sonyps4.ru

Термодинамическая модель печатающей головки для 3d принтера. Нестандартные и перспективные экструдеры

Небольшой обзор по материалам применяемым для изготовления головок 3Д-принтеров и самих головок, чтобы было яснее, почему их так делают, J-Head, Makerbot, Ultimaker.

Это вторая моя статья из цикла-эпопеи о принтерных головках. Шутка - но ещё есть что сказать. Первая статья . Как и все материалы по RepRap - принтерам относится к open-source, значит если нужны какие-то подробности обращайтесь.

Хотэнд - горячая часть головки обычно состоит из трёх частей:

Собственно головка, сопло, nozzle;
- термобарьер, ещё называют nozzle holder, может быть в одном флаконе с радиатором;
- радиатор.

Требования к материалам этих частей существенно разные. Впрочем, я видел в Сети людей, которые всё эти части делали из алюминия. И у них ничего хорошего не получалось. А вот Прюша - тот самый, знаменитый, по имени которого названа модель принтера Prusa, сделал всё из нержавейки. Об этом тоже будет написано.

головка Prusa Nozzle

Итак - головка, сопло, она делается обычно из латуни, иногда из алюминия, слышал упоминания про бронзу и никогда не видел сделанную из меди. Почему так? Вероятно потому что в головке, конечно, имеет значение хорошая теплопроводность материала, но это значение не слишком велико, более важно удобство обработки материала.

Итак, посмотрим значения теплопроводностей для меди, алюминия, латуни и бронзы:

Медь - 395 вт/м К
- алюминий - 220
- латунь - 150
- бронза - 58,7 - это для алюминиевой бронзы, которая заметно прочнее латуни.

Бронза, как видите, имеет почти в три раза меньшую теплопроводность, чем латунь, что в случае использования резистора-нагревателя может иметь значение.

От алюминия отказались, вероятно, по причине излишней мягкости. Есть, конечно и достаточно прочные сплавы алюминия, но их ещё надо найти и отличить… так что…

Медь - наверное, трудно обрабатывать и слишком мягка.

Для меня важным и полезным свойством латуни (бронза - то же самое) является также, то что она хорошо паяется твёрдым серебряным припоем - который для ремонта холодильников. Он очень хорош, им можно припаять бронзу к нержавеющей стали и смачиваемость его просто великолепна, то есть он прекрасно затекает по всему стыку, будучи паяем только в одной точке. Так мы плавно переходим к термобарьеру. Это деталь, которая должна выдерживать механические нагрузки головки и передавать поменьше тепла к корпусу аппарата. Первые модели хотэндов использовали для этого фторопласт - если по-русски, или тефлон, PTFE. Вообще-то прекрасный материал, особенно в силу своей замечательной скользкости. К нему, как бы, вообще ничего не липнет и теплопроводность у него маленькая Однако есть дефект. Прочность. Прочность мала, и даже не это самое плохое, плохо то что у него есть текучесть. Текучесть - значит под нагрузкой, даже при несильном нагреве он начинает изменять свою форму. Всё. Эта особенность оставила ему только функцию вкладышей в головке, которые снижают трение филамента. Там ему течь некуда. Он подпёрт со всех сторон - или металлом или соответствующим пластиком.

Посмотрим теперь на свойства материалов которые мы могли бы поставить в качестве термобарьера. Теплопроводность -в Вт/м К (имеется в виду - ватт, метр, градус, а какой, Кельвина или Цельсия - неважно) и Предельная прочность на разрыв - в мегапаскалях.

Тефлон 0,25 26
- PEEK 0,29 165
- Нерж.Сталь марки 304 9,4 580-600
- Нерж.Сталь марки 316 9,4 680
- Сталь 3, самая простая 55 380

Смотрим, второй строкой идёт PEEK, это довольно экзотический пластик. С впечатляющей ценой. Обратите внимание на прочность, она всего раза в два ниже Стали 3.

При малой теплопроводности, хорошей скользкости и неплохой термоустойчивости он стал популярным материалом для держателей сопел.


Классическая J-Head Nozzle Mk5 B

Минусов два, и серьёзных: - цена и термоустойчивость. 250ºС - это температурный предел, часто хочется большего, терморезисторы(многие) будут работать до температуры 300ºС - есть куда расти.

