нормальной работы телефона. Основные из них это: вывод изображения на дисплей, приём и обработка сигналов сотовой сети, приём и обработка сигналов клавиатурного модуля, управление работой камеры, устройств приёма/передачи информации, процессом зарядки аккумулятора (совместно с контроллером питания) и много другого.

При условии нормальной эксплуатации телефона процессор практически никогда не выходит из строя и никакого ухода не требует.

В современных телефонах, а особенно смартфонах (в переводе с англ. смартфон – умный телефон. Тот же телефон, только имеет сходство с компьютером в виду наличия операционной системы и множеством устанавливаемых программ для выполнения тех или иных задач) часто устанавливается 2 процессора. Один из них выполняет те же функции, что и в обычном телефоне, а второй предназначен для работы операционной системы и выполнения её программ.

При выходе из строя центрального процессора телефон полностью неработоспособен.

8. Flash – память. Отдельный чип (микросхема), который предназначен для хранения программного обеспечения телефона (прошивки, firmware), а так же данных пользователя (контакты, мелодии, фотографии и т.д.). Программное обеспечение (прошивка, firmware) – это разработанная производителем телефона программа, которая обрабатывается и исполняется процессором. Для пользователя – это то, что он видит на экране мобильного телефона и те функции, которые ему доступны в конкретной модели телефона.

Флэш-память так же редко выходит из строя при условии нормальной эксплуатации. Но следует помнить, что эти чипы имеют хоть и большое, но всё же ограниченное количество циклов чтения/записи информации.

Флэш-память является энергонезависимой и сохраняет все записанные в неё данные даже после отключения источника питания (например, АКБ).

9. RAM – память (ОЗУ). Служит для временного хранения данных. В ней производятся все процессорные вычисления программного кода, а также хранятся результаты вычислений и обработки информации в конкретный текущий момент (например, прослушивание музыки, воспроизведение видео, работа приложений, игр и т.д.) За ненадобностью память очищается от одних данных и загружает новые и так постоянно.

Следует помнить, что память ОЗУ (оперативное запоминающее устройство) является энергоЗАВИСИМОЙ и в случае отключения источника питания все данные, которые хранились в ОЗУ будут утеряны!!!

10. Клавиатурный модуль – стандартная цифровая клавиатура для набора номера абонента, текста смс сообщений + набор дополнительных кнопок, которые выполняют определённые программным обеспечением телефона функции, например регулировку уровня громкости, запуск программ, фотокамеры, диктофона и т.д. Для нормальной работы клавиатурного модуля основная задача пользователя – содержать клавиатуру в чистоте и не допускать попадания влаги, грязи и других предметов. В противном случае кнопки приходится давить с большим усилием или же телефон вообще не реагирует на нажатия. Восстановить работу клавиатурного модуля можно методом чистки от загрязнений. Если же контактные площадки и соединяющие их проводники были подвергнуты воздействию влаги или др. жидкостей и были повреждены, то такой клав.модуль подлежит замене на новый.

11. LCD –дисплей – собственно дисплей (экран) телефона. Предназначение всем понятно, поэтому углубляться на этом не стану. Основными характеристиками являются такие параметры, как:

Разрешающая способность, то есть количество воспроизводимых пикселей (точек). Чем выше этот параметр, тем чётче и качественнее будет картинка. Для более-менее современных телефонов свойственны такие разрешения экрана: 220Х176 пикселей, 320Х240. Для телефонов с большими сенсорными экранами: 400Х240, 640Х360, 800Х400.

Количество воспроизводимых (отображаемых) цветов. Тоже самое, чем больше, тем лучше. В устаревших телефонах с цветными дисплеями это значение в основном 4096 цветов. По мере совершенствования этот параметр увеличился до 65тыс., потом достиг 262тыс.. Сейчас все современные дорогие телефоны снабжены дисплеями с глубиной цвета 16млн.

При правильной эксплуатации телефона дисплей не требует никакого ухода. В некоторых случаях, когда телефон используется в запылённой среде или же просто со временем в корпус набилось много пыли и мусора, то дисплей необходимо АККУРАТНО протереть микрофиброй (специальная протирочная салфетка, которая хорошо очищает и не оставляет следов и разводов. Её можно приобрести в салонах продажи оптики. Некоторые виды очков комплектуются такой протирочной микрофиброй.) При эксплуатации телефона нельзя допускать физического воздействия на дисплей (удары, сдавливания, сильные перегибы), а также подвергать воздействию прямых солнечных лучей и повышенной температуры. Это приведёт к выходу его из строя.

12. Приёмопередатчик – служит для приёма и передачи сотового GSM-сигнала. Содержит в себе много функциональных элементов (генераторы управляемые напряжением приёмника и передатчика, полосовые фильтры, развязывающие конденсаторы, индуктивности и т.д.). Управляется процессором и кварцевым резонатором 26МГц.

При неисправностях приёмопередатчика телефон не сможет зарегистрироваться в сотовой сети и на дисплее будет отсутствовать индикатор уровня GSM-сигнала.

13. Усилитель мощности – предназначен для усиления сигнала, вырабатываемого приёмопередатчиком, до уровня мощности, необходимого для излучения антенной в эфир.

При неисправностях усилителя мощности телефон будет принимать сигнал сотовой сети, но зарегистрироваться в ней не сможет, так как не сможет передавать GSM-сигнал.

14. Антенный переключатель (свитч) – предназначен для сопряжения (подключения) приёмного и передающего тракта GSM-модуля к антенне телефона. Этим достигается наличие в телефоне одной общей антенны для приёма и передачи, а также исключается влияние усилителя мощности на приёмный тракт.




Загрузка...