sonyps4.ru

В какой цветовой модели используется зеленый цвет. Цветовая модель RGB

Это одна из наиболее распространенных и часто используемых моделей. Она применяется в приборах, излучающих свет, таких, например, как мониторы, прожекторы, фильтры и другие подобные устройства.

В модели RGB производные цвета получаются в результате сложения или смешения базовых, основных цветов, называемых цветовыми координатами. Координатами служат красный (Red), зеленый (Green) и синий (Blue) цвет. Свое название RGB-модель получила по первым буквам английских наименований цветовых координат.

Каждая из вышеперечисленных составляющих может варьироваться в пределах от 0 до 255, образовывая разные цвета и обеспечивая, таким образом, доступ ко всем 16 миллионам (полное количество цветов, представляемых этой моделью равно 256*256*256 = 16 777 216.).

Эта модель аддитивная. Слово аддитивная (сложение) подчеркивает, что цвет получается при сложении точек трех базовых цветов, каждая своей яркости. Яркость каждого базового цвета может принимать значения от 0 до 255 (256 значений), таким образом, модель позволяет кодировать 256 3 или около 16,7 млн цветов. Эти тройки базовых точек (светящиеся точки) расположены очень близко друг к другу, так что каждая тройка сливается для нас в большую точку определенного цвета. Чем ярче цветная точка (красная, зеленая, синяя), тем большее количество этого цвета добавится к результирующей (тройной) точке.

При работе с графическим редактором Adobe PhotoShop можно выбирать цвет, полагаясь не только на тот, что мы видим, но при необходимости указывать и цифровое значение, тем самым иногда, особенно при цветокоррекции, контролируя процесс работы.

Данная цветовая модель считается аддитивной , то есть при увеличении яркости отдельных составляющих будет увеличиваться и яркость результирующего цвета : если смешать все три цвета с максимальной интенсивностью, то результатом будет белый цвет; напротив, при отсутствии всех цветов получается черный.

Таблица 1

Значения некоторых цветов в модели RGB

Модель является аппаратно-зависимой, так как значения базовых цветов (а также точка белого) определяются качеством примененного в мониторе люминофора. В результате на разных мониторах одно и то же изображение выглядит неодинаково.

Свойства модели RGB хорошо описывает так называемый цветовой куб (см. рис. 3). Это фрагмент трехмерного пространства, координатами которого являются красный, зеленый и синий цвет. Каждая точка внутри куба соответствует некоторому цвету и описывается тремя проекциями - цветовыми координатами: содержанием красного, зеленого и синего цвета. Сложение всех основных цветов максимальной яркости дает белый цвет; начальная точка куба означает нулевые вклады основных цветов и соответствует черному цвету.

Если цветовые координаты смешивать в равных пропорциях, то получится серый цвет различной насыщенности. Точки, отвечающие серому цвету, лежат на диагонали куба. Смешение красного и зеленого дает желтый, красный и синий образуют пурпурный, а зеленый и синий -голубой.

Рис. 3.

Цветовые координаты: красный, зеленый и синий иногда называют первичными или аддитивными цветами. Цвета голубой, пурпурный, желтый, которые получаются в результате попарного смешения первичных цветов, называются вторичными. Поскольку сложение- это основная операция синтеза цветов, то модель RGB иногда называют аддитивной (от латинского additivus, что значит прибавляемый).

Принцип сложения цветов часто изображается в виде плоской круговой диаграммы (см. рис. 4), которая хотя и не дает новой информации о модели, по сравнению с пространственным изображением, но проще воспринимается и легче запоминается.

Рис. 4.

По принципу сложения цветов работают многие технические устройства: мониторы, телевизоры, сканеры, диапроекторы, цифровые фотоаппараты и др. Если посмотреть через увеличительное стекло на экран монитора, то можно увидеть регулярную сетку, в узлах которой располагаются красные, зеленые и синие точки-зерна люминофора. При возбуждении пучком электронов они излучают базовые цвета разной интенсивности. Сложение излучений близко расположенных зерен воспринимается человеческим глазом как цвет в данной точке экрана.

В вычислительной технике интенсивность первичных цветов принято измерять целыми числами в диапазоне от 0 до 255. Ноль означает отсутствие данной цветовой составляющей, число 255 - ее максимальную интенсивность. Поскольку первичные цвета могут смешиваться без ограничений, то легко подсчитать общее количество цветов, которое порождает аддитивная модель. Оно равно 256 * 256 * 256=16 777 216, или более 16,7 миллионов цветов. Это число кажется огромным, но в действительности модель порождает всего лишь небольшую часть цветового спектра.