Теперь посмотрите на нержавеющие стали - их теплопроводность в 5 раз ниже обычной стали! А прочность в почти два раза выше! Это популярные на Западе марки сталей соответствующие нашим 08Х18Н10 и 08Х17Н13М2. Первая - вообще классическая пищевая нержавейка, хромоникелевая. Правда теплопроводность в 40 раз повыше чем у тефлона, но если учесть разницу в прочности, то разница с тефлоном будет всего процентов 30. PEEK, впрочем остаётся недосягаемым конкурентом. Но устойчивость к теплу… и ещё приятная возможность припаять серебрянным припоем латунное сопло к стальной трубочке и забыть про просачивание пластика. Серебряный припой не только имеет температуру плавления 800ºС, но ещё у него прекрасная прочность и он великолепно паяет - очень хорошая текучесть и смачиваемость. 8-12 миллиметров трубочки из нержавейки уже оказываются достаточным барьером для наших нужд. Это в случае трубки диаметром 8мм и со стенками 1мм. Если использовать более тонкостенные трубочки эффект будет ещё лучше. Трубка со стенками 0,3 мм достаточно прочна. Тут главное воздействие будут оказывать уже другие факторы: -нагрев излучением от головки, нагрев конвективными потоками, которые, правда, должны сдуваться вентилятором.

Головка от Прюши - Prusa Nozzle из цельного куска нержавеющей стали, у него правда сталь несколько другого состава -с вдвое большей теплопроводностью, марки 303, вероятно это компромисс между требованиями к термобарьеру и к соплу. Очень трудное в изготовлении получилось изделие, и похоже не очень удачное, хотя и позволяло печатать любыми видами пластика. Жалуются на него люди. Да и купить его сейчас нелегко. Новая модификация - с алюминиевым радиатором, причём, по моему мнению, тоже не должна быть особенно удачной. Низкий градиент температур по термобарьеру.

Классическая J-Head Nozzle Mk5 B Хорошая модель, особенно если была сделана без упрощений и ухудшений, которые добавляли некоторые китайские товарищи. Держатель делается из пластика PEEK. Печатает стабильно. Но не всем. Температурный диапазон ограничен и его лучше не превышать - начинает сочиться пластик через место соединения держателя и сопла. Как нагреватель используется резистор, расчётная мощность около 25 Вт. Тефлоновый вкладыш до латунного сопла.

Мэйкербот - Makerbot Stepstruder MK7 - конструктивно просто, сплошной металл и судя по заявленным параметрам, очень даже хорошо. Термобарьер - из нержавеющей стали, не слишком маленького сечения, сложной конфигурации, внутри держателя фторопластового вкладыша нет. Большой алюминиевый нагревательный блок теплоизолируется от воздуха с помощью керамической ленты. Судя по мощному радиатору, довольно большой тепловой поток идёт с головки. Короткий отрезок термобарьера - значит высокий градиент температур. Почему это хорошо, я постараюсь показать на цифрах в следующем посте.


Головка Makerbot Stepstruder MK7

А Ultimaker HotEnd v2 использует термобарьер изPEEK. Так что ничего удивительного по температурному диапазону не ждите. Использует нагревательный картридж, 40W. Так же как и Stepstruder MK7. Конструкция интересная. Грамотно используется тефлон. Очень большая протяжённость плавящей части. Видимо отсюда рекордная скорость печати. Для подробного анализа нет чертежей и описаний.


Что нашёл по Ultimaker, а он Open source.

Самодельная - BASS - печатает хорошо и быстро. 140 мм/сек при печати капроном/триммерной леской. Трудоёмка в изготовлении. Одна намотка нагревателя чего стоит. Термобарьер из трубки нержавеющей стали 304. Токарная работа - прностая. Используется пайка серебряным припоем. Из-за намотанного радиатора - хорошая однородность нагрева, малый вес и высокая надёжность. До латунного сопла используется тефлоновый вкладыш, 5 последних миллиметров которого, для снижения нагрузки, заменены на кольцо из нержавеющей стали. Мощность - та же, порядка 40 Вт.

В креплении нагрев несильный, вентилятор справляется слабенький.


Можно сказать, что первый период развития FDM-принтеров заканчивается, хорошо работающие головки теперь не редкость. Хотя меня не оставляет ощущение что принципы их проектирования ещё не слишком чётко сформулированы. В следующем посте я хочу рассказать о тепловых расчётах головки принтера, почему их такими делают и как избежать образования пробок. У меня даже сложилось впечатление, что я теперь смогу вполне осознанно выбирать размеры, радиаторов, термобарьеров и прочее. Буду рад если сообщество поучаствует на предмет поиска возможных ошибок и заблуждений. Всем спасибо.

