sonyps4.ru

Почему человеческий мозг ученые называют биологическим компьютером. Человеческий мозг: непознанный биологический компьютер

Что такое биологическая система?

Биологическая система - это живая структура, существующая в определенной для неё среде обитания, обладающая способностью обмена веществ и энергии, а также защитой обмена и копирования информации, которая определяет её функции и возможности совершенствования способов взаимодействия с окружающей средой для сохранения и передачи информации о себе.

Структура биологической системы "клетка":

1. Информационный блок - информационный код, записанный в виде молекул ДНК, РНК. По аналогии с компьютерной программой - является "воплощенным Словом" определяющим функции и параметры системы. Его авторство принадлежит Творцу, Источнику жизни, Создателю всего видимого и не видимого - Богу.
2. Энергетический блок - запрограммированные возможности получения, преобразования и расхода энергии (циркуляции энергии). Энергия - сила необходимая для поддержания жизнедеятельности структурных элементов системы и активации их функций. Или, энергия - это количественная мера взаимодействия всех видов материи и информации, вызывающее изменение их состояния или структуры.
3. МПТ блок (материя, плоть, тело) - внешнее проявление информационного кода. Его функции - защита, сохранение, обмен информации. Является матрицей хранения и копирования информации. К нему относятся: мембраны, ферменты, рецепторы мембран, транспортные каналы мембран, биологически активные вещества (БАВ).

Основные задачи биологической системы "клетка": сохранение, обмен, копирование информации заключенной в ней.

Для выполнения своих задач, в первую очередь копирования, система должна попасть и находиться в определенной среде обеспечивающей ей адекватное потребностям поступление веществ и энергии.
Для регуляции процессов обеспечивающих сохранение, обмен и копирования информации используется рецепторно-медиаторный принцип.

Рецепторно-медиаторный принцип

Рецептор - (от лат. recipere - получать) любая информационно-энергетическая материальная система или структура (ИЭМ система, структура) воспринимающая информацию и изменяющая свое состояние или структуру определенным образом в результате действия медиатора.

Медиатор - (посредник, передатчик) любая ИЭМ система или структура, предназначенная для передачи определенной информации для рецептора.

Мы знаем о разных уровнях организации ИЭМ систем и структур это - атом, молекула, сложная молекула, вещество, вирус, клетка, ткань, орган, организм, коллектив, народ, государство, планета земля, солнечная система, галактика, вселенная.
На разных уровнях организации ИЭМ систем или структур свои механизмы рецепторно-медиаторного взаимодействия. Это относится и к межуровневому взаимодействию.
Изучение этих механизмов, а также поиск медиаторов для рецепторов и описание ответов (изменения состояния или структуры) ИЭМ систем или структур относится к задачам ученых.

Виды взаимодействия рецептора и медиатора

1. Определенный медиатор действует на определенный рецептор биологической системы, что ведет к определенному ответу.

2. Определенный медиатор действует на рецепторы, определяющие разные ответы биологической системы.

3. Несколько медиаторов действует на определенный рецептор биологической системы, что ведет к определенному ответу.

4. Несколько медиаторов действует на определенный рецептор, что ведет к разным ответам биологической системы (взаимодействие характерное для сложных биологических систем).

Результатом взаимодействия медиатора и рецептора является изменение состояния или структуры системы.

Состояние физиологического покоя - это состояние, при котором биологическая система находится в своей среде обитания и выполняет свои задачи, не выходя за рамки среднестатистических данных ее функциональной активности.

Основные механизмы регуляции состояния биологической системы

1. Изменение количества медиатора или рецептора (увеличение, уменьшение)
2. Изменение качества медиатора или рецептора путем изменения их структуры (усиление, ослабление, разрушение) и как следствие изменение их связи и передачи информации.

В биологической системе любая ИЭМ структура может быть, как рецептором для одних ИЭМ структур, так и медиатором для других. Контроля над регуляцией определенного состояния системы можно добиться тогда, когда мы знаем способы воздействия, изменяющие количество и качество медиатора и рецептора, отвечающих за это состояние.

