sonyps4.ru

Пример применения лингвистических переменных 1980 год. Нечеткие множества

Лингвистическая переменная отличается от числовой переменной тем, что ее значениями являются не числа, а слова или предложения в естественном или формальном языке. Поскольку слова в общем менее точны, чем числа, понятие лингвистической переменной дает возможность приближенно описывать явления, которые настолько сложны, что не поддаются описанию в общепринятых количественных терминах. В частности, нечеткое множество , которое представляет собой ограничение, связанное со значениями лингвистической переменной , можно рассматривать как совокупную характеристику различных подклассов элементов универсального множества . В этом смысле роль нечетких множеств аналогична той роли, которую играют слова и предложения в естественном языке. Например, прилагательное "КРАСИВЫЙ" отражает комплекс характеристик внешности индивидуума. Это прилагательное можно также рассматривать как название нечеткого множества , которое является ограничением, обусловленным нечеткой переменной "КРАСИВЫЙ". С этой точки зрения термины "ОЧЕНЬ КРАСИВЫЙ", "НЕКРАСИВЫЙ", "ЧЕРЕЗВЫЧАЙНО КРАСИВЫЙ", "ВПОЛНЕ КРАСИВЫЙ" и т.п. - названия нечетких множеств, образованных путем действия модификаторов "ОЧЕНЬ, НЕ, ЧЕРЕЗВЫЧАЙНО, ВПОЛНЕ" и т.п. на нечеткое множество "КРАСИВЫЙ". В сущности, эти нечеткие множества вместе с нечетким множеством "КРАСИВЫЙ" играют роль значений лингвистической переменной "ВНЕШНОСТЬ".

Важный аспект понятия лингвистической переменной состоит в том, что эта переменная более высокого порядка, чем нечеткая переменная , в том смысле, что значениями лингвистической переменной являются нечеткие переменные. Например, значениями лингвистической переменной "ВОЗРАСТ" могут быть: "МОЛОДОЙ, НЕМОЛОДОЙ, СТАРЫЙ, ОЧЕНЬ СТАРЫЙ, НЕ МОЛОДОЙ И НЕ СТАРЫЙ" и т.п. Каждое из этих значений является названием нечеткой переменной . Если - название нечеткой переменной, то ограничение, обусловленное этим названием, можно интерпретировать как смысл нечеткой переменной .

Другой важный аспект понятия лингвистической переменной состоит в том, что лингвистической переменной присущи два правила:

  1. Cинтаксическое, которое может быть задано в форме грамматики, порождающей название значений переменной;
  2. Cемантическое, которое определяет алгоритмическую процедуру для вычисления смысла каждого значения.

Определение . Лингвистическая переменная характеризуется набором свойств , в котором:

Название переменной;

Обозначает терм-множество переменной , т.е. множество названий лингвистических значений переменной , причем каждое из таких значений является нечеткой переменной со значениями из универсального множества с базовой переменной ;

Синтаксическое правило, порождающее названия значений переменной ;

Семантическое правило, которое ставит в соответствие каждой нечеткой переменной ее смысл , т.е. нечеткое подмножество универсального множества .

Конкретное название , порожденное синтаксическим правилом , называется термом. Терм , который состоит из одного слова или из нескольких слов, всегда фигурирующих вместе друг с другом, называется атомарным термом. Терм , который состоит из более чем одного атомарного терма, называется составным термом .

Пример . Рассмотрим лингвистическую переменную с именем "ТЕМПЕРАТУРА В КОМНАТЕ". Тогда оставшуюся четверку , можно определить так:

Нечеткие множества. Лингвистическая переменная. Нечеткая логика. Нечеткий вывод. Композиционное правило вывода.

(Конспект)

В основе понятия нечеткого множества (НИ) лежит представление о том, что обладающие общим свойством элементы некоторого множества могут иметь различные степени вырожденности этого свойства и, следовательно, различную степень принадлежности этому свойству.

Пусть U некоторое множество. Нечетким множеством Ã в U называется совокупность пар вида {(µ Ã (u), u)}, где u U, µ Ã .

Значение µ Ã называется степенью принадлежности объекта к нечеткому множеству U.

µ Ã : U 

µ Ã – называется функцией принадлежности.

Пример нечетких множеств – возраст людей (рис. 19.1).

По аналогии с традиционной теорией множеств в Теории НМ определяются следующие операции:

Объединение:

, где

Перечисление:

,

Дополнение:

Алгебраическое произведение:

, где

n-арным нечетким отношением определенным на множествах называется нечеткое подмножество декартовых произведений

Так как нечеткое отношение является множеством для него справедливы все операции определенные для нечетких множеств. В практических приложениях теории нечетких множеств важную роль играет операция композиции нечетких отношений.