О сборке принтера Mosaic из набора деталей от компании MakerGear рассказано в статьеСобираем 3D принтер своими руками. Наверное, вы обратили внимание, что там подробно рассмотрено устройство 3D принтера, но не идет речь о печатающей головке. Это тема сегодняшнего разговора.

Мы рассмотрим виды экструдеров и способы изготовления отдельных деталей этого сложного механизма, чтобы понять как сделать экструдер своими руками (видео о сверлении сопла в конце статьи).

Печатающая головка 3-d принтера протягивает пруток пластика, разогревает его и выталкивает горячую массу через сопла.

Wade extruder

На картинке представлена упрощенная схема экструдера типа Wade. Устройство состоит из двух частей. Вверху расположен cold-end (холодный конец) – механизм, подающий пластик, внизу – hot-end (горячий конец), где материал разогревается и выдавливается через сопло.

Экструдер Боудэна

Существует и другая конструкция устройства, где холодная и горячая части разведены, а пластик поступает в hot-end по тефлоновой трубке. Такая модель, где cold end жестко закреплен на раме принтера, получила название Bowden extruder .

К ее несомненным достоинствам стоит отнести следующее:

  • материал не плавится раньше времени и не забивает механизм;
  • печатающая головка значительно легче, что позволяет увеличить скорость печати.

Однако и недостатки имеются. Нить пластика на таком большом расстоянии может перекручиваться и даже запутываться. Решением этой проблемы может стать увеличение мощности двигателя колдэнда.

Cold end

E3D-v6 в сборе

Пруток филамента проталкивается вниз шестерней, приводящейся в движение электродвигателем с редуктором. Подающее колесо жестко крепится на валу двигателя, в то время как прижимной ролик не закреплен стационарно, а находится в плавающем положении и, благодаря пружине, может перемещаться. Такая конструкция позволяет нити пластика не застревать, если диаметр прутка на отдельных участках отклоняется от заданного размера.

Hot-end

Пластик поступает в нижнюю часть экструдера по металлической трубке. Именно здесь материал разогревается и в жидком виде вытекает через сопло. Нагревателем служит спираль из нихромовой проволоки, или пластина и один-два резистора, температура контролируется датчиком. Верхняя часть механизма должна предотвратить раннее нагревание филамента и не пропустить тепло вверх. В качестве изоляции используется термостойкий пластик или радиатор.

Подающий механизм

Прежде всего, нужно подобрать шаговый двигатель. Лучше всего купить аналог Nema17, но вполне подойдут и моторы от старых принтеров или сканеров, которые на радиорынках продаются совсем дешево. Для нашей цели нужен биполярный двигатель, имеющий 4 вывода. Собственно, можно использовать и униполярный, его схема показана на рисунке. В этом случае желтый и белый провода просто останутся неиспользованными, их можно будет отрезать.

Как правило, моторчики от принтеров слабые, но вот EM-257 (Epson), как на рисунке ниже, с моментом на валу 3,2 кг/см, вполне подойдет, если вы собираетесь использовать филамент Ø 1,75 мм.

Для прутка Ø 3 мм, или при более слабом двигателе, понадобится еще и редуктор. Его тоже можно подобрать из разобранных старых инструментов, например, планетарный редуктор от шуруповерта.

Переделка понадобится, чтобы насадить шестерню двигателя шуруповерта на шаговик, совместить ось вращения моторчика с редуктором. И крышку для подшипника выходного вала тоже нужно изготовить. На выходной оси устанавливается шестерня, которая и будет подавать пруток пластика в зону нагрева.

Корпус экструдера служит для крепления двигателя, прижимного ролика и хотэнда. Один из вариантов показан на рисунке, где через прозрачную стенку хорошо виден красный пруток филамента.

Изготовить корпус можно из разных материалов, придумав собственную конструкцию, или, взяв за образец готовый комплект, заказать печать на 3-d принтере.

Главное, чтобы прижимной ролик регулировался пружиной, так как толщина прутка не всегда идеальна. Сцепление материала с подающим механизмом должно быть не слишком сильным, во избежание откалывания кусочков пластика, но достаточным для проталкивания филамента в hot-end.

Нужно отметить, что при печати нейлоном лучше использовать подающую шестерню с острыми зубчиками, иначе она просто не сможет зацепить пруток и будет проскальзывать.