Возможности изменения состояния клетки

Единственная возможность изменить состояние и структуру биологической системы "Клетка" - это изменить медиаторное действие окружающей среды обитания.
Изменение окружающей среды, которое обеспечивает поступление веществ, энергии и информации (воды или жидкости, воздуха или газов, земли или органических и неорганических химических элементов, температуры, физических полей, излучений, давления) ведет к изменению состояния или структуры клетки.

Структуры клетки, изменяющиеся в результате изменений окружающей среды.

1. Молекулы ДНК, РНК (источник информации о клетке и копирования).
2. Мембраны клетки и органел (защита клетки и внутренней среды).
3. Ферменты (регуляторы скорости обмена веществ, энергии, информации в клетке).
4. Рецепторы мембран (воспринимают информацию для клетки).
5. Транспортные каналы мембран (ворота входа и выхода веществ, энергии и информации).
6. Биологически активные вещества (медиаторы - продукты клетки, предназначенные для передачи информации внешней и внутренней среде).

Изменение качества и количества любой из этих структур в нужном направлении происходит за счет определенного изменения поступления жидкости, газа, органических или неорганических химических элементов, изменения температуры, физических полей, излучений, давления.


- Как Вы бывший военный врач, организатор с большим стажем вышли на теоретическую проблему устройства живого?

Каждый из нас в мыслях не раз обращался к этой теме, часто сомневаясь в справедливости гипотез спонтанного появления живого и теории эволюции . Навсегда сохранилось чувство изумления от "ума" компьютера после знакомства с его устройством и работой. Бурю мыслей породило исследование генома человека и других организмов, не оправдавшиеся сенсации , прогнозы и парадоксы . Впечатления , слившись, подвигли вновь читать биологию, затем информатику, искать в доступном пространстве всё, что касалось генетики , геномики , генов . Вскоре понял , что клетка и компьютер работают на основе общих информационных правил .

Но это надо доказать!

Конечно. Вначале, используя сравнения и аналогии, убедился, что клетка имеет строение типичное для компьютеров. Мембрана, как корпус компьютера, защищает внутреннее содержимое клетки от внешних воздействий и служит местом для подключения устройств ввода - вывода, роль которых выполняют рецепторы. Функцию материнской платы несёт цитоплазма, удерживая органеллы клетки в нужном положении и связывая их между собой. А вот и "сердце" клетки - ядро, хромосомы, гены, нить ДНК у про-кариот, выполняющие главную функцию по обработке информации, хранению долговременной и оперативной памяти, как винчестер в техническом компьютере. Аналогично переносным носителям информации - жестким и гибким дискам, в клетке интенсивно работают подвижные носители - это РНК, белки, прионы. Отличительной особенностью любой информационной машины является наличие часов и источника энергии . В клетке количество делений и время отсчитывают теломеры, а митохондрии обеспечивают энергией в виде АТФ. Молекулярная электроника опередила биологические отрасли наук, подтвердив предсказанную ранее миниатюризацию компьютеров, возможность использования в силу своей структуры и свойств многих органических молекул, в том числе и ДНК, в качестве транзисторов , триггеров , логических элементов и создания на их основе информацион-ных машин . Лабораторные варианты органического компьютера существуют, программное обеспечение для них также обязательно.

Какие ещё факты свидетельствуют об информационной состав-ляющей клеток?