Любой естественный цвет можно разложить на красную, зеленую и синюю составляющие и измерить их интенсивность. А вот обратный переход возможен далеко не всегда. Экспериментально и теоретически доказано, что диапазон цветов модели RGB уже, чем множество цветов видимого спектра. Чтобы получить часть спектра, лежащую между синим и зеленым цветами, требуются излучатели с отрицательной интенсивностью красного цвета, которых, конечно же, в природе не существует. Диапазон воспроизводимых цветов модели или устройства называется цветовым охватом. Одним из серьезных недостатков аддитивной модели, как ни парадоксально это звучит, является ее узкий цветовой охват.

Кажется, что этот набор цветовых координат однозначно определяет светло-салатовый цвет на любом устройстве, которое работает по принципу сложения базовых цветов. В действительности все обстоит намного сложнее. Цвет, воспроизводимый устройством, зависит от множества внешних факторов, часто не поддающихся учету.

Экраны дисплеев покрываются люминофорами, которые отличаются по химическому и спектральному составу. Мониторы одной марки имеют разный износ и условия освещения. Даже один монитор выдает различные цвета в прогретом состоянии и сразу после включения. За счет калибровки устройств и использования систем управления цветом можно попытаться приблизить цветовые охваты различных устройств. Подробнее об этом говорится в следующей главе.

Нельзя не упомянуть еще один недостаток этой цветовой модели. С точки зрения практикующего дизайнера или компьютерного художника, она является неинтуитивной. Оперируя в ее среде, бывает трудно ответить на самые простые вопросы, относящиеся к цветовому синтезу. Например, как следует изменить цветовые координаты, чтобы сделать текущий цвет немного ярче или уменьшить его насыщенность? Чтобы дать правильный ответ на этот простой вопрос, требуется обладать большим опытом работы в этой цветовой системе.

В российской традиции иногда обозначается как КЗС .

Выбор основных цветов обусловлен особенностями физиологии восприятия цвета сетчаткой человеческого глаза. Цветовая модель RGB нашла широкое применение в технике.

Аддитивной она называется потому, что цвета получаются путём добавления (англ. addition ) к черному. Иначе говоря, если цвет экрана, освещённого цветным прожектором, обозначается в RGB как (r 1 , g 1 , b 1), а цвет того же экрана, освещенного другим прожектором, - (r 2 , g 2 , b 2), то при освещении двумя прожекторами цвет экрана будет обозначаться как (r 1 +r 2 , g 1 +g 2 , b 1 +b 2).

Изображение в данной цветовой модели состоит из трёх каналов. При смешении основных цветов (основными цветами считаются красный, зелёный и синий) - например, синего (B) и красного (R), мы получаем пурпурный (M magenta), при смешении зеленого (G) и красного (R) - жёлтый (Y yellow), при смешении зеленого (G) и синего (B) - циановый (С cyan). При смешении всех трёх цветовых компонентов мы получаем белый цвет (W).

Определение

Цветовая модель RGB была изначально разработана для описания цвета на цветном мониторе, но, поскольку, мониторы разных моделей и производителей различаются, были предложены несколько альтернативных цветовых пространств, соответствующих «усредненному» монитору. К таким относятся, например, sRGB и Adobe RGB.

Варианты этого цветового пространства отличаются разными оттенками основных цветов, разной цветовой температурой , разным показателем гамма-коррекции .

Представление базисных цветов RGB согласно рекомендациям ITU , в пространстве кельвинов (дневной свет)

Красный: x=0.64 y=0.33 Зелёный: x=0.29 y=0.60 Синий: x=0.15 y=0.06

Матрицы для перевода цветов между системами RGB и яркости при преобразовании изображения в чёрно-белое):

X = 0.431*R+0.342*G+0.178*B Y = 0.222*R+0.707*G+0.071*B Z = 0.020*R+0.130*G+0.939*B R = 3.063*X-1.393*Y-0.476*Z G = -0.969*X+1.876*Y+0.042*Z B = 0.068*X-0.229*Y+1.069*Z

Числовое представление

RGB-цветовая модель представленная в виде куба

Для большинства приложений значения координат r, g и b можно считать принадлежащими отрезку , что представляет пространство RGB в виде куба 1×1×1.

COLORREF

COLORREF - стандартный тип для представления цветов в Win32 . Использует для определения цвета в RGB виде. Размер - 4 байта. При определении какого-либо RGB цвета, значение переменной типа COLORREF можно представить в шестнадцатиричном виде так:

0x00bbggrr

rr, gg, bb - значение интенсивности соответственно красной, зеленой и синей составлющих цвета. Максимальное их значение - 0xFF.

