sonyps4.ru

Создание самого первого компьютера в мире. Когда был изобретен первый компьютер? Современная история ЭВМ

Дать однозначный ответ на вопрос «Кто изобрёл компьютер?» на самом деле не так просто. Как и в случае со многими другими изобретениями, свой вклад в появление компьютера внесли многие люди, работавшие в разных странах, да и на вопрос, какое же устройство, собственно, достойно называться первым компьютером, можно дать разные варианты ответов. Итак, в этом посте — про изобретателей компьютера.

Что такое компьютер? С одной стороны, компьютер считается разновидностью вычислительной техники, но важной его особенностью должна быть возможность не просто выполнять вычисления, пусть и сложные, но выполнять некую произвольно заданную программу. Т. е. устройства, предназначенные для решения лишь определённых задач, не подходят под определение компьютера, компьютер — это универсальное устройство для вычислений, которое можно запрограммировать.

История компьютеров начинается в 19 веке. В 1808 г. французский ткач Жозеф Мари Жаккар (или Жаккард) изобретает ткацкий станок, способный не просто производить ткань, а делать ткань с произвольными узорами. Фактически это был программируемый станок. Узор задавался при помощи пластинок с дырочками, просверленными в определённом порядке — перфокарт.

Перфокарты для станка Жаккара

В 1832 г. русский изобретатель Семён Николаевич Корсаков публикует проект специальных машин для обработки информации при помощи перфокарт. Фактически, это были машины для работы с базами данных. Однако изобретение не получило официальной поддержки, комиссия, рассматривавшая проект, высказала мнение, что «Г-н Корсаков потратил слишком много разума на то, чтобы научить других обходиться без разума».

Кто же придумал проект первого программируемого вычислительного устройства, т. е. компьютера? Этим человеком был англичанин Чарльз Бэббидж . Бэббидж был крайне разносторонним человеком, но известен прежде всего проектами вычислительных машин. В 1822 году он построил машину для расчётов логарифмических таблиц, эта машина стала позднее известна как малая разностная. Затем Бэббидж решил построить полномасштабную версию разностной машины, получил от правительства субсидию, но не уложился ни в сроки, ни в размеры финансирования. Вместо первоначальных трёх лет и 1500 фунтов стерлингов Бэббидж потратил 11 лет и 17000 фунтов, но так и не достроил машину. Лишь в 1991 к двухсотлетию Бэббиджа в Лондоне построили-таки работающую версию этой разностной машины.

Разностная машина Бэббиджа

Разностная машина — довольно сложное, но всё же узкоспециализированное вычислительное устройство. Назвать её компьютером нельзя. Однако в процессе работы над разностной машиной Бэббидж разработал проект ещё более сложной и универсальной аналитической машины, которая была, по сути, механическим компьютером. В этой машине был блок для хранения чисел, а сама она могла выполнять вычисления по программе, записанной на перфокартах. Увы, машина была слишком сложной и даже сегодня энтузиасты так и не решились её воспроизвести.

В 19м и начале 20го века развитие вычислительной техники продолжалось, но она всё ещё предназначалась для узкоспециализированных вычислений. В 1936 году английский математик Алан Тьюринг описал абстрактную машину, пригодную для произвольных вычислений. Описанная машина получила название машина Тьюринга. Фактически, Тьюринг определил критерии, по которым можно было определить, является ли вычислительная машина универсальной.

Алан Тьюринг

К концу 30-х существовали две возможности для постройки вычислительных машин. Более привычными были электромеханические машины, сочетающие электрические и механические элементы. Они считали очень медленно — одна операция могла занимать несколько секунд. Но в это время появилась и другая концепция — использовать в качестве элементов вакуумные лампы. Машины на вакуумных лампах — электронные — могли считать намного быстрее, но лампы были дорогими и не очень надёжными и часто перегорали.

Первые компьютеры появились между концом тридцатых и концом сороковых. Вопрос только в том, какое же устройство считать первым настоящим компьютером? Рассмотрим кандидатов.

1) Машины Конрада Цузе

Конрад Цузе был немецким инженером, по своей инициативе занявшимся разработкой вычислительных машин. В 1938 г. он на свои деньги разработал и построил первую электромеханическую машину, названную Z1, реализовал в ней возможность программирования, но она работала ненадёжно. В 1939 г. началась вторая мировая война и Цузе призвали на фронт, откуда ему удалось вернуться и создать вторую версию своей машины — Z2, а в начале 1941 — Z3. Вероятно, эти машины были первыми реально работавшими электромеханическими компьютерами. В 1941 Цузе вновь призвали на фронт. Как он ни доказывал руководству вермахта важность своих компьютеров, его не хотели слушать. Лишь после вмешательства фирмы Хеншель, выпускавшей самолёты, где Цузе ранее работал инженером, ему всё-таки разрешили вернуться к работе над своими вычислительными машинами. Предполагалось, что они будут использоваться для расчётов аэродинамических параметров самолётов. Руководство вермахта, впрочем, без энтузиазма отнеслось к разработкам и не видя в них особой ценности, финансировало очень неохотно. Следующую модель — Z4 Цузе закончил только после войны. В 1950 г. он продал эту модель в Швейцарию.

Z3 (восстановленная копия) в немецком музее

Z3 могла считывать программу с перфоленты и выполнять вычисления в соответствии с ней. Однако эта машина была электромеханической, поэтому работала очень медленно и не могла исполнять в явном виде команд условного перехода, которые считаются важной составляющей компьютерной программы. Можно ли считать Z3 первым в мире компьютером, а Конрада Цузе — его изобретателем? Некоторые считают, что да, некоторые — нет.