Мне представляется самым весомым аргументом геномный парадокс , проявления которого до сих пор традиционными способами не могут быть объяснены. Оказалось, что структура генов не всегда определяет их свойства. Не подтвердились положения "ген - признак ", "ген - функция ", "ген -заболевание ". Один и тот же ген на разных этапах развития организма может выполнять разные функции . В генной сети функция гена может отличаться от функции изученной в изолированном состоянии. Много генов, которые "молчат", их свойства не известны. Общие по структуре гены могут контролировать развитие разных вариантов клеток. Ген человека и дрозофилы вырабатывает один и тот же сигнал - белковый лиганд для клеток мезодермы, контролируя образование крыльев мухи и парных конечностей человека. Начальные этапы миогенеза осуществляются набором генов, общих у дрозофилы, низших и высших животных и млекопитающих, включая человека. Число и организация НОХ-генов на хромосомах одинаковы практически у всех млекопитающих. Один и тот же ген можеткодировать несколько белков, а одному и тому же варианту белка могут соответствовать несколько генов. ДНК - дупликации, какую роль они играют и почему так разнятся геномы шимпанзе и человека по этому признаку? В Вашем обзоре ("МГ", №77 - 5.10.2005, с.14) отмечено, что у человека и шимпанзе одни и те же гены имеют в разных органах разную активность. Это за счёт разных программ , которые определяют существенные различия между биологическими видами. Теперь о парадоксальном количестве генов и "лишней ДНК" у разных биологических видов . У нематоды, (размером около 1мм.), генов 19903, у рыбки фугу (около 10 см) - 33609, крысы примерно 25000 и человека - 30000; соответственно некодирующей ДНК ("лишней, эгоистичной, мусорной") в % - 25, 16, 75, 97. Чем выше организован организм , тем меньше генов в его геноме и больше не кодирующей части нуклеотидов, чем сложнее процессы , тем меньше требуется генов для обеспечения жизнедеятельности. И, конечно же, по геномам не наблюдается никакого эволюционного ряда в развитии организмов.

В "мусорной" части ДНК много одинаковых повторяющихся последовательностей нуклеотидов. Есть ли здесь информационный смысл?

Предположение, основанное на развитии информационных техно-логий , уместно. Сейчас показано, что если на одной интегральной схеме штампуются микропроцессоры , места для хранения информации и другие элементы конструкции компьютера , то его производительность при сокращении размеров значительно повышается. Не надо "ходить" далеко за информацией, тратить лишнюю энергию. Огромное информационное пространство ДНК требует, чтобы вокруг генов концентрировались свои процессоры для работы с информацией , места для её хранения ,оперативной и долговременной памяти , что обеспечивало бы и последовательную и параллельную работу по анализу поступающей информации и выработке ответных решений и команд . Этим достигается быстродействие и дублирование на случай "внештатной " ситуации . Возможно, что нуклеотидные повторы и ДНК - дупликации как-то специализированы по информационным функциям .

А каковы существенные отличия биологических компьютеров от технических?

- Высокая надёжность за счёт стабильности органических соедине-ний и наличия системы многоуровневой защиты от повреждения носителей и искажения собственной информации . ДНК самая стойкая к тлению молекула, а апоптоз самый эффективный механизм защиты . Огромнаяпроизводительность , исчисляемая триллионами операций в секунду. Органические молекулы способны мгновенно изменять своё состояние под воздействием лазера , видимых частей светового спектра, звука, радиоволн. Наверное, не случайно двадцать аминокислот, участвующих в построении белков, в живом "левые", при изменении положения аминогруппы в углеродной цепи, им может быть доступна функция двоичной системы исчисления. Часть молекул могут генерировать лазерные отстрелы, выполнять функции хроматофоров, светодиодов, преобразователей сигналов. Геномы светятся, издают звуки, генерируют радиоволны определённых диапазонов, что регистрируется приборами. Приведенные рассуждения позволили дать одноклеточному организму и клетке информационное определение . Это органические замкнутые информационные машины , работающие на основе сложного программного обеспечения , определяющего их структурно-функциональную организацию, видовую принадлежность , целевые механизмы гомеостаза, воспроизводства себе подобных , с автономным энергетическим обеспечением и счётчиком времени . Я избегаю терминаэлектронно-вычислительная машина , потому что в клетке при обработке информации поток электронов не используется, и это не вычислительная , а логическая машина .

Но термин "биокомпьютер" я встречал задолго до вашей публикации.

Да, но в очень вольных интерпретациях. Всё, что не укладывается в приведенное выше определение, биокомпьютерами не являются, в том числе вирусы . На заре компьютерной эпохи биокомпьютером называли высокоорганизованные организмы. Затем представители определённых профессий считали компьютером мозг , с развитием генетики и геномики - перешли на геном, даже говорили о ДНК-компьютерах . Сегодня специалисты , исследующие информационные свойства воды , называют её "биокомпьютером живого ". Вода, хотя и обязательная, но только составная часть биологическогокомпьютера . В клетках, где информационные процессы превалируют, в частности в нейронах, воды до 90%, в волосах и ногтях её всего 8-10%.