Композиция нечетких отношений

Пусть заданы 2 двухместных нечетких отношения:

Композиция нечетких отношений определяется следующим выражением:

Степени принадлежности конкретных выражений

Лингвистическая переменная - - это пятерка Х – имя переменной (возраст), U – базовое множество (0…150), Т(х) – терм множества. Множества лингвистических значений(молодой, средних лет, пожилой, старый). Каждое лингвистическое значение является меткой нечеткого множества определенного на U. G – синтаксическое правило, порождающее лингвистическое значение переменной Х (очень молодой, очень старый). М – семантическое правило ставящее в соответствие каждому лингвистическому значению нечеткое подмножество базового множества, то есть функция принадлежности.

Нечетким высказыванием называется утверждение относительно которого в данный момент времени можно судить о степени его истинности или ложности. Истинность принимает значение в интервале . Нечеткое высказывание не допускающее разделения на более простые называется элементарным.

Нечеткое высказывание построенное на элементарных с использованием логических связок называется составным нечетким высказыванием. Логическим связкам соответствуют операции над истинностью нечетких высказываний. - степени истинности конкретных высказываний.

1)

2)

Таким образом алгебра нечетких множеств изоморфна алгебре нечетких высказываний.

4) операция импликации

Для операции импликации в нечеткой логике предложено несколько определений. Основные:

1)

2)

3)

5) Эквивалентность

n-местным нечетким предикатом, определенным на множествах U 1 , U 2 ,…,U n называется выражение содержащее предметные переменные данных множеств и превращающиеся в нечеткие высказывания при замене предметных переменных элементами множеств U 1 , U 2 ,…,U n .

Пусть U 1 , U 2 ,…,U n базовые множества лингвистических переменных, а в качестве символов предметных переменных выступают иена лингвистических переменных. Тогда примерами нечетких предикатов являются:

    «давление в цилиндре низкое» - одноместный предикат

    «температура в котле значительно выше температуры в теплообменнике» - двуместных предикат.

Если U k =1,5 следовательно «давление в котле низкое» = 0,7

При построении и реализации нечетких алгоритмов важную роль играет композиционное правило вывода.

Пусть - нечеткое отображение

Нечеткое подмножество универсума U, тогда порождает в V нечеткое подмножество

композиционное правило вывода является основой при построении логического вывода в нечеткой логике.

Пусть задано нечеткое высказывание  , где и – нечеткие множества. Пусть также того задано некоторое высказывание (близкое к А, но не тождественное ему).

В классической логике широко используется правило вывода Modus Ponens

Это правило обобщается на случай нечеткой логики следующим образом:

Пусть множество и определены на базовом множестве Х, а и на базовом множестве Y. Естественно считать, что высказывание если задает некоторое нечеткое отображение из множества Х в Y

Тогда в соответствии с композиционным правилом вывода имеем:

Отношение строится на основе определения операции импликации в нечеткой логики.

1)

Если температура в котле низкая (), то подогрев повышенный ()

Реальные нечеткие логические алгоритмы содержат не одно, а множество продукционных правил

Если S 1 , то R 1 , иначе

Если S n , то R n , иначе

Поэтому нечеткие отношения должны быть построены для каждого отдельного правила, а затем агрегированы путем наложения друг на друга

В качестве агрегирующей операции выбирается или min или max в зависимости от типа импликации.

Когда нечеткий вывод используется в контуре управления реальным объектом, на объект должно выдаваться четкое управляющее воздействие. Поэтому необходимо преобразовать нечеткое множество, формируемое на основе композиционного правила вывода, в четкое значение. Эта процедура называется процедурой дефаззификации. Чаще используется 2 способа дефаззификации:

1) Середина «плато»

2) Центр тяжести, определяется точка которая делит площадь нечеткого множества пополам.

Основополагающим математическим понятием является понятие переменной. В практических приложениях теории нечётких множеств обычно употребляют нечёткие и лингвистические переменные.

Нечёткие и лингвистические переменные используются при естественно-языковом описании различных объектов и явлений, при формализации процессов и принятии решений в трудноформализуемых ситуациях.

Особенностью человеческого мышления является способность анализировать и выбирать сведения, имеющие отношение к анализируемой проблеме, то есть способность оценивать разнородную информацию. Такая способность играет важную роль в описании сложных явлений и процессов.