2) Компьютер Атанасова-Берри

В 1942 г. американский математик болгарского происхождения Джон Атанасов и помогавший ему инженер Клиффорд Берри построили первую на 100% электронную вычислительную машину без механических частей. Эта машина не была универсальной и предназначалась в основном для решения линейных уравнений, тем не менее, именно её в 1973 г. Федеральный районный суд США признал «первым компьютером». Возможно, из этой машины получилось бы нечто большее, если бы Атанасов не был призван в американскую армию.

Компьютер Атанасова-Берри

3) Британские «Бомбы» и «Колоссы»

Во время второй мировой войны перед англичанами встала задача расшифровки немецких сообщений. Взломать немецкие шифры вручную было невозможно. Тогда англичане прибегли к помощи вычислительных машин.

В 1940 г. в Великобритании по проекту Алана Тьюринга была построена первая электромеханическая вычислительная машина для расшифровки немецкого кода «Энигма». Она получила название «Бомба». Одна такая машина весила 2,5 тонны и для того, чтобы расшифровать как можно больше сообщений, к 1944 году англичане построили 210 таких машин.

«Бомба»

Но для передачи важных сообщений немцы использовали другой, ещё более сложный код «Лоренц». Для его расшифровки был спроектирован и построен (в количестве 10 штук) мощный электронный компьютер под названием «Колосс». Он был программируемой и довольно мощной для своего времени, но всё же не универсальной, а узкоспециализированной машиной. Спроектировал «Колоссы» и руководил их постройкой английский инженер Томми Флауэрс .

4) ЭНИАК

Переносимся в США. В 1943 г. учёные из Пенсильванского университета Джон Мокли и Джон Экерт задумали построить мощный электронный компьютер. Предполагалось, что его будут использовать в основном для расчётов артиллерийских таблиц — нудной и кропотливой работы, которая была поручена университету американской армией. Прежде таблицы рассчитывали люди с арифмометрами, и это отнимало у них много времени. Устройство назвали ЭНИАК (англ. ENIAC), сокращение от «Электронный числовой интегратор и вычислитель», и он мог производить расчёты в 2400 раз быстрее, чем человек с арифмометром.

ЭНИАК

ЭНИАК был построен к осени 1945 г. Он содержал более 10 тыс. электронных ламп, весил около 27 тонн и потреблял 150 кВт электроэнергии. К этому времени острая необходимость в расчётах артиллерийских таблиц отпала, и компьютер стали использовать и для других целей, например, для расчётов взрыва водородной бомбы, аэродинамики сверхзвуковых самолётов, прогноза погоды.

ЭНИАК без особых оговорок можно считать настоящим компьютером. Это была полностью электронная универсальная вычислительная машина, которая в полной мере продемонстрировала потенциал компьютеров. Кроме того ЭНИАК стал первым широко известным компьютером, информация о машинах Цузе и Атанасова всплыла позднее, а британские дешифровальные компьютеры были засекречены (и почти все уничтожены) по приказу Черчилля. Так что звание первого в мире компьютера ЭНИАК, вероятно, заслужил.

Всё же работать с ЭНИАКом было ещё не очень удобно. Программирование компьютера осуществлялось путём изменения положения кабелей и переключателей, и подготовка к расчётам часто занимала значительно больше времени, чем сами расчёты. Ещё до окончания работы американский математик Джон фон Нейман предложил использовать для будущих компьютеров архитектуру, предполагавшую хранения команд и данных в памяти. Эта архитектура стала основой при разработке последующих компьютеров.

Подведём итоги и ответим, наконец, кто изобрёл компьютер. К изобретению и созданию первых компьютеров так или иначе причастны:

  1. Чарльз Бэббидж — автор первого проекта (механического) компьютера;
  2. Алан Тьюринг — описал схему универсальной вычислительной машины, конструктор британского дешифровального электромеханического компьютера «Бомба»;
  3. Конрад Цузе — создатель первого электромеханического программируемого компьютера;
  4. Джон Атанасов — создатель первого электронного непрограммируемого компьютера;
  5. Томми Флауэрс — конструктор британского дешифровального электронного компьютера «Колосс»;
  6. Джон Мокли и Джон Экерт — конструкторы первого универсального электронного компьютера ЭНИАК;
  7. Джон фон Нейман — один из участников разработки первых американских компьютеров, предложил архитектуру, лежащую в основе устройства всех современных компьютеров.

Сегодня сложно представить, что еще каких-то сто с лишним лет назад человечество могло обходиться без телевидения. Такая техника стала привычным членом семьи, развлекая, обучая и информируя остальных домочадцев. В связи с этим интересно будет узнать, кто изобрел первый телевизор.

Очень важно отметить то, что перед появлением самого первого телевизора, было изобретено радио. Здесь мнения по поводу его «отцов-основателей» разнятся: отечественная точка зрения называет имя изобретателя радио №1 А.С. Попова, а за рубежом эту же проблему исследовали Маркони, Тесла, Бранли.

На вопрос, кто же именно изобрел телевизор, нельзя дать однозначный ответ. Далее можно назвать имя Пауля Нипкова. Именно он стал тем, кто придумал специальный прибор - диск, названный его именем. Изобретение произошло в 1884 году. Именно радиосигнал и механическая развертка стали причиной появления телевидения.

Немногие знают, что именно с помощью диска Нипкова получалось построчно считывать изображение и передавать далее на экран. Предприимчивый Джон Берд из Шотландии в конце двадцатых годов прошлого века и разработал первый телевизор, основывавшийся на этом принципе. Созданный проект он стал успешно реализовывать.