А как же организмы или мозг ?

А вот многоклеточные организмы состоят из биокомпьютеров , скомпонованных и объединённых по принципам информационной сети .

Но как объединяются биологические компьютеры , составляющие организм ?

На помощь вновь приходит порождение информационной эпохи - созданная человеком глобальная информационная сеть Интернет . Главным условием для функционирования сети является совместимость всех компьютеров по техническим параметрам и программному обеспечению . В каждом организме клетки идентичны по структуре и имеют абсолютно одинаковое программное обеспечение . Исключение составляют эритроциты , они не имеют ядра и лишены информационных функций . В сети также необходим механизм для поддержания порядка и организованности, который обеспечивается серией технологий и протоколов Интернет . Назовём только часть из них.Transmission Control Protocol (ТСР) - вы не войдёте в сеть , не зарегистрировавшись у провайдера .Протоколы единой информационной паутины - в живом подобных протоколов и программ должно быть значительно больше, учитывая сложность , многофункциональность процессов и количествосоставляющих сеть биологических компьютеров . Человек это 14 трлн биокомпьютеров , в полтора раза больше, чем звёзд в двух галактиках вместе взятых - Млечном пути и Туманности Андромеды . Главная особенность Internet - это серверы на различных участках в сети . Это те же компьютеры , только предназначенные для обслуживания других компьютеров . Они, имея свои программы , напоминают нейроны с их удивительными функциональными возможностями. Их у человека 20 млрд.Чем выше организован организм, тем выше функциональные возможности нейронов. К примеру, у нематоды каждый нейрон приходится на 5 соматических клеток, у человека на 5000. Модем с соответствующей программой позволяют войти в сеть , осуществлять удалённое соединение ,загрузку файлов из компьютера в сеть и обратно - из сети в компьютер , обеспечиватьрегистрацию , смену протокола и другие функции. Бесспорно, это аналог синапсов, которые обеспечивают контакты между клетками. Информационная система человека на сегодня - вершина технологии . Интернет в сравнении с ней находится в зародышевом состоянии, его возраст около 40 лет. Основное отличие это огромная разница по количеству и мощности составляющихкомпьютеров , по сложности , многослойности и разнообразию программ . Считается, что для развития информационных сетей существует лишь два ограничения : быстродействие компьютеров и пропускная способность , связывающих их каналов. Так что перспективы развития у Интернета огромные. Но сегодня ни один из компьютеров , ни информационная система , созданные человеком, не в состоянии повторить работу биологического компьютера и самого простого многоклеточного организма.

Каковы же главные выводы из Ваших рассуждений?

Нельзя познать живое без изучения его информационной составляющёй, как и бесперспективно, искать живое и жизнедеятельность вне клетки. Информационная составляющая живого неизменна , геномы организмов стабильны и имеют многовариантную защиту . Изменчивость геномов ипрограмм угрожала бы гибелью не только особям , но и биологическим видам . Эволюции , как её трактует классическая биология , не могло быть, мутации не наследуются , а "лечатся "информационной системой живого . Все организмы не приспосабливаются, а противостоят факторам среды и способны к научению на основе собственного опыта. И организмы, и их репродуктивные способности программировались, создавались, возникали одновременно. Это один из многочисленных прогностических целевых цикличных процессов, присущих живому. Извечной проблемы "курицы " и "яйца " просто не существует. Темпы развития информационных технологий , особенно молекулярной электроники, удивляют - за 60 лет от вычислительных залов до молекулярного компьютера . Удивляют учёных короткие по эволюционным меркам промежутки времени, за которые усложнялись биологические виды, необъяснимые мутациями . Создаваяинформационные устройства , человечество , возможно, повторяет уже кем-то пройденный путь .Информационная составляющая как основа каждого живого организма существует! Однако сегодня нет отрасли знаний, методология, цели и методы исследований которой могли бы найти ключ к информационной части и информационным процессам в живом. Пора лечить очень распространённый хронический недуг цивилизации - "флюс " односторонности узких специалистов! Нужна информационная биология, как новая интеграционная наука, которая вобрала бы в себя современные информационные , технические , биологические , медицинские знания , достижения физики , химии и поставила бы задачу познать информационную суть живого . Здесь кроется самая тайная из тайн и самая загадочная из загадок устройства нашего мира!