Рассмотрим способность человека оценивать понятие «Температура». Во многих случаях при оценке значений температуры люди оперируют не числовой характеристикой, а нечётко выраженными понятиями, такими, как «низкая», «средняя», «нормальная», «высокая» и др. При этом, если речь идет об оценке температуры, например, в печах определенного типа, то человек-оператор легче ориентируется по качественной информации, такой, как «нормальная температура», чем по конкретному числовому значению.

При такой качественной оценке информации, отражающей характер явления или процесса, большую роль играет естественный язык, который позволяет выразить основные понятия.

Введем понятия нечёткой и лингвистической переменной, которые, как и обычная переменная, могут изменять свои значения.

Итак, нечёткая переменная характеризуется тройкой:

< ,Х ,С  >,

где – название нечёткой переменной;

Х – универсальное множество (конечное или бесконечное), то есть область определения нечёткой переменной;Х = {х };

С  = { х (х ) } – нечёткое подмножество множестваХ , представляющее собой нечёткое ограничение на значения переменнойх .

Пример 3.19. Пусть универсальное множествоХ = описывает область определения параметра – «Температура в реакторе». Этот параметр характеризует качество протекающего технологического процесса. Нечёткое множество, описывающее нечёткую переменную «Нормальная» (= «Нормальная»), человеком-оператором может быть представлено следующим образом:

С  = {(4800), (4810,3), (4820,4), (4830,5), (4841), (4851), (4861), (4870,5), (4880,4), (4890,3), (4900)}.

Очевидно, что при таком определении нечёткого множества С  для человека-оператора, управляющего температурой в реакторе, понятию «Нормальная температура» полностью соответствуют значения температуры от 484 до 486, в меньшей степени – значения температуры от 481 до 483 и от 487 до 489. Значения температуры в реакторе, которые меньше 481 и больше 489, понятием «Нормальная» охарактеризованы быть не могут, то есть не являются элементами носителя данного нечёткого множества.

Перейдем к рассмотрению лингвистической переменной, являющейся переменной более высокого порядка.

Лингвистической переменной называется переменная, значениями которой являются слова или предложения естественного или искусственного языка.

Лингвистическая переменная характеризуется набором:

< ,Т  ,Х ,G, М >,

где – название лингвистической переменной;

Т β – терм-множество переменной, т. е. множество её значений, представляющих собой наименования нечётких переменных, областью определения каждой из которых является множествоХ с базовой переменнойх ;

Х – универсальное множество;

G– синтаксическое правило, порождающее термы множестваТ β ();

М – семантическое правило, ставящее в соответствия каждой нечёткой переменной Т β нечёткое множествоС  , причёмС  обозначает нечёткое подмножество множестваХ .

В более упрощенном виде лингвистическая переменная описывается кортежем: < ,Т β ,Х >.

Пример 3.20 . Значениями лингвистической переменной «Качество» (β= «Качество») могут быть: «Низкое», «Среднее», «Невысокое», «Высокое», «Очень высокое» и т.п. Каждое из этих значений является названием нечёткой переменной. Именно поэтому лингвистическая переменная считается переменной более высокого порядка.

Обсудим все составляющие понятия «лингвистическая переменная».

Обратимся к примеру 3.20. Прилагательные «Низкое», «Среднее» и т.д., определяющие лингвистическую переменную «Качество», отражают некоторый комплекс характеристик качества. Каждое из этих значений представляет собой ограничение, обусловленное названием и способом задания соответствующего нечёткого множества. С этой точки зрения определения качества «Очень высокое», «Чрезвычайно высокое», «Не очень высокое» и т.д. – названия нечётких множеств, образованных путем действия модификаторов «очень», «чрезвычайно», «не очень» на нечёткое множество «Высокое».

Совокупность значений лингвистической переменной составляет терм-множество этой переменной. Этим множеством может быть, вообще говоря, бесконечное число элементов.

Пример 3.21. Рассмотрим способы описания терм-множества лингвистической переменной «Качество»:

Т β (Качество) = {«Очень низкое», «Низкое», «Не низкое», «Среднее», «Скорее высокое, чем среднее», «Высокое», «Очень высокое»};

Т β (Качество) = «Очень низкое»«Низкое»«Не низкое»…«Очень высокое».

Терм, название которого состоит из одного слова или нескольких слов, всегда фигурирующих вместе друг другом, называется атомарным термом . Термы, состоящие из более одного атомарных термов, называютсясоставными термами. Формирование составного терма путём приписывания друг к другу цепочек-компонент называетсяконкатенацией , а приписываемые компоненты являютсяподтермам и составного терма.

При необходимости явно указать на то, что терм был порожден грамматикой G(синтаксическим правиломG), будем писать:

Т β * =Т β G(Т β),

где Т β * – составной терм.