John Logie Baird

Лидерство механических телеприемников от одноименной корпорации Baird закрепилось за такими аппаратами вплоть до 30-х годов. Картинка была четкой, но без звука. Однако будущее было предопределено: оно принадлежало электронно-лучевой трубке.

Изобретение и использование ЭЛТ

Мировая тенденция технического превосходства заставляла лучшие умы работать на благо прогресса: работа над изобретением электронно-лучевой трубки (ЭЛТ) велась во многих странах. Опять же стоит выделить вклад российских ученых - в 1907 году патент на подобную разработку получает Борис Розинг. Но пришел он к этому, основываясь на предыдущих открытиях.

И здесь можно привести краткий экскурс в историю. Можно вспомнить, что еще немец Генрих Герц в 1887 году открыл влияние света на электричество: так появился фотоэффект. Тогда он не смог объяснить, в каком качестве и для чего нужен фотоэффект. Это за него сделал год спустя Александр Столетов, который попытался сконструировать прообраз современных фотоэлементов, когда был изобретен прибор «электрический глаз». После него многие ученые пытались объяснить природу этого явления. К их числу можно отнести и Альберта Эйнштейна.

Важны и иные открытия, повлиявшие на будущее возникновение телевидения. К примеру, в 1879 году англичанин-физик Уильям Крукс создает вещества (люминофоры), способные светиться под воздействием катодного луча. А Карлом Брауном даже была сделана попытка создать будущий кинескоп. Как раз благодаря этому брауновскому кинескопу и смог обосновать теорию получения таким образом изображения уже упомянутый нами Борис Розинг. А в 1933 году его ученик Владимир Зворыкин создал первый телевизор с иконоскопом - так он назвал электронную трубку.

Именно Зворыкина и считают «отцом» современного тв. Даже первый в мире телевизор создавался в его одноименной американской лаборатории (он был эмигрантом, покинувшим страну после Октябрьской революции). А в 1939 году появились первые модели для массового производства.

Это привело к тому, что в дальнейшие годы первые телевизоры активно завоевывало страны Европы - сначала в Великобритании, Германии и так далее. Сначала все изображение передавалось в оптико-механической развертке, но потом, с повышением качества изображения, состоялся переход на развертку луча в электронно-лучевой трубке .

Первые телевизоры в СССР появились уже в 1939 году — их стал выпускать ленинградский завод «Коминтерн». Принцип работы заключался в действии диска Нипкова, а потому такую приставку, имеющую экран 3 на 4 см, надо было подключать к радиоприемнику . Затем требовалось переключить радио на другие частоты - в результате можно было смотреть те передачи, которые транслировались в европейских странах.

Интересно было и то, что такие первые телевизоры могли изготовить все желающие. Специально для этого в журнале «Радиофронт» была размещена соответствующая инструкция.

Регулярная телетрансляция была начата в 1938 году Опытным Ленинградским центром. А в столице телепрограммы стали выходить в эфир примерно через полгода. Интересно, что в каждом из телецентров этих городов использовались разные стандарты разложения, что требовало использования определенных моделей техники.

  1. Для приема передач Ленинградского телерадиоцентра использовалось телеустройство «ВРК» (в расшифровке - Всесоюзный радиокомитет). Это был прибор с экраном 130×175 мм, работу кинескопа в котором обеспечивали 24 лампы. Принцип работы - разложение на 240 строчек . Интересно, что в тридцатых годах прошлого века было выпущено 20 экземпляров подобного устройства. Такая техника устанавливалась в домах пионеров и дворцах культуры с целью коллективного просмотра.
  2. Московский телецентр вел вещание с разложением на 343 строки - это воспринималось приборами «ТК-1». Здесь уже подразумевалось более сложное устройство с 33 лампами. Только за 1938 год их было выпущено 200 штук, а к началу Великой Отечественной войны — 2 тыс. экземпляров.

На этом изыскания инженерной мысли человека не останавливались - должны же были рано или поздно появиться и упрощенные модели. Например, на ленинградском заводе «Радист» в 1940 году был предложен серийный вариант «17ТН-1», который мог воспроизводить программы как телевидения Ленинграда, так и Москвы. Производство было запущено, но до начала военных действий успело выйти всего 2 тыс. штук.

Также можно привести пример упрощенной модели под названием «АТП-1» (Абонентский телевизионный приёмник №1) — он являлся прообразом современного кабельного абонентского телевидения. Его выпускал Александровский завод перед войной.

Когда телевидение стало цветным

Все вышеописанное рассказывает о передаче черно-белого изображения. Ученые же продолжали работать над тем, чтобы оно стало цветным.

Когда же появились цветные телевизоры? Впервые об этом начали задумываться еще во время механических телеприемников. Одни из первых разработок представляет Ованес Адамян, который еще в 1908 году получает патент на умеющий передавать сигналы двуцветный прибор . Нельзя не упомянуть Джона Лоуги Брэда, того самого изобретателя механического приемника. Именно им в 1928 году было собран цветной телевизор, который последовательно передавал три изображения при помощи синего, красного и зеленого светофильтра.

Но это были только попытки. Настоящий скачок в области развития цветного телевидения произошел уже после окончания Второй мировой войны. Раз все силы были брошены на гражданское производство, то это неминуемо привело к прогрессу в этой области. Так и случилось в США. Дополнительной подоплекой стало использование дециметровых волн для передачи изображения.

Это привело к тому, что уже в 1940 году американскими учеными была презентована система «Тринископ». Она была примечательна тем, что в ней были использованы три кинескопа с различными цветами от люминофорного свечения, каждый из которых воспроизводил свой цвет изображения.