Создавая информационные устройства , ч еловечество , возможно, повторяет уже кем-то пройденный путь ........

Мозг любого человека является чем-то особенным, невероятно сложным чудом природы, созданным благодаря миллионам лет эволюции. Сегодня наш мозг часто называют настоящим компьютером. И это выражение используется отнюдь не зря.

И сегодня мы постараемся разобраться в том, почему человеческий мозг ученые называют биологическим компьютером, и какие интересные факты о нем существуют.

Почему мозг – биологический компьютер

Ученые называют мозг биологическим компьютером по вполне очевидным причинам. Мозг, как и главный процессор любой компьютерной системы, отвечает за работу всех элементов и узлов системы. Как в случае с оперативной памятью, винчестером, видеокартой и другими элементами ПК, мозг человека управляет зрением, дыханием, памятью и любым другим процессом, происходящим в организме человека. Он обрабатывает полученные данные, принимает решения и выполняет всю интеллектуальную работу.

Что же касается характеристики «биологический», то её наличие также является вполне очевидным, ведь, в отличие от обычной компьютерной техники, человеческий мозг имеет биологическое происхождение. Так и получается, что мозг – это самый настоящий биологический компьютер.

Как и у большинства современных компьютеров, у мозга человека присутствует огромное количество функций и возможностей. И некоторые наиболее интересные факты о них мы предлагаем ниже:

  • Даже в ночное время, когда наш организм отдыхает, мозг не засыпает, а наоборот – находится в более активном состоянии, чем днем;
  • Точный объем места или памяти, которая может храниться в человеческом мозге, на данный момент неизвестен ученым. Однако они предполагают, что этот «биологический жесткий диск» способен вместить в себе до 1000 терабайт информации;
  • Средняя масса мозга – полтора килограмма, и его объем увеличивается, как и в случае с мышцами, от тренировок. Правда, в данном случае тренировки подразумевают получение новых знаний, улучшение памяти и т.д.;
  • Несмотря на то, что именно мозг реагирует на любые поражения тела, отправляя в соответствующие участки тела болевые сигналы, сам он не чувствует боли. Когда мы чувствуем головную боль, это лишь болевые ощущения в тканях и нервах черепной коробки.

Теперь вы знаете, почему мозг называется биологическим компьютером, а значит – произвели небольшую тренировку своего мозга. Не останавливайтесь на этом, и систематически узнавайте что-нибудь новое.

Орган, координирующий и регулирующий все жизненные функции организма и контролирующий поведение. Все наши мысли, чувства, ощущения, желания и движения связаны с работой мозга, и если он не функционирует, человек переходит в вегетативное состояние: утрачивается способность к каким-либо действиям, ощущениям или реакциям на внешние воздействия.

Компьютерная модель мозга

В Университете Манчестера приступили к постройке первого компьютера нового типа, конструкция которого имитирует устройство человеческого мозга, передает BBC . Стоимость модели составит 1 миллион фунтов .

Компьютер, построенный по биологическим принципам, считает профессор Стив Фёрбер (Steve Furber), должен демонстрировать значительную устойчивость в работе. «Наш мозг продолжает функционировать, несмотря на постоянные отказы нейронов , из которых состоит нервная ткань, говорит Фёрбер. – Это свойство представляет громадный интерес для конструкторов, которые заинтересованы в том, чтобы сделать компьютеры более надежными».

Мозговые интерфейсы

Для того, чтобы при помощи одной только ментальной энергии поднять стакан на несколько футов , волшебникам приходилось тренироваться по несколько часов в день.
Иначе принцип рычага легко мог выдавить мозг через уши.