Цельнометаллический хотэнд

Широко распространены и пользуются популярностью хотэнды фирмы E3D. Можно купить его на ebay.com за 92 $ (без доставки) или скачать чертежи, находящиеся в свободном доступе на официальном сайте компании (http://e3d-online.com/), по которым и сделать, прилично сэкономив.

Радиатор изготавливается из алюминия и служит для отвода тепла от ствола хотэнда и предотвращения преждевременного нагревания материала для печати. Вполне подойдет светодиодный радиатор , для усиления охлаждающего эффекта можно направить на него еще и вентилятор небольшого размера.

Ствол хотенда – полая металлическая трубка, соединяющая радиатор и нагревательный элемент. Изготавливается из нержавеющей стали из-за ее низкой теплопроводности.

Вот как выглядит деталь в разрезе и ее с размерами под пруток Ø 1,75 мм.

Тонкая часть трубки служит термобарьером и предотвращает распространение тепла в верхнюю часть экструдера. Важно, чтобы филамент не начал плавиться раньше времени, ведь в этом случае прутку придется толкать слишком много вязкой массы. В результате увеличивается сила трения, и забиваются трубка и сопло.

Если вы сами просверлили деталь, нужно отполировать отверстие ствола. Для черновой шлифовки подойдет мелкая наждачная бумага «нулевка», закрепленная скотчем на сверле меньшего диаметра.

Обязательна чистовая полировка до зеркального блеска (нитью и пастой ГОИ № 1), затем полезно прожарить отверстие подсолнечным маслом для уменьшения силы трения. Чтобы предотвратить слишком раннее разогревание пластика, можно покрыть нижнюю часть трубки, находящейся в радиаторе, тонким слоем термопасты.

Еще одна возможная проблема: расплавленный пластик под давлением поступающего прутка может просочиться вверх и остыть в зоне охлаждения, что приведет к забиванию ствола и прекращению печати. Бороться с этим можно с помощью тефлоновой изоляционной трубки, которая вставляется в ствол хотэнда до зоны начала разогрева филамента.

Нагреватель

Пластина нагревателя

В качестве нагревательного элемента используется алюминиевая пластина. Если вам не удалось найти подходящего по размеру толстого бруска, вполне подойдет алюминиевая полоса толщиной 4 мм, которую можно приобрести в магазинах стройматериалов. В этом случае нагревательный элемент будет состоять из двух частей. Необходимо просверлить центральное отверстие для ствола хотэнда, и скрутив болтом, зажать всю конструкцию в тисках. Затем насверлить нужное количество отверстий для составляющих элементов нагревателя:

  • болта крепления,
  • двух резисторов,
  • терморезистора.

Для нагревания пластины можно использовать керамический 12v нагреватель или резистор на 5 Ом. Но для нашего блока лучше подойдут два резистора на 10 Ом, так как они гораздо меньше по размеру, а соединение параллельно как раз и даст нужное сопротивление в 5–6 Ом.

Контролировать температуру будет NTS-термистор 100 кОм марки B57560G104F, с максимальной рабочей температурой 300 °C. Терморезисторы с меньшим сопротивлением использовать нельзя, они, как правило, обладают большой погрешностью при высоких температурах.

Необходимо обеспечить плотное соединение резисторов с пластиной, так как воздушная прослойка тормозит нагревание. Здесь важно правильно выбрать герметик. Лучше всего использовать керамико-полимерные пасты (КПДТ), рабочая температура которых не менее 250 °C. Для дополнительной теплоизоляции неплохо весь hot-end замотать стеклотканью.

Сопло

Глухая гайка с закругленным концом идеально подойдет для изготовления сопла. Лучше взять деталь из меди или латуни, так как эти металлы относительно легко обрабатываются. Нужно закрепить в тисках болт, накрутить на него гайку и просверлить в центре закругления отверстие нужного диаметра.

Сделать это можно так: на сверло, зажатое в обычную дрель, закрепить цанговый патрон со сверлышком нужного диаметра. Получается интересная конструкция.

Наиболее удачным считается отверстие 0,4 мм, так как при меньшем диаметре замедляется скорость, а при большем – страдает качество печати.

Вот еще один способ просверлить сопло (видео на английском).

Как видите, изготовить экструдер для 3-d принтера своими руками достаточно сложно. Но если вы знаете, что сделать какую-то деталь самостоятельно не удастся из-за отсутствия необходимых материалов или инструментов, необязательно приобретать готовый комплект полностью, можно купить отдельно любую часть экструдера и продолжить работу.