Что касается отечественных просторов, то в СССР аналогичные технические разработки стали появляться только в 1951 году. Но уже год спустя и простые телезрители могли увидеть пробную цветную трансляцию.

В 70-е года телевизор стал привычным техническим прибором во многих домах мира. Советское пространство не стало исключением, единственное, что стоит отметить: цветные телеприемники оставались в нашей стране дефицитными практически до конца восьмидесятых годов прошлого столетия.

Прогресс не стоит на месте

Изобретатели пытались улучшить полученный результат - так в 1956 году появился пульт дистанционного управления. Кто создал подобное полезное устройство? Он был разработан Робертом Адлером в 1956 году. Принцип его работы заключался в передаче ультразвуковых сигналов , которые были промодулированы соответствующими командами. Самый первый пульт мог только управлять громкостью и переключать каналы, но и на тот момент это было довольно весомым заявлением.

Что касается инфракрасной версии пульта , то она появилась в 1974 году в результате разработок Grundig и Magnavox. Его рождение было продиктовано появлением телетекста, который требовал более точного управления, а, значит, тогда появились и кнопки. А уже в восьмидесятых годах пульт дополнительно используют как аналог геймпада, ведь тогда и телевизоры стали дополнительным монитором к первым бытовым компьютерам и игровым приставкам.

С появлением видеомагнитофонов появилась необходимость в дополнительном внедрении компонентного видеовхода (кроме уже имеющегося аналогового антенного).

С началом двадцать первого столетия эра кинескопов подошла к концу - начали появляться плазменные панели и жидкокристаллические телевизоры . А уже к 2010-м годам кинескопные модели были практически вытеснены с рынка плоскими устройствами в формате LCD и PDP. Многие из них могут подключаться к интернету и даже демонстрировать возможности просмотра 3D-контента.

Сегодняшний телеприемник мало похож на своего прародителя - он имеет функции домашнего медиацентра , сохраняя при этом функции просмотра эфирного и кабельного телевидения. И это уже не говоря о самом качестве изображения, передаваемого в стандарте высокой (а в топовых моделях и сверхвысокой) четкости.

Для нас, для людей, перешедших в эпоху, которая описывалась во многих научных книгах, которой грезили фантасты прошлого, в 21 век, интернет является совершенно привычной вещью. Для нас зайти в интернет и попасть на какой-то сайт теперь так же легко, как людям прошлого зажечь свечу или выйти на улицу. А ведь когда-то, совсем недавно (и мы даже помним это время), интернет был фантастическим изобретением, и мы даже не могли подумать, что будем им пользоваться, участвовать в нём, и даже творить его.

Теперь мы не задумываемся об этом, но ведь когда-то был человек, который придумал интернет, придумал и создал первый сайт в мире. И именно об этом человеке и его изобретениях мы вам расскажем.

Самый первый сайт в мире Тима Бернерса-Ли

Человек, которому мы обязаны современным интернетом – это английский учёный, выпускник Оксфорда и лауреат множества научных премий Тим Бернерс-Ли. Именно благодаря ему мы сейчас можем так легко попасть на любой сайт, получить абсолютно любую информацию из паутины и .

В 1990 году Бернерсом-Ли был опубликован первый сайт мире. Он и сейчас доступен по тому же адресу info.cern.ch. На этом сайте располагается информацию на английском языке, рассказывающая о новой на тот момент технологии передачи данных HTTP по World Wide Web, об адресах URL и разметке текста HTML. Всё это оказалось фундаментом современного интернета и актуально по сей день. В этом же году был создан первый в мире браузер, который так и назывался World Wide Web.

Вдохновение создать первый сайт в мире пришло к Бернерсу-Ли во время работы в Европейском центре ядерных исследований. Там он предложил своим коллегам хранить информацию с гиперссылками. Тим Бернерс-Ли грезил тем, чтобы каждый текст, когда-либо написанный человеком, был наполнен гиперссылками, ведущими на другой интересный и поясняющий материал.

Однако, ради справедливости, следует сказать, что Тима Бернерса-Ли посетила интернет-муза не на пустом месте. До него работали и другие учёные, которые высказывали свои идеи, гипотезы по поводу хранения информации. Так, Венневар Буш ещё в 40-х годах прошлого века придумал теорию о том, чтобы индексировать человеческую память для быстрого поиска в ней нужных данных. А Теодор Нельсон придумал, так называемый «ветвящийся текст», то есть текст со ссылками. Но всё это была теория, и она воплотилась в реальность только в 90-х.

Сегодня Тим Бернерс-Ли является главой Консорциума всемирной паутины.

Мало кто знает, что математические основы информатики и вычислительной техники появились еще в Российской империи. Кто придумал первый русский ЭВМ, что такое БЭСМ, кому выгодна машина вместо пролетариата и почему в стране нет ни одного значимого производителя компьютеров - T&P публикуют главу из книги Лорена Грэхэма «Сможет ли Россия конкурировать?» , выпущенной в издательстве «Манн, Иванов и Фербер».