Определить переменную типа COLORREF можно следующим образом:

COLORREF C = (b,g,r);

b, g и r - интенсивность (в диапазоне от 0 до 255) соответственно синей, зеленой и красной составляющих определяемого цвета C. То есть ярко-красный цвет может быть определён как (255,0,0), ярко-фиолетовый - (255,0,255), чёрный - (0,0,0), а белый - (255,255,255)

Мы воспринимаем окружающий мир с помощью различных факторов, один из которых — это цвет. Открывает человек глаза и видит разные цвета, а если нужно об этих цветах рассказать другому человеку, то можно сказать что-то вроде «штаны у него как спелый лимон» или «глаза у нее как ясное небо» и человеку в принципе понятно какого цвета штаны и глаза, даже если он их не видит.

То есть передать информацию о цвете от человека человеку, никакого труда не составляет. А если цветовой информацией должны оперировать не люди, а какие-нибудь технические устройства, тут вариант «глаза как ясное небо» не пойдет. Нужно какое-то иное описание цвета, понятное этим устройствам (мониторы, принтеры, фотоаппараты и т. д.). Как раз для этого и нужны цветовые модели.

Типы цветовых моделей

Существует немало цветовых моделей, наиболее часто используемые можно разделить на три группы:

  • аппаратно-зависимые — цветовые модели данной группы описываю цвет применительно к конкретному, цветовоспроизводящему устройству (например монитору), - RGB, CMYK
  • аппаратно-независимые — эта группа цветовых моделей для того, чтобы дать однозначную информацию о цвете - XYZ, Lab
  • психологические — эти модели основываются на особенностях восприятия человека - HSB, HSV, HSL

Рассмотрим по отдельности некоторые, часто используемые, цветовые модели.

Данная цветовая модель описывает цвет источника света (сюда можно отнести например экран монитора или телевизора). Из огромного множества цветов, в качестве основных (первичных) было выделено три цвета: красный (B ed), зеленый (G reen), синий (B lue). Первые буквы названий основных цветов образовали название цветовой модели RGB.

Когда смешиваются два основных цвета, получившийся цвет осветляется: красный и зеленый дают желтый, зеленый и синий дают голубой, из синего и красного получится пурпурный. Если смешать все три основных цвета, образуется белый. Такие цвета называют­ся аддитивными.

Эту модель можно представить в виде трехмерной системы координат, где каждая отражает значение одного из основных цветов в диапазоне от нуля до максимума. Получился куб, внутри которого находятся все цвета, образующие цветовое пространство RGB.

Важные точки и линии модели RGB

  • Начало координат: в этой точке значения всех основных цветов равны нулю, излучение отсутствует, т. е. это - точка черного цвета.
  • В ближайшей к зрителю точке все составляющие имеют мак­симальное значение, это значит максимальное свечение - точка белого цвета.
  • На линии, соединяющей эти точки (по диагонали куба), расположены оттенки серого цвета: от черного к белому. Этот диапазон иначе называют серой шкалой (Grayscale).
  • Три вершины куба дают чистые исходные цвета, остальные три отражают двойные смешения исходных цветов.

Плюс этой модели состоит в том, что она описывает все 16 миллионов цветов, а минус в том, что при печати часть (самые яркие и насыщенные) этих цветов потеряется.

Так как RGB аппаратно-завиисмая модель, то одна и та же картинка на разных мониторах может отличаться по цвету, например потому что экраны этих мониторов сделаны по разным технологиям или мониторы по разному настроены.

Если предыдущая модель описывает светящиеся цвета, то CMYK наоборот, для описания цветов отраженных. Еще они называются субтрактивными («вычитательными»), потому что они остаются после вычи­тания основных аддитивных. Так как цветов для вычитания у нас три, то и основных субтрактивных цветов тоже будет три: голубой (C yan), пурпурный (M agenta), желтый (Y ellow).

Три основных цвета модели CMYK, называют полиграфической триадой. Печатая этими красками, происходит поглощение красной, зеленой и синей составляющих. В изображении CMYK каждый пиксель имеет значение процентного содержания триадных красок.

Когда смешиваем две субтрактивных краски, то результирующий цвет затемняется, а если смешать три, то должен получиться черный цвет. При нулевом значении всех красок получаем белый цвет. А когда значения всех составляющих равны - получаем серый цвет.