Терри Пратчетт, «Цвет Волшебства»

Очевидно, венцом человеко-машинного интерфейса должна стать возможность управления машиной одним только усилием мысли. А получение данных прямо в мозг - это уже вершина того, чего может достичь виртуальная реальность . Идея эта не нова и уже много лет фигурирует в самой разнообразной фантастической литературе. Тут и практически все киберпанки с прямым подключением к кибердекам и биософтами. И управление любой техникой посредством стандартного мозгового разъема (например, у Сэмюэля Дэлани в романе «Нова»), и масса всяких других интересных вещей. Но фантастика - это хорошо, а что делается в реальном мире?

Оказывается, разработка мозговых интерфейсов (BCI или BMI - brain-computer interface и brain-machine interface) идет полным ходом, хотя об этом мало кто знает. Конечно, успехи весьма далеки от того, про что пишут в фантастических романах, но, тем не менее, они вполне заметны. Сейчас работы над мозговыми и нервными интерфейсами, в основном, ведутся в рамках создания различных протезов и устройств для облегчения жизни частично или полностью парализованным людям. Все проекты можно условно поделить на интерфейсы для ввода (восстановление или замена поврежденных органов чувств) и вывода (управление протезами и другими устройствами).

Во всех случаях прямого ввода данных необходимо производить операцию по вживлению в мозг или нервы электродов. В случае вывода можно обойтись внешними датчиками для съема электроэнцефалограммы (ЭЭГ). Впрочем, ЭЭГ - инструмент достаточно ненадежный, поскольку череп сильно ослабляет мозговые токи и получить можно только очень сильно обобщенную информацию. В случае вживления электродов можно снимать данные непосредственно с нужных мозговых центров (например, двигательных). Но такая операция - дело нешуточное, так что пока эксперименты ведутся только на животных.

На самом деле, человечество уже давно обладает таким «единым» компьютером. По мнению одного из основателей журнала Wired Кевина Келли, миллионы подключенных к Интернету ПК, мобильные телефоны, КПК и другие цифровые устройства,можно рассматривать, как компоненты Единого компьютера. Ее центральный процессор - это все процессоры всех подключенных устройств, ее жесткий диск - жесткие диски и флэш-накопители всего мира, а оперативная память - суммарная память всех компьютеров. Ежесекундно этот компьютер обрабатывает объем данных, равный всей информации, содержащейся в библиотеке Конгресса, а ее операционной системой является Всемирная паутина.

Вместо синапсов нервных клеток она использует функционально похожие гиперссылки. И те и другие отвечают за создание ассоциаций между узловыми точками. Каждая единица измерения мыслительного процесса, например идея, растет по мере того, как возникают все новые и новые связи с другими мыслями. Также и в сети: большее количество ссылок на определенный ресурс (узловую точку) означают большую значимость ее для Компьютера в целом. Более того, количество гиперссылок во Всемирной сети вплотную приближается к количеству синапсов в человеческом мозге. По оценкам Келли, к 2040 году общепланетарный компьютер будет располагать вычислительной мощностью, соизмеримой с коллективной мощностью мозгов всех 7 млрд. человек, которые к тому моменту будут населять Землю.

А что же, собственно человеческий мозг? Давно устаревший биологический механизм. Наше серое вещество работает со скоростью самого первого процессора Pentium, образца 1993 года. Иными словами, наш мозг работает на частоте 70 мГц. Кроме того, наши мозги действуют по аналоговому принципу, так что о сравнении с цифровым методом обработки данных и речи быть не может. Вот в этом и заключается основное отличие синапсов от гиперссылок: синапсы, реагируя на окружающую их среду и поступающую информацию, искусно изменяют организм, который никогда не имеет двух одинаковых состояний. Гиперссылка, же, напротив, всегда одинакова, в противном случае начинаются проблемы.