Что же касается семантического правила М, то оно может быть выполнено с использованием одной из типовых операций над нечёткими множествами, рассмотренных в главе 3.2. Наиболее часто используются следующие модификаторы и соответствующие им операции над нечёткими множествами:

    «не» – дополнение;

    «очень» – концентрация;

    «более или менее» – растяжение;

    «и» – пересечение;

    «или» – объединение.

Лингвистические переменные играют важную роль при построении нечётких моделей: с их помощью формализуется качественная информация об объекте принятия решения, представленная в словесной форме специалистами-экспертами. Принципиально важным является то, что любая лингвистическая переменная, как и все её значения, определяется конкретной количественной шкалой, называемой базовой шкалой . Отсюда вытекаетдругое определение лингвистической переменной:

Лингвистической переменной называется переменная, заданная на некоторой шкале (базовой шкале) и принимающая значения, являющиеся словами и словосочетаниями естественного языка. Значения лингвистической переменной описываются нечёткими переменными.

К названию лингвистической переменной и названиям её термов не предъявляется особых требований. С этими величинами, за которыми скрыт математический аппарат нечётких множеств, непосредственно работает эксперт, описывающий систему качественными или нечёткими понятиями. Однако к функциям, аппроксимирующим эти нечёткие понятия, а также к их взаимному расположению, предъявляются определённые требования.

Выделим ряд ограничений, которым должны удовлетворять термы лингвистических переменных. Пусть Т β – базовое терм-множество лингвистической переменной <,Т β ,Х >,Т β = {Т i },i = 1, 2, …,m . Каждому термуТ i Т β соответствует нечёткая переменная <Т i ,Х ,С i >.

    Прежде всего, базовое терм-множество Т β должно бытьупорядочено в соответствии с выражением:

(Т i Т β)(Т j Т β)(i j )(х S С i )(y S С j )(x y ), (3.36)

где S С i – носитель нечёткого множества:

S С i = {x X   Sc i (x )  0 },

то есть это множество строгого уровня = 0

Выражение (3.36) означает, что терм, который имеет носитель, расположенный левее, получает меньший номер.

    Ограничение, накладываемое на вид функций принадлежности , соответствующих базовым термам, выглядит так:

Т 1 (х min) = 1, Tn (x max) = 1, (3.37)

где n – количество термов в базовом терм-множестве,х min иx max – границы универсального множестваХ , на котором определена лингвистическая переменная.

В соответствии с выражением (3.37) функции принадлежности термов Т 1 иT n должны быть аммодальными.

    Следующее условие может быть определено как полнота и согласованность :

(Т i Т β)(0  sup  C i C (i +1) (x )  1). (3.38)

Это выражение означает, что должно соблюдаться естественное разграничение понятий, когда одна и та же точка универсального множества Х не может одновременно принадлежать (со степенью уверенности 1) двум и более термам. С другой стороны, каждое значение из области определения лингвистической переменной должно описываться хотя бы одним термом.

    Очередное условие – нормальность – определяется следующим выражением:

(Т i Т β)(х Х : C i (x ) = 1). (3.39)

Каждое понятие в лингвистической переменной должно иметь хотя бы один эталонный или типичный объект.

    Последнее условие – ограниченность :

(β)(х 1 R )(x 2 R )((x X )(x 1 x x 2)), (3.40)

где R – действительная ось.

Область определения Х должна быть ограничена конечным множеством точек, так как в любой задаче анализа и принятия решений существуют реальные ограничения на числовые значения параметров объектов.

На рис. 3.14 представлена лингвистическая переменная β с числом термов, равным 5, и проиллюстрировано невыполнение перечисленных условий и ограничений.

Рис. 3.14.Ограничения, накладываемые на базовые термы лингвистической переменной

Итак, при формировании базового терм-множества лингвистической переменной β были допущены следующие ошибки:

    На границах универсального множества Х значения функций принадлежности термов, обозначающих минимальное и максимальное значение лингвистической переменной β, должны быть единичными. На рис. 3.14 термТ 1 имеет неправильный вид (унимодальный), а термТ 6 – правильный (аммодальный).

    Запрещается существование в базовом терм-множестве T β пар термов типаТ 2 иТ 3 , так как отсутствует естественная ограниченность понятий, аппроксимируемых термами. Эти термы иллюстрируют невыполнение условия согласованности.

    Условие полноты нарушается парой термов Т 3 иТ 4 , так как участку Х не соответствует никакое понятие.

    В базовом терм-множестве запрещается наличие термов Т 5 , имеющихsup  C i (x )  1. Так как термы должны описываться нормированными функциями принадлежности, на рис. 3.14 нарушено условие нормальности.