На деле получается, что если смешать три краски при максимальных значениях, вместо глубокого черного цвета у нас получится скорее грязный темно-коричневый. Это происходит потому, что полиграфические краски не идеальны и не могут отразить весь цветовой диапазон.

Что бы компенсировать эту проблему к этой триаде добавили четвертую краску черного цвета, она и добавила последнюю букву в названии цветовой модели С - C yan (Голубой), М - M agenta (Пурпурный), Y - Y ellow (Желтый), К - blacK (Черный). Все краски обычно обозначаются начальной буквой названия, но черную обозначили последней буквой, Почему? .

Как и RGB, CMYK тоже модель аппаратно-зависимая. Зависит конечный результат от краски, от типа бумаги, от печатной машины, от особенностей технологии печати. Поэтому одно и то же изображение в разных типографиях может быть напечатанным по разному.

Цветовая модель HSB

Если вышеописанные модели соединить в одну, то результат можно изобразить в виде цветового круга, где основные цвета моделей RGB и CMY расположены в следующей зависимости: каждый цвет находится напротив комплементарного цвета, его дополняющего и между цветами, с по­мощью которых он образован.

Чтобы усилить какой-то цвет, нужно ослабить цвет находящийся напротив (дополняющий). Например, чтобы усилить желтый, нужно ослабить синий.

Для описания цвета в данной модели есть три параметра H ue (оттенок) - показывает положение цвета на цветовом круге и обозначается величиной угла от 0 до 360 градусов, S aturation (насыщенность) - определяет чистоту цвета (уменьшение насыщенности похоже на добавлене белого цвета в исходный цвет), B rightness (яркость) - показывает освещенность или затененность цвета (уменьшение яркости похоже на добавление черной краски). Первые буквы в названии этих параметров и дали название цветовой модели.

Модель HSB хорошо согласуется с человеческим восприятием: цветовой тон - длина волны света, насыщенность - интенсивность волны, а яркость - количество света.

Минусом модели HSB является необходимость конвертировать ее в RGB для отображения на экране монитора или в CMYK для печати.

Эту модель создала Международная комиссия по освещению для того, чтобы уйти от недостатков предыдущих моделей. Было необходимо создать аппаратно независимую модель для определения цвета независящую от параметров устройства.

В модели Lab цвет представлен тремя параметрами:

  • L — светлота
  • a — хроматический компонент в диапазоне от зеленого до красного
  • b — хроматический компонент в диапазоне от синего до желтого

При переводе цвета из какой-нибудь модели в Lab, все цвета сохраняются, так как пространство Lab самое большое. Поэтому данное пространство используют как посредника при конвертации цвета из одной модели в другую.

Цветовая модель Grayscale

Самое простое и понятное пространство используется для отображения черно-белого изображения. Цвет в данной модели описывается всего одним параметром. Значение параметра может быть в градациях (от 0 до 256) или в процентах (от 0% до 100%). Минимальное значение соответствует белому цвету, а максимальное — черному.

Индексные цвета

Вряд ли допечатнику придется работать с индексными цветами, но знать что это такое, не помешает.

Итак, когда-то давно, на заре компьютерных технологий, компьютеры могли отображать на экране не больше 256 цветов одновременно, а до этого 64 и 16 цветов. Исходя из таких условий был придуман индексный способ кодирования цвета. Каждый цвет, содержащийся в изображении, получил порядковый номер, с помощью этого номера описывался цвет всех пикселов, имеющих соответствующий цвет. Но у разных изображение наборы цветов разные и по этому пришлось в каждой картинке хранить свой набор цветов (набор цветов назвали — цветовая таблица).

Современные компьютеры (даже самые простые) способны отображать на экране 16,8 млн цветов, поэтому нет особой необходимости в использовании индексных цветов. Но с развитием интернета эта модель вновь используется. Все потому, что такой файл может иметь гораздо меньший размер.

На принципе такого деления света основан цветной телевизор или монитор Вашего компьютера. Если говорить очень грубо, то монитор, в который Вы сейчас смотрите состоит из огромного количества точек (их количество по вертикали и горизонтали определяет разрешение монитора) и в каждую эту точку светят по три "лампочки": красная, зеленая и синяя. Каждая "лампочка" может светить с разной яркостью, а может не светить вовсе. Если светит только синяя "лампочка" - мы видим синюю точку. Если только красная - мы видим красную точку. Аналогично и с зеленой. Если все лампочки светят с полной яркостью в одну точку, то эта точка получается белой, так как все градации этого белого опять собираются вместе. Если ни одна лампочка не светит, то точка кажется нам черной. Так как черный цвет - это отсутствие света. Сочетая цвета этих "лампочек", светящихся с различной яркостью можно получать различные цвета и оттенки.