Русские были пионерами и в области разработки вычислительных устройств, электронных вычислительных машин (ЭВМ), математических основ информатики. В последние годы существования Российской империи русские инженеры и ученые сделали важные шаги на пути развития вычислительных устройств. В советский период целая групп математиков, среди них Владимир Котельников, Андрей Колмогоров, Израиль Гельфанд и другие, внесли существенный вклад в развитие теории информации. Советские ученые и инженеры создали первую цифровую электронную вычислительную машину в континентальной Европе. Когда американские и советские инженеры начали сотрудничать в области освоения космоса, в некоторых случаях советские инженеры «считали» задачи гораздо быстрее своих американских коллег. Однако в последующие годы интерес к ЭВМ все больше переходил в коммерческую плоскость, и Советский Союз не выдержал конкуренции. Советские ученые, работавшие в области вычислительных технологий, были вынуждены оставить свои разработки и принять стандарты IBM. Сегодня на международном рынке не представлено ни одного значительного компьютерного производителя из России.

«Немногие на Западе знают, что двумя годами ранее русский логик Виктор Шестаков выдвинул похожую теорию релейно-контактных схем, основанную на булевой алгебре, но опубликовал он свою работу только в 1941 году»

Русские довольно рано начали проявлять научную активность в области разработки вычислительных машин, теории информации и компьютеров. Еще до революции 1917 года русские инженеры и ученые существенно продвинулись в этой области. Русский морской инженер и математик Алексей Крылов (1863–1945) интересовался применением математических методов в судостроении. В 1904 году он создал автоматическое устройство для решения дифференциальных уравнений. Другой молодой инженер, Михаил Бонч-Бруевич (1888–1940), также работавший в Санкт-Петербурге, занимался вакуумными лампами и их применением в радиотехнике. Около 1916 года он изобрел одно из первых двухпозиционных реле (так называемое катодное реле) на основе электрической цепи с двумя катодными трубками.

Одним из пионеров теории информации на Западе был Клод Шеннон. В 1937 году в Массачусетском технологическом институте он защитил магистерскую диссертацию, в которой продемонстрировал, что комплексы реле в совокупности с двоичной системой счисления могут применяться для решения проблем булевой алгебры. Результаты научных работ Шеннона составляют основу теории цифровых сетей для ЭВМ. Но немногие на Западе знают, что двумя годами ранее, в 1935-м, русский логик Виктор Шестаков выдвинул похожую теорию релейно-контактных схем, основанную на булевой алгебре, но опубликовал он свою работу только в 1941 году, через четыре года после Шеннона. Ни Шеннон, ни Шестаков ничего не знали о работах друг друга.

Первая электронная вычислительная машина в континентальной Европе была создана в обстановке секретности в 1948–1951 годах в местечке под названием Феофания возле Киева. До революции здесь был монастырь, окруженный дубравами и цветущими лугами, изобиловавшими ягодами, грибами, здесь водились дикие звери и птицы. В ранние годы советской власти в монастырских зданиях разместилась психиатрическая лечебница. Превращение религиозных учреждений в исследовательские или медицинские заведения было довольно частой практикой в советском государстве. Во время Второй мировой войны все пациенты лечебницы были убиты или пропали без вести, а здания разрушены. Весной и осенью дорогу к этому местечку развозило так, что по ней было невозможно проехать. Да и в хорошую погоду приходилось трястись по кочкам. В 1948 году полуразрушенные здания были переданы инженеру-электротехнику Сергею Лебедеву для создания электронной вычислительной машины. В Феофании Лебедев, 20 инженеров и 10 помощников разработали Малую электронно-счетную машину (МЭСМ) - одну из самых быстрых ЭВМ в мире, обладавшую многими интересными характеристиками. Ее архитектура была полностью оригинальна и не походила на архитектуру американских ЭВМ, которые единственные в мире превосходили ее на тот момент.

«Обычно он уносил свои бумаги и свечу в ванную комнату, где часами писал единицы и нули»

Алиса Григорьевна Лебедева о жизни своего супруга, основоположника вычислительной техники в СССР Сергея Лебедева, в Москве в 1941 году во время бомбежек немецкой авиации.

Сергей Лебедев родился в 1902 году в Нижнем Новгороде (позднее переименованном в Горький, не так давно ему было возвращено прежнее историческое имя). Его отец был школьным учителем, его часто переводили с места на место, так что детство и юность Сергея прошли в разных городах, в основном на Урале. Затем отца перевели в Москву, и там Сергей поступил в Московское высшее техническое училище имени Баумана, известное сегодня как Московский государственный технический университет имени Н.Э. Баумана. Там Лебедев заинтересовался техникой высоких напряжений - областью, требовавшей хорошей математической подготовки. По окончании учебы он работал преподавателем в Бауманском университете, занимался исследовательской работой в Лаборатории электрических сетей. Лебедев был заядлым альпинистом и позднее назвал один из своих компьютеров в честь высочайшей вершины Европы Эльбруса, которую он успешно покорил.

В конце 1930-х годов Лебедев заинтересовался двоичной системой счисления. Осенью 1941 года, когда Москва погружалась в полную темноту, спасаясь от налетов фашистской авиации, его супруга-музыкант вспоминала, что «обычно он уносил свои бумаги и свечу в ванную комнату, где часами рисовал единицы и нули». Позднее во время войны его перевели в Свердловск (ныне Екатеринбург), где он работал на военную промышленность. Лебедеву требовалась вычислительная машина, способная решать дифференциальные и интегральные уравнения, и в 1945 году он создал первую в России электронную аналоговую вычислительную машину. При этом у него уже была идея создания цифровой ЭВМ на основе двоичной системы счисления. Что интересно, насколько нам известно, в то время он не был знаком с научными разработками в этой области ни своего соотечественника Шестакова, ни американца Клода Шеннона.