Печатайте с удовольствием.

Экструдер (от англ. слова extrude) - это печатающая головка 3D принтера. Название этой детали (перевод термина - выдавливать) полностью соответствует принципу ее действия: экструдер выдавливает специальный материал через отверстие, тем самым создавая слои объекта. Точно также работают и клеевые пистолеты, тюбики с пастой и прочие.

В большинстве случаев 3D принтер печатает объекты из термопластика ABS и PLA (филамента по научному или пластиковой нити в обиходе), поэтому стоит проанализировать такие экструдеры.

Фактически - экструдер (печатающая головка 3D принтера) - это основной механизм и именно от него и зависит качество печати на 3D принтере. Даже если вы решили собрать полностью , то на экструдер стоит разориться и купить готовый и проверенный узел.

Печатающая головка 3D принтера состоит из двух элементов: сопла и механизма подачи филамента. Сопло имеет нагревательный элемент и называется также хот-энд (hot-end). Нагреватель выглядит как прямоугольное алюминиевое устройство.

Элемент для подачи филамента (колд-энд) - это небольшой блок, состоящий из прижимного механизма и шестерни. Такой механизм должен быть соединен со специальным электромотором (через редуктор). Принцип работы 3D принтера такой: колесо вращается и высасывает филамент, переправляя его в hot-end. Там, он плавится (благодаря нагревательному элементу) и выдавливается через сопло.

Чаще всего нагревателем является нихромовая спираль или несколько резисторов. Хот-энд изготовлен из теплопроводного металла (например, алюминия). К соплу прикрепляется специальный датчик температуры, что бы следить и регулировать состояние принтера.

Хот-энд и колд-энд разделяют теплоизолирующей стенкой, сделанной из термостойкого пластика PEEK. В часть колд-энд встроены вентиляторы, чтобы не допустить перегрев. Все это делается для того, что бы филармент не начал плавиться слишком рано. Хот-энд очень нагревается, при этом колд-энд должен оставаться достаточно холодным.

Кроме обычных экструдеров (с прямой подачей), существуют также боуден-экструдеры (Bowden extruder). Они отличаются от стандартных тем, что hot-end закреплен на подвижном элементе, а cold-end находится на раме 3D принтера. Таким образом, две эти части разделены и не соприкасаются. Филамент переходит в сопло через трубку из тефлона.

Такое строение экструдера позволяет сделать его меньшим, тем самым ускорить процесс 3D печати. При этом снижается надежность подачи пластика.

Есть несколько нюансов в строении печатающей головка 3D принтера. Во-первых, важен материал, из которого изготовлен корпус и детали. Некоторые компании производят экструдеры из некачественных, дешевых элементов. Лучше всего создавать литые детали 3D принтеров, потому что они более надежны. Результаты работы машины зависят от подачи филамента. Поэтому, механизм подачи должен быть бесперебойным и надежным.

В случае если филамент запутается (т.к. он является похожим на нить), подаватель может заклинить. Если детали качественные, филамент все равно должен выйти, только с небольшими комочками.

Из-за того, что филамент недостаточно сильно сцеплен с механизмом подачи, нить может проскользнуть и создать некоторые задержки в работе 3D принтера.

При печати можно использовать капрон или нейлон. Стандартные печатающие головки (настроенные на ABS) не способны нормально ее обработать, так как она гладкая и мягкая. Подающее колесо не может достаточно сильно «схватить» филамент. Именно поэтому, при печати с помощью капрона используют ролики с зубцами или острой насечкой.

Также в строении экструдера очень важно учитывать размер сопла, потому что от него зависит готовая работа. Обычное сопло 3D принтера имеют размер 0,4-0,5 мм. Другое сопло, меньшее по размеру (0,2-0,3 мм) делает печать объекта более детальной, чистой и четкой, потому что выдавливаемая горячая нить более тонкая.

Особое внимание стоит обратить на то, что печать с помощью маленького сопла, увеличивает время печати. Также, такое отверстие быстро забивается мелким мусором и застывшим пластиком. Подаватель должен быть более мощным, что бы протолкнуть филамент пластиковой нити через маленькое сопло.

В современных принтерах существует возможность использование сопла разного диаметра. В наше время представлены разные модели 3D принтеров с несколькими встроенными печатающими головками. Например, в модели MakerBot Replicator Dual встроены два экструдера.

Использование нескольких головок лучше всего подходит для печати двухцветных объектов, так как применяется два вида пластика. Не смотря на это, технология печати с помощью двух экструдеров изучена не досконально и имеет ряд недостатков и неточностей.