Яркость каждой такой лампочки определяется интенсивностью (делением) от 0 (выключенная "лампочка") до 255 ("лампочка", светящая с полной "силой"). Такое деление цветов называется цветовой моделью RGB от первых букв слов "RED" "GREEN" "BLUE" (красный, зеленый, синий).


Таким образом белый цвет нашей точки в цветовой модели RGB можно записать в следующем виде:

R (от слова "red", красный) - 255

G (от слова "green", зеленый) - 255

B (от слова "blue", синий) - 255


"Насыщенный" красный будет выглядеть так:



Желтый цвет будет иметь следующий вид:


Так же, для записи цвета в rgb, используют шестнадцатеричную систему. Показали интенсивности запмсывают по порядку #RGB:

Белый - #ffffff

Красный - #ff0000

Черный - #00000

Желтый - #ffff00

Цветовая модель CMYK

Итак, теперь мы знаем, каким хитрым способом наш компьютер передает нам цвет той или иной точки. Давайте теперь воспользуемся приобретенными знаниями и попробуем получить белый цвет с помощью красок. Для этого купим в магазине гуашь, возьмем баночки с красной, синей и зеленой краской, и смешаем их. Получилось? И у меня нет.

Проблема в том, что наш монитор излучает свет, то есть светится, но в природе многие объекты не обладают таким свойством. Они попросту отражают белый свет, который на них падает. Причем если предмет отражает весь спектр белого света, то мы видим его белым, а если же часть этого света им поглощается - то не совсем.

Примерно так: мы светим на красный предмет белым светом. Белый свет можно представить как R-255 G-255 B-255. Но предмет не хочет отражать весь свет, который мы на него направили, и нагло ворует у нас все оттенки зеленого и синего. В итоге отражает только R-255 G-0 B-0. Именно поэтому он нам и кажется красным.

Так что для печати на бумаге весьма проблематично пользоваться цветовой моделью RGB. Для этого, как правило, используется цветовую модель CMY (цми) или CMYK (цмик). Цветовая модель CMY основана на том, что сам по себе лист бумаги белый, то есть отражает практически весь спектр RGB, а краски, наносимые на нее, выступают в качестве фильтров, каждый из которых "ворует" свой цвет (либо red, либо green, либо blue). Таким образом цвета этих красок определяются вычитанием из белого по одному цветов RGB. Получаются цвета Cyan (что-то вроде голубого), Magenta (можно сказать, розовый), Yellow (желтый).

И если в цветовой модели RGB градация каждого цвета происходила по яркости от 0 до 255, то в цветовой модели CMYK у каждого цвета основным значением является "непрозрачность" (количество краски) и определяется процентами от 0% до 100%.


Таким образом, белый цвет можно описать так:

C (cyan) - 0%; M (magenta) - 0%; Y (yellow) - 0%.

Красный - C-0%; M-100%; Y-100%.

Зеленый - C-100%; M-0%; Y-100%.

Синий - C-100%; M-100%; Y-0%.

Черный - C-100%; M-100%; Y-100%.

Однако, это возможно только в теории. А на практике же обойтись цветами CMY не получается. И черный цвет при печати получается скорее грязно-коричневым, серый не похож сам на себя, а темные оттенки цветов создать проблематично. Для урегулирования конечного цвета используется еще одна краска. Отсюда и последняя буква в названии CMYK (ЦМИК). Расшифровка этой буквы может быть разной:

Это может быть сокращение от blacK (черный). И в сокращении используется именно последняя буква, чтобы не спутать этот цвет с цветом Blue в модели RGB;

Печатники очень часто употребляют слово "Контур" относительно этого цвета. Так что возможно, что буква K в абревиатуре CMYK (ЦМИК) - это сокращение от немецкого слова "Kontur";

Так же это может быть сокращение от Key-color (ключевой цвет).

Однако ключевым его назвать сложно, так как он является скорее дополнительным. И на черный этот цвет не совсем похож. Если печатать только этой краской изображение получается скорее серое. Поэтому некоторые придерживаются мнение, что буква K в обревиатуре CMYK означает "Kobalt" (темно-серый, нем.).

Как правило, используется для обозначения этого цвета термин "black" или "черный".

Печать с использованием цветов CMYK называют "полноцветной" или "триадной".