Применение лингвистических переменных для описания сложноформализуемых систем на практике неизбежно ставит предварительную задачу формирования лингвистических переменных, то есть определения всех её компонент. Это, как правило, реализуется на основе опросов экспертов – высококвалифицированных специалистов в той области, для которой строится нечёткая модель с использованием лингвистической переменной. Особое внимание при этом уделяется формированию функций принадлежности нечётких множеств, являющихся термами базового терм-множества.

Процесс формирования лингвистической переменной включает в себя следующие этапы :

    Определение множества термов лингвистической переменной и его упорядочение.

    Построение числовой области определения лингвистической переменной.

    Выяснение схемы опроса экспертов и проведение опроса.

    Построение функций принадлежности для каждого терма лингвистической переменной.

На этапе 1 эксперт, формирующий лингвистическую переменную, задает количество термов множества Т β и названия соответствующих им нечётких переменных.

На этапе 2 описывается универсальное множество Х . Реализация этого этапа может сопровождаться рядом трудностей, вызванных типом лингвистической переменной. Так, например, вид универсального множества для лингвистической переменной «Температура в реакторе» очевиден – это будет некоторый интервал значений температуры, заданный на определенной температурной шкале, и значения температуры, определяющие границы интервала, также не вызовут у эксперта затруднений. Однако если требуется формализация понятия «Качество», которое определяется как «Высокое», «Среднее» или «Низкое», то возникает необходимость искусственно вводить числовое универсальное множествоХ R =(–; +), на котором будут определяться аппроксимируемые нечёткие понятия. Эта процедура позволит в дальнейшем использовать единые подходы для работы с лингвистическими переменными различных видов.

Этап 3 является ключевым при формировании лингвистической переменной. Выбранная на этом этапе схема проведения опроса эксперта (или экспертов) уже предполагает, что выбран и метод построения интересующих нас функций принадлежности.

Понятие нечеткой и лингвистической переменных использу-ется при описании объектов и явлений с помощью нечетких мно-жеств.

Нечеткая переменная характеризуется тройкой (α, X, А), где

α — наименование переменной;

X — универсальное множество (область определения α);

А — нечеткое множество на X, описывающее ограничения (т.е. μ A (x ) )на значения нечеткой переменной α.

Лингвистической переменной (ЛП) называется набор (β , Т, X , G, М), где

β — наименование лингвистической переменной;

Т — множество ее значений (терм-множество), представляю-щих собой наименования нечетких переменных, областью опре-деления каждой из которых является множество X. Множество Т называется базовым терм-множеством лингвистической пе-ременной;

G — синтаксическая процедура, позволяющая оперировать эле-ментами терм-множества T, в частности, генерировать новые тер-мы (значения). Множество T∪G(T), где G(T) — множество сгене-рированных термов, называется расширенным терм-множеством лингвистической переменной;

М — семантическая процедура, позволяющая превратить каж-дое новое значение лингвистической переменной, образуемое про-цедурой G, в нечеткую переменную, т.е. сформировать соответ-ствующее нечеткое множество.

Замечание. Чтобы избежать большого количества символов:

1) символ β используют как для названия самой переменной, так и для всех ее значений;

2) пользуются одним и тем же символом для обозначения не-четкого множества и его названия, например терм «Молодой», явля-ющийся значением лингвистической переменной β = «возраст», одновременно есть и нечеткое множество М («Молодой»).

Присвоение нескольких значений символам предполагает, что контекст позволяет разрешить возможные неопределенности.

Пример. Пусть эксперт определяет толщину выпускаемого изделия с помощью понятий «Малая толщина», «Средняя толщина» и «Большая толщина», при этом минимальная толщина равна 10 мм, а максималь-ная - 80 мм.

Формализация такого описания может быть проведена с помощью следующей лингвистической переменной (β , Т, X , G, М), где

β — толщина изделия;

Т — {«Малая толщина», «Средняя толщина», «Большая толщина»};

X — ;

G — процедура образования новых термов с помощью связок «и», «или» и модификаторов типа «очень», «не», «слегка» и т.п. Например: «Малая или средняя толщина», «Очень малая толщина» и т.д.;

М — процедура задания на X = нечетких подмножеств А 1 = «Малая толщина», А 2 = «Средняя толщина», A 3 = «Большая толщи-на», а также нечетких множеств для термов из G(Т) в соответствии с пра-вилами трансляции нечетких связок и модификаторов «и», «или», «не», «очень», «слегка» и других операций над нечеткими множествами вида: А В, A В, ̅ A , CONА = A 2 , DILА = А 0,5 и т. п.