Освоение первых персональных ЭВМ на кафедре «Электрические системы и сети» СПбГПУ

В 1946 году Лебедева перевели из Москвы в Киев, где он начал работу над ЭВМ. В 1949 году Михаил Лаврентьев, ведущий математик, член Академии наук УССР, который был знаком с работами Лебедева, написал Сталину письмо с просьбой поддержать работы в области вычислительной техники, подчеркнув при этом их важность для обороны страны. Сталин поручил Лаврентьеву создать лабораторию моделирования и вычислительной техники. Возглавить эту лабораторию Лаврентьев пригласил Лебедева. У Лебедева появились финансирование и статус. В то же время приказ Сталина демонстрировал роль политической власти - а фактически значимость одного человека - в продвижении технологий в Советском Союзе.

Лебедев разработал МЭСМ всего через три или четыре года после создания первого в мире электронного компьютера ENIAC в США и одновременно с британским EDSAC. К началу 1950-х годов МЭСМ использовалась для решения задач в области ядерной физики, комических полетов, ракетостроения, а также передачи электроэнергии.

В 1952 году вслед за созданием МЭСМ Лебедев разработал еще одну вычислительную машину - БЭСМ (сокращение от Большая (или Быстродействующая) электронно-счетная машина). Это была самая быстродействующая ЭВМ в Европе, по крайней мере в течение некоторого периода, способная составить конкуренцию лучшим мировым разработкам в этой области. Это был триумф. БЭСМ-1 была выпущена в единственном экземпляре, но уже следующие модели, особенно БЭСМ-6, производились сотнями и использовались для разных целей. Производство БЭСМ-6 было прекращено в 1987 году. В 1975-м в ходе совместного космического проекта «Союз - Аполлон» советские специалисты обработали параметры орбиты «Союза» на БЭСМ-6 быстрее американцев.

Но после столь многообещающего старта в области вычислительной техники Россия сегодня отстает от лидеров отрасли. Понять причину этого провала можно, только проанализировав историю развития отрасли, принимая во внимание социальные и экономические факторы, повлиявшие на ее трансформацию. В ведущих западных странах область вычислительной техники после Второй мировой войны формировалась под действием трех главных движущих сил: научного сообщества, государства (в части военного применения) и деловых кругов. Роль научного сообщества и правительства была особенно важна на начальном этапе, роль бизнеса проявилась позднее. Область вычислительной техники в Советском Союзе была успешна до тех пор, пока разработка этих устройств преимущественно зависела от достижений научной мысли и государственной поддержки. Поддержка вычислительных технологий со стороны государства была безграничной, если они использовались для нужд противовоздушной обороны или исследований в области ядерного оружия. Однако затем главной движущей силой на Западе стал бизнес. Символически этой переходной точкой является решение компании General Electric в 1955 году закупить вычислительные машины IBM 702 для автоматизации работ с платежными ведомостями и другими документами на своем заводе в Скенектади и решение Bank of America в 1959 году автоматизировать процессы (с использованием компьютера ERMA, созданного в Стэнфордском научно-исследовательском институте).

«Концепция кибернетики противоречит теории диалектического материализма Маркса, и охарактеризовал компьютерную науку как особенно вредоносную попытку западных капиталистов извлечь больше прибыли, заменив рабочих»

Эти решения ознаменовали начало масштабной компьютеризации банковской и деловой сферы. В 1960–1970-х годах электронные вычислительные машины стали коммерческими продуктом, это повлекло за собой снижение их стоимости, усовершенствования в части простоты использования, которых требовал рынок. Советский Союз со своей плановой экономикой, централизованным неконкурентным рынком не мог идти в ногу с происходящими технологическими усовершенствованиями. В результате в 1970-х годах СССР отступил от изначально впечатляющей попытки развиваться собственным независимым курсом в области вычислительной техники и принял стандарты компании IBM. С этого момента в области компьютерных технологий русские оказались и продолжают оставаться на позициях догоняющих и никогда больше не выбивались в лидеры. Сергей Лебедев умер в 1974 году. Другой ведущий ученый, разработчик первых советских ЭВМ Башир Рамеев, глубоко сожалел о решении перенять архитектуру IBM вплоть до своей смерти в 1994 году. Советскую отрасль вычислительной техники подвел не недостаток знаний в этой области, ее подкосила неодолимая сила рынка.

Еще одним фактором, хотя в данном конкретном случае и не определяющим, была идеология. В 1950-х годах советские идеологи относились к кибернетике очень скептически, называли ее «наукой мракобесов». В 1952 году один из философов-марксистов заклеймил эту область знаний как «псевдонауку», подвергнув сомнению утверждение, что компьютеры могут помочь объяснить человеческую мысль или социальную деятельность. Еще в одной статье, опубликованной через год и озаглавленной «Кому служит кибернетика?», анонимный автор, выступивший под псевдонимом «Материалист», заявил, что концепция кибернетики противоречит теории диалектического материализма Маркса, и охарактеризовал компьютерную науку как особенно вредоносную попытку западных капиталистов извлечь больше прибыли, заменив рабочих, которым надо платить жалованье, машинами.

Хотя подобные идеологические обвинения теоретически могли оказать негативное влияние на развитие вычислительной техники в СССР, разработка ЭВМ, учитывая заинтересованность в них военно-промышленного комплекса, продолжалась теми же темпами8. Как сказал мне в 1960 году один из советских ученых в этой области, «мы занимались кибернетикой, просто не называли ее кибернетикой». Более того, в конце 1950-х - начале 1960-х годов в Советском Союзе произошел поворот на 180 градусов в отношении кибернетики, ее начали превозносить как науку, служащую целям советского государства.