*Стоит, наверное, сказать, что при печати CMYK (ЦМИК) краски не смешиваются. Они ложатся на бумагу "пятнами" (растром) одна рядом с другой и смешиваются уже в воображении человека, потому что эти "пятна" очень малы. То есть изображение растрируется, так как иначе краска, попадая одна на другую, расплывается и образуется муар или грязь. Существует несколько разных способов растрирования.


Цветовая модель grayscale

Изображение в цветовой модели grayscale многие ошибочно называют черно-белым. Но это не так. Черно-белое изображение состоит только из черных и белых тонов. В то время, как grayscale (оттенки серого) имеет 101 оттенок. Это градация цвета Kobalt от 0% до 100%.

Аппаратно-зависимые и аппаратно-независимые цветовые модели

Цветовые модели CMYK и RGB являются аппаратно-зависимыми, то есть они зависят от способа передачи нам цвета. Они указывают конкретному устройству, как использовать соответствующие им красители, но не имеют сведений о восприятии конечного цвета человеком. В зависимости от настроек яркости, контрастности и резкости монитора компьютера, освещенности помещения, угла, под которым мы смотрим на монитор, цвет с одними и теми же параметрами RGB воспринимается нами по-разному. А восприятие человеком цвета в цветовой модели "CMYK" зависит от еще большего ряда условий, таких как свойства запечатываемого материала (например, глянцевая бумага впитывает меньше краски, чем матовая, соответственно цвета на ней получаются более яркие и насыщенные), особенности краски, влажности воздуха, при котором сохла бумага, характеристик печатного станка…

Чтобы передать человеку более достоверную информацию о цвете, к аппаратно-зависимым цветовым моделям прикрепляют так называемые цветовые профили. Каждый из такого профиля содержит информацию о конкретном способе передачи человеку цвета и регулирует конечный цвет с помощью добавления или изъятия из какого-либо составляющего первоначального цвета параметров. Например, для печати на глянцевой пленке используется цветовой профиль, убирающий 10% Cyan и добавляющий 5% Yellow к первоначальному цвету, из-за особенностей конкретной печатной машины, самой пленки и прочих условий. Однако даже прикрепленные профили не решают всех проблем передачи нам цвета.

Аппаратно-независимые цветовые модели не несут в себе сведений для передачи цвета человеку. Они математически описывают цвет, воспринимаемый человеком с нормальным цветным зрением.

Цветовые модели HSB и HLS

В основе этого цветового пространства лежит уже знакомое нам радужное кольцо RGB. Цвет управляется изменением таких параметров, как:

Hue - оттенок или тон;

Saturation - насыщенность цвета;

Brightness - яркость.


Параметр hue - это цвет. Определяется градусами от 0 до 360 исходя из цветов радужного кольца.

Параметр saturation - процент добавления к этому цвету белой краски имеет значение от 0% до 100%.

Параметр Brightness - процент добавления черной краски так же изменяется от 0% до 100%.

Принцип похож на одно из представлений света с точки зрения изобразительного искусства. Когда в уже имеющиеся цвета добавляют белую или черную краску.

Это самая простая для понимания цветовая модель, поэтому ее очень любят многие web-дизайнеры. Однако она имеет ряд недостатков:

Глаз человека воспринимает цвета радужного кольца, как цвета, имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В цветовой модели HSB все цвета этого круга считаются обладающими яркостью в 100%, что, к сожалению, не соответствует действительности.

Так как в её основе лежит цветовая модель RGB, она, все же является аппаратно-зависимой.

Эта цветовая модель конвертируется для печати в CMYK и конвертируется в RGB для отображения на мониторе. Так что догадаться, каким у вас в конечном счете получится цвет бывает весьма проблематично.


Аналогична этой модели цветовая модель HLS (расшифровка: hue, lightness, saturation).

Иногда используются для коррекции света и цвета в изображении.


Цветовая модель LAB

В этой цветовой модели цвет состоит из:

Luminance - освещенность. Это совокупность понятий яркость (lightness) и интенсивность (chrome)

A - это цветовая гамма от зеленного до пурпурного

B - цветовая гамма от голубого до желтого


То есть двумя показателями в совокупности определяется цвет и одним показателем определяется его освещенность.

LAB - Это аппаратно-независимая цветовая модель, то есть она не зависит от способа передачи нам цвета. Она содержит в себе цвета как RGB так и CMYK, и grayscale, что позволяет ей с минимальными потерями конвертировать изображение из одной цветовой модели в другую.

Еще одним достоинством является то, что она, в отличие от цветовой модели HSB, соответствует особенностям восприятия цвета глазом человека.

Часто используется для улучшения качества изображения, и конвертирования изображений из одного цветового пространства в другое.