Замечание. Наряду с рассмотренными выше базовыми значения-ми лингвистической переменной «Толщина» (Т = {«Малая толщина», «Средняя толщина», «Большая толщина»}) возможны значения, завися-щие от области определения X. В данном случае значения лингвистиче-ской переменной «Толщина изделия» могут быть определены как «около 20 мм», «около 50 мм», «около 70 мм», т.е. в виде нечетких чисел.

Терм-множество и расширенное терм-множество в условиях примера можно характеризовать функциями принадлежности, при-веденными на рис. 1.5 и 1.6.

Рис. 1.5. Функции принадлежности нечетких множеств: «Малая толщина» = А 1 , «Средняя толщина» = А 2 , «Большая толщина» = А 3

Рис. 1.6. Функция принадлежности нечеткого множества «Малая или средняя толщина» = A 1 ∪ А 2

Нечеткие числа

Нечеткие числа — нечеткие переменные, определенные на чи-словой оси, т.е. нечеткое число определяется как нечеткое множе-ство А на множестве действительных чисел ℝс функцией при-надлежности μ А (х ) ϵ , где х — действительное число, т.е. х ϵ ℝ.

Нечеткое число А нормально, если тах μ А (x ) = 1; выпуклое, если для любых х у z выполняется

μ А (х) μ А (у ) ˄ μ A (z ).

Множество α -уровня нечеткого числа А определяется как

Аα = {x /μ α (x ) ≥ α }.

Подмножество S A ⊂ ℝ называется носителем нечеткого числа А, если

S A = { x A (x ) > 0 }.

Нечеткое число А унимодально, если условие μ А (х ) = 1 спра-ведливо только для одной точки действительной оси.

Выпуклое нечеткое число А называется нечетким нулем, если

μ А (0) = sup (μ A (x )).

Нечеткое число А положительно, если ∀x ϵ S A , х > 0 и отрицательно, если ∀х ϵ S A , х < 0.

Операции над нечеткими числами

Расширенные би-нарные арифметические операции (сложение, умножение и пр.) для нечетких чисел определяются через соответствующие опера-ции для четких чисел с использованием принципа обобщения сле-дующим образом.

Пусть А и В - нечеткие числа, и - нечеткая операция, соот-ветствующая произвольной алгебраической операции * над обыч-ными числами. Тогда (используя здесь и в дальнейшем обозначе-ния вместо вместо ) можно записать

Нечеткие числа (L-R)-Tипа

Нечеткие числа (L-R)-типа — это разновидность нечетких чисел специального вида, т.е. задаваемых по определенным правилам с целью снижения объема вычислений при операциях над ними.

Функции принадлежности нечетких чисел (L-R)-типa задаются с помощью невозрастающих на множестве неотрицательных дей-ствительных чисел функций действительного переменного L(x ) и R(x ), удовлетворяющих свойствам:

а) L(-x ) = L(x ), R(-x ) = R(x );

б) L(0) = R(0).

Очевидно, что к классу (L-R)-функций относятся функции, графики которых имеют вид, приведенный на рис. 1.7.

Рис. 1.7. Возможный вид (L-R)-функций

Примерами аналитического задания (L-R)-функций могут быть

Пусть L(у )и R(у )— функции (L-R)-типа (конкретные). Уни-модальное нечеткое число А с модой а (т. е. μ А (а ) = 1) с помощью L(у )и R(у ) задается следующим образом:

где а — мода; α > 0, β > 0 — левый и правый коэффициенты нечеткости.

Таким образом, при заданных L(у )и R(у ) нечеткое число (уни-модальное) задается тройкой А = (а , α, β ).

Толерантное нечеткое число задается, соответственно, четвер-кой параметров А = (a 1 , а 2 , α, β ), где а 1 иа 2 — границы толе-рантности, т.е. в промежутке [a 1 , а 2 ] значение функции принад-лежности равно 1.

Примеры графиков функций принадлежности нечетких чисел (L-R)-типа приведены на рис. 1.8.

Рис. 1.8. Примеры графиков функций принадлежности нечетких чисел (L-R)-типа

Отметим, что в конкретных ситуациях функции L(у), R(у), а также параметры а, β нечетких чисел (а , α, β ) и (a 1 , а 2 , α, β ) должны подбираться таким образом, чтобы результат операции (сложения, вычитания, деления и т.д.) был точно или приблизи-тельно равен нечеткому числу с теми же L(у) и R(у), а параметры α" и β" результата не выходили за рамки ограничений на эти па-раметры для исходных нечетких чисел, особенно если результат в дальнейшем будет участвовать в операциях.