Две печатающие головки работают независимо в принтере, что позволяет печатать ими обоими параллельно. Они крепко закреплены на головке и 3D принтер использует каждую из них по мере необходимости.

Существует также новый метод одновременной 3D печати, который называется «Ditto printing». При таком способе оба экструдера печатают два идентичных объекта, работая параллельно. Однако данный метод имеет ряд ограничений: печатаются только небольшие объекты, одноцветные или же двухцветные и большие, но с определенной структурой (она должна быть повторяющейся и выполненной в виде цепи).

Также одним из недостатков принтеров с двумя печатающими головками относится их сложность и слишком большая стоимость. Установка дополнительных деталей делает экструдер большим и тяжелым, что замедляет скорость работы и позволяет создавать только маленькие объекта. В ходе печати неработающее сопло также может цепляться за готовые части объекта и портить их, оставляя потеки филамента.

У меня Anet A6 собирал его сам и полностью доволен. 3D принтер съел уже примерно 5 кг пластика без каких либо проблем и заминок. Оставляю печать на ночь и когда ухожу на работу.

Все экструдеры, печатающие пластиком из прутка, имеют одинаковый принцип действия и правила для anet A6 будут справедливы и для остальных принтеров. Нам понадобятся "нить для герметизации резьбовых соединений" (не для герметизации), термопроводящая паста и собственные

Сразу скажу, что герметизация от утечек расплавленного пластика происходит между соплом и термобарьером, больше нигде.

Если правильно собран этот узел, то никогда не будет протекать расплавленный пластик и выгорать на нагревательном элементе и сопле, а значит не будет и запаха гари.

Начнем по порядку.
Закручиваем сопло в термоблок с нагревателем не полностью, не докручиваем примерно 1 мм как на фото.

Затем вкручиваем термобарьер с уплотнительной нитью до упора в сопло

В точке соприкосновения сопла и термобарьера и происходит уплотнение.
Нить уплотнения резьбы нужна для того, чтобы во время смены сопла нагревательный блок не вращался на резьбе термобрьера, это исключает возможность отхода термопары со своего штатного места. После смены сопла его затяжку производить с усилием примерно 500 грамм на 10 см. Не стоит забывать что сопло упирается не в термоблок, а в термобарьер.

Термопроводящей пастой смазываем сам нагревательный элемент и термопару перед установкой в блок.

Это позволит вашему принтеру поддерживать заданную температуру в пределах + или - 1 градус.
А так же значительно продлит жизнь нагревательного элемента.

Надеюсь эта информация будет вам полезна. Удачи всем.

Некоторые изделия напечатанные на Anet A6

Экструзионная головка – это модуль, оснащенный металлическим соплом и охлаждающим вентилятором и предназначенный для плавления нити и формирования изделия. Качественные экструдеры для 3d принтера изготавливаются из металлов способных выдержать высокие температуры. Устройство снабжено электронными датчиками контроля и управления процессом.

В модуль подается расходный материал с катушки, который нагревается до заданной температуры и переходить в пластичную фазу. Описываемый экструдер для нити 3d принтера подает полимер на платформу, где происходит моделирование объекта методом послойного наплавления. В некоторых устройствах могут применяться две головки и больше для материалов разного цвета или назначения.

Экструдер для нити 3d принтера, выбор модели и установка

Описываемые модули совместимы с определенными видами установок, которые осуществляют формирование изделий с использованием 3D технологий. Прежде чем попытаться ответить на вопрос, какой экструдер лучше для 3d принтера следует установить его тип. Подобрать головку можно по характеристикам, в частности, модель МК8 имеет следующие параметры:

  • Используемые пластики ABS и PLA.
  • Температура сопла максимальная – 260 ⁰C.
  • Диаметр нити – 1,75 мм.
  • Сечение сопла от 0,2 до 0,4 мм.

Лучший экструдер для 3d принтера имеет стандартные параметры электропитания: ток – постоянный напряжением 12 В. Модуль комплектуется высокочастотным термистором марки NTC, который обеспечивает оптимальные режимы нагрева формующего материала. Наш интернет-магазин 3DIY предлагает купить экструдер для 3d принтера по умеренной цене. Оформить заказ можно по телефону или непосредственно на сайте. Наши сотрудники готовы оказать вам помощь в подборе и приобретении комплектующих. Звоните или подавайте заявки онлайн.



Загрузка...