Доброго времени суток, дорогие читатели, знакомые, посетители, мимопроходящие личности и прочие странные существа! Сегодня мы поговорим о немного специфической, но несомненно важной вещи для любого пользователя, а именно о такой штуке: представление цвета в компьютере.

Как ни крути, но рано или поздно все столкнутся с практической необходимостью понимания, что такое цветовая модель, да и просто сие знание полезно с точки зрения расширения кругозора и осознания - что и как работает в компьютере и из чего он состоит как с программной, так и с физической точки зрения.

Что такое цветовая модель

В общем виде цветовая модель - это некоторая абстрактная вещь, в которой цвет представляется в виде совокупности чисел. И каждая такая модель имеет свои особенности и недостатки. По сути, это как с языком, например, если цвет - это слово "дом", то на разных языках оно будет писаться и звучать по-разному, но при этом смысл слова везде будет одинаковый. Так же и с цветом.

Мы рассмотрим самые основные модели. Их 5 . Как правило, используется одновременно несколько различных моделей, т.к. некоторые удобнее всего использовать в визуальном виде, а другие в численном.

RGB

Это самая распространенная модель представления цвета. В ней любой цвет рассматривается как оттенки трех основных (или базовых) цветов: красный (Red) , зеленый (Green) и синий (Blue). При этом существует два вида этой модели: восьмибитное представление, где цвет задается числами от 0 до 255 (например, цвет будет соответствовать синему, а - желтому), и шестнадцатибитное , которое чаще всего используется в графических редакторах и html , где цвет задается числами от 0 до ff (зеленый - #00ff00 , синий - #0000ff , желтый - #ffff00 ).

Разница представлений в том, что в восьмибитном виде для каждого базового цвета используется отдельная шкала, а в шестнадцатибитном уже сразу вводится цвет. Иными словами, восьмибитное представление - три шкалы с каждым основным цветов, шестнадцатибитное - одна шкала с тремя цветами.

Особенность этой модели в том, что здесь новый цвет получается путем добавления оттенков основных цветов, т.е. "смешивания".

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

На картинке выше видно, как цвета смешиваются друг с другом, образуя новые цвета (желтый - [255,255,0 ], пурпурный - [255,0,255 ], голубой - [0,255,255 ] и белый [255,255,255 ]).

При этом эта модель чаще всего используется именно в численном виде, а не в визуальном (когда цвет задается вводом его значения в соотв. поля, а не выбирается мышкой). Для визуальной настройки цвета используются другие модели. Потому что визуально модель RGB представляет собой трехмерный кубик, который, как Вы видите на картинке выше, не очень удобно использовать:)

Так что это самая распространенная модель у веб-дизайнеров (передаем пламенный привет css ) и программистов.

Недостаток этой модели в том, что она зависит от аппаратной части, иными словами, одна и та же картинка будет неодинаково выглядеть на разных мониторах (ибо в мониторах используется так называемый люминофор - вещество, которое преобразовывает поглощаемую им энергию в световое излучение, а посему в зависимости от качества этого вещества будут определяться базовые цвета) .

CMYK

Это тоже очень распространенная модель, но многие о ней могли вообще ничего не слышать:)

А всё из-за того, что она используется исключительно для печати. Она расшифровывается как Cyan, Magenta, Yellow, Black (или Key Color ), т.е. Голубой, Пурпурный, Желтый и Черный (или ключевой цвет ).

Использование этой модели на печати обусловлено тем, что смешивать по три оттенка для каждого нового цвета слишком затратно и грязно, т.к. когда на бумагу сначала наносится один цвет, потом поверх него другой и затем поверх них третий цвет, во-первых, бумага сильно намокает (если струйная печать), во-вторых, совсем не факт, что получится именно тот оттенок, что Вы хотели. Да, физика она такая:)

Наиболее внимательные могли заметить, что на картинке присутствуют три цвета, а черный получается путем смешивания этих трех. Так, стало быть, зачем его вынесли отдельно? Опять же причина в том, что, во-первых, смешивать три цвета это затратно с точки зрения использования тонера (спец. порошок для картриджа от принтера, который используется вместо чернил в лазерных принтерах), во-вторых, бумага сильно мокнет, что увеличивает время просушки, в-третьих, цвета в действительности могут не смешаться должным образом, а быть более блеклыми, например. Картинка ниже показывает эту модель в реальности

Таким образом, получится скорее не черный, а грязно-серый или грязно-коричневый.