Замечание . Решение задач математического моделирова-ния сложных систем с применением аппарата нечетких множеств требует выполнения большого объема операций над разного рода лингвистическими и другими нечеткими переменными. Для удоб-ства исполнения операций, а также для ввода-вывода и хранения данных, желательно работать с функциями принадлежности стан-дартного вида.

Нечеткие множества, которыми приходится оперировать в боль-шинстве задач, являются, как правило, унимодальными и нор-мальными. Одним из возможных методов аппроксимации унимо-дальных нечетких множеств является аппроксимация с помощью функций (L-R)-типа.

Примеры (L-R)-представлений некоторых лингвистических пе-ременных приведены в табл. 1.2.

Таблица 1.2. Возможное (L - R )-представление некоторых лингвистических переменных

Лингвистические переменные (ЛП) являются способом описания сложных систем, параметры которых рассматриваются не с количественных позиций, а как качественные. При этом лингвистические переменные позволяют поставить в соответствие качественным характеристикам некоторую количественную интерпретацию с заданной долей уверенности, что обеспечивает возможность обработки качественных данных на ЭВМ. Другой сферой применения лингвистических переменных является нечеткий логический вывод, отличие которого от обычного заключается в том, что истинность логических высказываний определяется не двумя значениями 0 и 1, а множеством значений в интервале .

В основе понятия лингвистической переменной лежит понятие нечетной переменной.

Нечеткой переменной называется совокупность трех элементов:

< X , U , µ A (u ) >,

где Х – название нечеткой переменной; U – универсальное множество; µ A (u ) – нечеткое подмножество А универсального множества U . Другими словами, нечеткая переменная представляет собой именованное нечеткое множество.

Лингвистической переменной называется совокупность пяти элементов:

< L , T (X ), U , G , M >,

где L – название лингвистической переменной;

Т (X ) –множество базовых термов лингвистической переменной, состоящее из множества названий значений лингвистических переменных {T 1 , T 2 , …, T n }, каждому из которых соответствует нечеткая переменная Х универсального множества U;

U – универсальное множество, на котором определена лингвистическая переменная;

G – синтаксическое правило, порождающее названия X значений переменной;

М – семантическое правило, которое ставит в соответствие каждой нечеткой переменной X ее смысл М (X ), т.е. нечеткое подмножество универсального множества U .



К термам лингвистической переменной предъявляется требование упорядоченности: T 1 < T 2 < … < T n .

Функции принадлежности нечетких множеств, составляющих количественный смысл базовых термов лингвистической переменной, должны удовлетворять следующим условиям:

2. : ;

4. : .

Здесь n – количество базовых термов лингвистической переменной; u min , u max – границы универсального множества U , на котором определяется лингвистическая переменная. Если U R (R – множество действительных чисел, то U = [u min , u max ].

Синтаксическое правило G представляет собой совокупность четырех элементов: G = < V T , V N , T , P >,

где V T – совокупность терминальных символов или слов; V N – совокупность нетерминальных символов или фраз; Т – совокупность базовых термов; Р – совокупность правил подстановки, определяющих эквивалентность фраз.

Семантическое правило М ставит в соответствие каждой фразе новое не-

четкое множество, определенное на основе функций принадлежности базовых термов и совокупности операций с нечеткими множествами.

В качестве примера рассмотрим числовую лингвистическую переменную «рост человека». Пусть значения переменной задаются с помощью трех базовых термов: «низкий», «средний», «высокий». Термы упорядочены. Универсальным числовым множеством U в данном случае является интервал U = .

Функции принадлежности термов приведены на рис. 7.6 и удовлетворяют рассмотренным выше требованиям.

Рис. 7.6 Лингвистическая переменная «Рост человека»

В качестве синтаксического правила определим, что в множество нетерминальных символов включены слова «и», «или», «более или менее», «не», «очень», которые могут сочетаться с базовыми термами «низкий», «средний», «высокий», причем должны выполняться следующие правила:

Символы «и» и «или» могут соединять только две фразы или базовых терма, а остальные нетерминальные символы являются унарными, т.е. могут предварять фразу или базовый терм; например, «не высокий», «очень низкий», «низкий или средний»;

Одновременное отрицание двух базовых термов, например, «не низкий и не высокий», эквивалентно оставшемуся базовому терму, т.е. «средний».

Применяя эти правила, можно построить множество фраз и правил подстановки. В случае, если синтаксическое правило нельзя задать алгоритмически, то просто перечисляются все возможные фразы.

В качестве семантического правила определим соответствие между нетерминальными символами и операциями над нечеткими множествами:

«не» – дополнение;

«и» - пересечение;

«или» - объединение;

«очень» - концентрирование;

«более или менее» - расширение.