В 1961 году даже вышел сборник под названием «Кибернетику - на службу коммунизму». Во многих российских университетах открылись факультеты кибернетики. Более серьезная политическая угроза для развития вычислительной техники в СССР возникла с появлением персональных компьютеров. Советскому руководству нравились компьютеры, пока они были огромными блоками в центральных правительственных, военных и промышленных ведомствах, но с гораздо меньшим энтузиазмом оно отнеслось к тому, что компьютеры переместились в частные квартиры и обычные граждане получили возможность использовать их для бесконтрольного распространения информации. В попытке осуществить контроль над передачей информации государство уже давно запретило простым гражданам иметь в собственности принтеры и копировальные аппараты. Персональный компьютер с принтером был равнозначен маленькому печатному станку. Но что могли поделать с этим советские власти?

Самые острые дебаты среди членов советского руководства по поводу компьютеров происходили в середине и конце 1980-х годов. В 1986-м я обсуждал эту проблему с ведущим советским ученым в этой области Андреем Ершовым. Он был откровенен, согласившись, что стремление Коммунистической партии обладать контролем над информацией препятствует развитию компьютерной отрасли. Затем сказал следующее: «Наше руководство еще не определилось, на что похож компьютер: на печатный станок, печатную машинку или телефон, - и многое будет зависеть от этого решения. Если они решат, что компьютеры похожи на печатные станки, то захотят продолжить контролировать отрасль так же, как сейчас они контролируют все печатные станки. Гражданам запретят их покупать, они будут только в учреждениях. С другой стороны, если наше руководство решит, что компьютеры похожи на печатные машинки, их позволят иметь гражданам, власти не будут стремиться контролировать каждый аппарат, хотя могут попытаться взять под контроль распространение информации, которая производится с их помощью. И в конце концов, если руководство решит, что компьютеры похожи на телефоны, они появятся у большинства граждан, и те смогут делать с ними все, что захотят, но онлайновая передача данных будет время от времени проверяться.

«Сегодня в России нет ни одной компании - производителя вычислительной техники, которая являлась бы значительным игроком на международном рынке, несмотря на то что русские могут с полным правом утверждать, что были в числе пионеров в области»

Я убежден, что в итоге государству придется позволить, чтобы граждане владели персональными компьютерами и сами их контролировали. Более того, станет очевидно, что персональные компьютеры не похожи ни на какие предыдущие коммуникационные технологии: ни на печатные станки, ни на печатные машинки, ни на телефоны. Наоборот, они являются абсолютно новым видом технологий. Вскоре наступит время, когда любой человек в любой точке мира сможет практически беспрерывно общаться с любым другим человеком в любой точке мира. Это будет настоящей революцией - не только для Советского Союза, но и для вас тоже. Но здесь ее последствия будут самыми значительными».

Это высказывание наглядно подтверждает, какой сложной проблемой для советского государства были компьютеры. Однако этот вопрос быстро потерял свою актуальность. Через пять лет после этого нашего разговора с Ершовым Советский Союз распался, а вместе с этим прекратился и контроль над коммуникационными технологиями (однако это не коснулось контроля над средствами массовой информации, в частности над телевидением). В современной России компьютерная отрасль так и не наверстала отставание, которое она переживала в последние годы советского государства. Как мы видели, это отставание было вызвано в большей степени неспособностью конкурировать в условиях рынка, нежели политическим контролем, хотя последний и сыграл определенную роль. Сегодня в России нет ни одной компании - производителя вычислительной техники, которая являлась бы значительным игроком на международном рынке, несмотря на то что русские могут с полным правом утверждать, что были в числе пионеров в области развития вычислительных технологий.

Появились после Второй мировой войны, когда открытия математиков и других ученых позволили воплотить в жизнь новый способ считывания информации. И хотя сегодня эти машины кажутся диковинными артефактами, именно они стали прародителями современных, привычных обывателю ПК.

Манчестерский "Марк I" и EDSAC

Первым компьютером в современном понимании этого слова стало устройство "Марк I", созданное в 1949 году. Его уникальность заключалась в том, что он был полностью электронным, а в его оперативной памяти хранилась программа. Это достижение британских специалистов было большим рывком вперед в многовековой истории развития вычислительных машин. Манчестерский "Марк I" включал в себя трубки Уильямса и магнитные барабаны, которые и служили хранилищем для информации.

Сегодня, спустя много лет, история создания первого компьютера вызывает дискуссии. Спорным остается вопрос о том, какую именно машину можно назвать первым компьютером. Манчестерский "Марк I" остается самой популярной версией, хотя есть и другие претенденты. Один из них - EDSAC. Без этой машины история возникновения компьютера как изобретения была бы совершенно другой. Если "Марк" появился в Манчестере, то EDSAC создавался силами ученых из Кембриджского университета. Этот компьютер был введен в эксплуатацию в мае 1949 года. Тогда на нем была выполнена первая программа, которая возвела в квадрат числа от 0 до 99.

Z4

Манчестерский "Марк I" и EDSAC предназначались для конкретных программ. Следующим шагом в эволюции вычислительных машин стал Z4. Не в последнюю очередь устройство отличала драматичная история создания. Компьютер был создан немецким инженером Конрадом Цузе. Работа над проектом началась на завершающем Это обстоятельство сильно затормозило данную разработку. Лаборатория Цузе была уничтожена во время налета авиации противника. Вместе с ней было утеряно все оборудование и предварительные результаты длительной работы.

Тем не менее талантливый инженер не сдался. Изготовление было продолжено уже после наступления мира. В 1950 году проект наконец был завершен. Долгой и тернистой оказалась история его создания. Компьютер тут же заинтересовал Швейцарскую высшую техническую школу. Она выкупила машину. Z4 заинтересовал специалистов неспроста. Компьютер обладал универсальным программированием, то есть был первым многофункциональным устройством подобного типа.