Поэтому (и не только) ввели еще черный цвет, чтобы не пачкать бумагу, не тратиться на тонеры и вообще жить было проще:)

Очень наглядно иллюстрирует всю суть следующая анимация (открывается по клику, вес около 14 Mb ):

Цвет в этой модели задается числами от 0 до 100 , где эти числа часто называют "частями" или "порциями" выбранного цвета. Например, цвет "хаки" получается путем смешивания 30 частей голубой краски, 45 - пурпурной, 80 - желтой и 5 - черной, т.е. цвет хаки будет .

Трудности этой модели заключаются в том, что в суровых реалиях (или в реальных суровиях) цвет зависит не столько от числовых данных, сколько от характеристики бумаги, краски в тонере, способе нанесения этой краски и т.п. Так что числовые значения будут однозначно определять цвет на мониторе, но они не покажут реальной картины на бумаге.

HSV (HSB) и HSL

Эти две цветовые модели я объединил, т.к. они схожи по своему принципу.

Трехмерная реализация HSL (слева) и HSV (справа) моделей представлена в виде цилиндра ниже, но на практике в ПО (программном обеспечении) не используется, ибо.. ибо трехмерная:)

HSV (или HSB) означает Hue, Saturation, Value (еще может именоваться Brightness ), где:

  • Hue - цветовой тон, т.е. оттенок цвета.
  • Saturation - насыщенность. Чем выше этот параметр, тем "чище" будет цвет, а чем ниже, тем ближе он будет к серому.
  • Value (Brightness ) - значение (яркость) цвета. Чем выше значение, тем ярче будет цвет (но не белее). А чем ниже, тем темнее (0% - черный)

HSL - Hue, Saturation, Lightness

  • Hue - Вы уже знаете
  • Saturation - аналогично
  • Lightness - это светлота цвета (не путать с яркостью) . Чем выше параметр, тем светлее цвет (100% - белый), а чем ниже, тем темнее (0% - черный).

Более распространенная модель - HSV , она часто используется вместе с моделью RGB , где HSV показана в визуальном виде, а числовые значения задаются в RGB . :

Здесь RGB- модель обведена красным и значения оттенков задаются числами от 0 до 255 , либо сразу можно указать цвет в шестнадцатеричном виде. А синим обведена HSV модель (визуальная часть в левом прямоугольнике, числовая - в правом ). Также часто можно указать непрозрачность (так называемый альфа-канал ).

Такая модель чаще всего используется в простой (или непрофессиональной) обработке изображений, т.к. при помощи неё удобно регулировать основные параметры фотографий, не прибегая к куче различных фильтров или отдельных настроек.
Например во всеми любимом (или проклинаемом) фотошопе присутствуют обе модели, только одна из них находится в редакторе выбора цвета, а другая - в окне настроек Hue/Saturation

Здесь красным показа RGB- модель, синим - HSB , зеленым - CMYK и голубым Lab (о ней чуть позже), что видно на картинке:)
А HSL- модель находится в таком вот окошке:

Недостаток HSB- модели в том, что она также зависит от аппаратной части. Она просто не соответствуют восприятию человеческого глаза, т.к. оный воспринимает цвета с разной яркостью (например, синий воспринимается нами более темным, чем красный), а в этой модели у всех цветов одинаковая яркость. У HSL аналогичные проблемы:)

Таких недостатков хотели избежать, поэтому одна небезызвестная компания CIE (Международная комиссия по освещению - Commission Internationale de l"Eclairage ) придумала новую модель, призванную не зависеть от аппаратной части. И назвали её Lab (нет, это не сокращение от Laboratory ).

Lab или L,a,b

Эта модель является одной из стандартных, хотя и малоизвестна рядовому пользователю.

Расшифровывается она следующим образом:

  • L - Luminance - освещенность (это совокупность яркости и интенсивности)
  • a - один из компонентов цвета, меняется от зеленого до красного
  • b - второй из компонентов цвета, меняется от синего до желтого

На рисунке показаны диапазоны компонент a и b для освещенности 25% (слева) и 75% (справа)

Яркость в этой модели отделяется от цветов, поэтому при помощи неё удобно регулировать контраст, резкость и другие светопоказатели, не трогая при этом цвета:)

Однако эта модель совсем неочевидная для использования и ею довольно трудно пользоваться на практике. Поэтому её используют в основном в обработке изображений и для конвертации оных из одной цветовой модели в другую без потерь (да, это единственная модель, которая делает это без потерь), обычным же смертным страждущим пользователям достаточно, как правило, HSL и HSV плюс фильтры.

Ну и в качестве примера работы модели HSV, HSL и Lab вот картинка из Википедии (кликабельно)



Загрузка...