Используя рассмотренную лингвистическую переменную, можно оцени-

вать рост людей, не прибегая к точным измерениям.

Таким образом, с помощью лингвистических переменных можно описывать объекты, точное измерение характеристик которых либо крайне трудоемко, либо вообще невозможно.

Формирование лингвистической переменной, как правило, реализуется на основе опроса экспертов – специалистов в той области, для которой строится ЛП. При этом особое внимание уделяется формированию функций принадлежности нечетких множеств, являющихся базовыми термами лингвистической переменной, так как определение синтаксического и семантического правил для большинства лингвистических переменных стандартно и на практике сводится к перечислению всех возможных фраз и интерпретации нетерминальных символов, как показано выше.

Процесс формирования лингвистической переменной включает следующие этапы:

1. Определение множества термов ЛП и его упорядочение.

2. Построение числовой области определения ЛП.

3. Выяснение схемы опроса экспертов и проведение опроса.

4. Построение функций принадлежности для каждого терма ЛП.

Этап 1 предполагает задание экспертом количества термов ЛП и названий соответствующих им нечетких переменных. Количество термов выбирается из диапазона n = 7±2.

На этапе 2 описывается универсальное множество U , которое может быть числовым и нечисловым. Вид универсального множества зависит от описываемых объектов и определяет способ формирования функций принадлежности термов ЛП.

Этап 3 является ключевым при формировании ЛП. Существует два вида

опроса экспертов: прямой и косвенный. Каждый из этих способов может быть индивидуальным или групповым. Наиболее простым с точки зрения организации и

программной реализации является индивидуальный способ опроса экспертов.

При прямом опросе экспертов непосредственно указывают все параметры функций принадлежности. Недостатком здесь является проявление субъективизма в суждениях, а также необходимость знания экспертом основ нечеткой логики. При косвенном опросе функции принадлежности формируются на основе ответа эксперта на «наводящие» вопросы. При этом повышается объективность оценки и не требуется знания нечеткой логики, однако усиливается риск несогласованности суждений эксперта.

При групповых методах опроса результат формируется на основе объединения мнений нескольких экспертов. На практике наиболее часто используется индивидуальный косвенный опрос.

Лекция. Нечеткие вычисления

Понятие нечеткого числа

Одной из областей применение нечеткой логики является выполнение арифметических операций с нечеткими множествами. Для снижения трудоемкости таких операций используется специальный тип нечетких множеств – нечеткие числа.

Нечетким числом (НЧ) называется нечеткая переменная, имеющая следующие свойства: ; .

Другими словами, нечеткое число– именованное нечеткое множество, для которого универсальное множество U представляет собой интервал действительной оси R .

В реальных задачах используются кусочно-линейные нечеткие числа.Для упрощения арифметических операций кусочно-линейные функции принадлежности дополнительно аппроксимируют, чтобы получить специальный вид нечетких чисел – параметрические нечеткие числа или нечеткие числа

(L R )–типа, которые характеризуются компактностью представления и просто-

той реализации арифметических операций.

Нечеткое число А называется нечетким числом (L R )–типа , если его функция принадлежности имеет следующий вид (рис. 7.8):

0,

1, ,

где – параметры нечеткого числа; L (x ), R (x ) – некоторые функции.

Нечеткое параметрическое число обозначается (a , b , c , d ) LR .

Таким образом, нечеткое число (L R )–типа описывается шестью параметрами: четырьмя числами, обозначающими его границы, и двумя функциями, определяющими форму его функции принадлежности.



Рис.7.8 Параметрические нечеткие числа

Нечеткое числоназывается унимодальным , если оно имеет только одну точку, в которой функция принадлежности равна единице, т.е. его параметры b и c равны, в противном случае нечеткое число называется толерантным (см. рис. 7.8). Унимодальные нечеткие числа обозначаются пятью параметрами (a , b , d ) LR .

В качестве LR –функций наиболее часто используют линейные зависимости, задаваемые следующими соотношениями:

LR – функции также могут задаваться квадратичными, экспоненциальными и другими зависимостями.

В случае использования линейных функций унимодальные и толерантные нечеткие числа называют соответственно треугольными и трапециевидными и обозначают (a , b , d ) и (a , b , c , d ).

Для нечетких чисел особым образом определяется понятие знака и нулевого значения.

Нечеткое число А называется положительным , если его основание лежит в положительной действительной полуоси или

Нечеткое число А называется отрицательным , если его основание лежит в отрицательной действительной полуоси или

Для параметрических нечетких чисел знак определяется значениями параметров: положительное нечеткое число, если a > 0; отрицательное, если d < 0; нечеткий ноль, если .



Загрузка...