В том же 1950 году история создания компьютеров в СССР ознаменовалась не менее важным событием. В Киевском институте электротехники была создана МЭСМ - малая электронная счетная машина. Над проектом трудилась группа советских ученых, которой руководил академик Сергей Лебедев.

Устройство этой машины включало в себя шесть тысяч электрических ламп. Большая мощность позволяла браться за задачи, которые прежде были невиданными для советской техники. За секунду приспособление могло выполнять около трех тысяч операций.

Коммерческие модели

На первом этапе развития компьютеров их разработкой занимались специалисты из университетов или других государственных структур. В 1951 году появилась модель LEO I, созданная благодаря вложениям британской частной компании Lyons and Company, владевшей ресторанами и магазинами. С появлением этого устройства история создания компьютеров достигла очередного важного рубежа. LEO I первым использовался для обработки коммерческих данных. Его конструкция была схожа с конструкцией идейного предшественника EDSAC.

Первым американским коммерческим компьютером стал UNIVAC I. Он появился в том же 1951 году. Всего было продано сорок шесть таких моделей, стоимость каждой из которых составляла миллион долларов. Одна из них использовалась при переписи населения в США. Устройство состояло более чем из пяти тысяч электровакуумных ламп. В качестве носителя информации использовались линии задержки из ртути. На одной из них могло храниться до тысячи слов. При разработке UNIVAC I было решено отказаться от перфокарт и перейти на металлизированную магнитную ленту. С ее помощью устройство могло подключаться к коммерческим системам хранения данных.

«Стрела»

Тем временем у советских электронных была своя история создания. Компьютер «Стрела», появившийся в 1953 году, стал первым подобным серийным устройством в СССР. Новинка выпускалась на базе Московского завода счетно-аналитических машин. За три года производства было изготовлено восемь образцов. Эти уникальные машины были установлены в Академии наук, МГУ и конструкторских бюро, расположенных в закрытых городах.

«Стрела» могла совершать 2-3 тысячи операций в секунду. Для отечественной техники это были рекордные цифры. Данные хранились на магнитной ленте, которая вмещала до 200 тысяч слов. Разработчики устройства были удостоены Главный конструктор Юрий Базилевский также стал Героем Социалистического Труда.

Второе поколение ЭВМ

Еще в 1947 году были изобретены транзисторы. В конце 50-х гг. они пришли на смену энергозатратным и хрупким лампам. С появлением транзисторов у вычислительных машина началась новая история создания. Компьютеры, получившие эти новые детали, позже были признаны моделями второго поколения. Главное новшество заключалось в том, что печатные платы и транзисторы позволили значительно уменьшить размеры компьютеров, отчего те стали гораздо практичнее и удобнее.

Если раньше ЭВМ занимали собой целые комнаты, то теперь они уменьшились до пропорций офисных столов. Такой к примеру, была модель IBM 650. Но даже транзисторы не разрешили еще одной важной проблемы. Компьютеры по-прежнему были крайне дорогими, из-за чего они производились только на заказ для университетов, крупных корпораций или правительств.

Дальнейшая эволюция компьютеров

В 1959 году были изобретены интегральные схемы. Они положили начало третьему поколению компьютеров. 1960-е гг. стали переломными для ЭВМ. Их производство и продажа увеличились в разы. Благодаря новым деталям устройства стали дешевле и доступнее, хотя они по-прежнему не были персональными. В основном эти ЭВМ покупались компаниями.

В 1971 году разработчики Intel выпустили на рынок первый в истории микропроцессор На его основе появились компьютеры четвертого поколения. Микропроцессы разрешали несколько важных проблем, до того скрывавшихся в устройстве любой ЭВМ. Одна такая деталь выполняла все логические и арифметические операции, которые были записаны с помощью машинного кода. До этого открытия данная функция лежала на множестве мелких элементов. Появление единственной универсальной детали стало предвестием разработки небольших домашних компьютеров.

Персональные компьютеры

В 1977 году компания Apple, основанная Стивом Джобсом, представила миру модель Apple II. Ее принципиальное отличие от любых других предыдущих компьютеров заключалось в том, что устройство молодой калифорнийской компании предназначалось для продажи обычным гражданам. Это был прорыв, который еще совсем недавно казался просто неслыханным. Так началась история создания персональных компьютеров поколения ЭВМ. Новинка пользовалась спросом вплоть до 90-х гг. За этот период было продано около семи миллионов устройств, что было абсолютным рекордом того времени.

Последующие модели Apple получили уникальный графический интерфейс, привычную современным пользователям клавиатуру и многие другие новшества. Все тот же чуть сделал популярной компьютерную мышь. В 1984 году он презентовал свою самую успешную модель Macintosh, положившую начало целой линейке, существующей и сегодня. Многие открытия инженеров и разработчиков Apple стали базой для сегодняшних персональных компьютеров, созданных в том числе и другими производителями.

Отечественные разработки

Из-за того что все революционные открытия, связанные с ЭВМ, происходили на Западе, история создания компьютеров в России и СССР оставалась в тени иностранных успехов. Связано это было еще и с тем, что разработка подобных машин контролировалась государством, в то время как в Европе и США инициатива постепенно перешла в руки частных компаний.

В 1964 году появились первые советские полупроводниковые ЭВМ «Снег» и «Весна». В 1970-е гг. в оборонной промышленности стали использоваться компьютеры «Эльбрус». Они применялись в системе противоракетной обороны и ядерных центрах.



Загрузка...