Тем не менее, нельзя не признавать, что наш мозг значительно превосходить по эффективности любую искусственную систему, созданную людьми. Совершенно таинственным образом все гигантские вычислительные способности мозга помещаются в нашей черепной коробке, весит чуть больше килограмма и при этом для его функционирования необходимо всего 20 Вт энергии. Сравните эти показатели с теми 377 млрд. Вт, которые сейчас, по примерным вычислениям, потребляет Единый Компьютер. Это, между прочим, целых 5% общемирового производства электроэнергии.

Один лишь факт такого чудовищного энергопотребления, никогда не позволит Единому компьютеру даже близко сравниться с человеческим мозгом по эффективности. Даже в 2040 году, когда вычислительные мощности компьютеров станут заоблачными, их энергопотребление будет неизменно возрастать.

Протезы, которые управляются силой мысли, прямая связь с компьютерами без помощи мышц, а в перспективе - искусственное тело для парализованного человека и тренировка когнитивных функций - мышления, памяти и внимания. Все это уже вне области научной фантастики. Время нейронаук уже настало, утверждает кандидат биологических наук, начальник отдела нейрокогнитивных технологий НИЦ «Курчатовский институт» Сергей Шишкин. Он рассказал о последних результатах исследований мозга в Образовательном центре «Сириус». «Лента.ру» приводит основные тезисы его выступления.

Первые шаги по terra incognita

Результаты физических исследований лежат в основе всего, что нас окружает. На что бы мы ни посмотрели - здания, одежда, компьютеры, смартфоны, - все это так или иначе связано с технологиями, основанными на законах физики. А вот вклад в нашу жизнь науки о мозге несопоставимо меньше.

Почему? До недавнего времени нейронауки развивались очень медленно. В середине XIX века только-только начали понимать, что мозг состоит из нервных клеток - нейронов, но тогда их было чрезвычайно сложно увидеть и выделить. Современные исследователи нашли способы более глубокого изучения нейронов и наблюдения за их работой - например, в них вводят флуоресцентные красители, которые светятся при активации клетки.

Новые методы позволяют без хирургического вмешательства наблюдать за работой мозга человека с помощью технологии ядерно-магнитного резонанса. Мы начинаем лучше разбираться в устройстве мозга и создавать на основе этих знаний новые технологии. Одна из наиболее впечатляющих - интерфейс «мозг - компьютер».

Интерфейс «мозг - компьютер»

Эта технология позволяет управлять компьютером силой мысли, точнее это называется «технологией для передачи команд из головного мозга в компьютер без помощи мышц и периферических нервов» (именно такое определение принято в научной литературе). Основное назначение интерфейсов «мозг - компьютер» - помощь инвалидам, прежде всего тем людям, у которых не работают мышцы или система управления ими. Это может быть вызвано разными причинами - например, автомобильной аварией, когда перебивается спинной мозг человека.

Нужен ли здоровому человеку дополнительный канал связи с компьютером? Некоторые ученые полагают, что такой интерфейс может сильно ускорить работу с вычислительной техникой, потому что человека не будут «тормозить» руки: - он станет напрямую посылать информацию в компьютер. Есть и более реалистичное предположение: с помощью этих интерфейсов можно тренировать когнитивные функции мозга - мышление, память, внимание… Как тут не вспомнить фильм «Газонокосильщик», где главный герой с помощью виртуальной реальности так «прокачал» свой мозг, что фактически стал сверхчеловеком.

В основе этих желаний лежит мечта о расширении возможностей мозга. Это вполне объяснимо: мы почти всегда недовольны теми возможностями, которые у нас есть. Мечта о расширении возможностей мозга подсказывает ученым кажущееся фантастическим, но все более реальное направление работы: постараться как можно теснее связать мозг и компьютер. Ведь у компьютерных программ есть большой недостаток - в них почти все построено на жестких правилах, а у человека работает интуиция, хотя он и не может почти мгновенно просчитывать варианты. Так что такое объединение сильных сторон мозга и компьютера было бы весьма полезным.

Практические задачи

Но в первую очередь перед нейронауками стоят вполне практические задачи. Например, помочь людям с болезнью под названием боковой амиотрофический склероз. Пациентов с таким диагнозом немного, но это очень тяжелое заболевание. Больной может совершенно нормально думать и воспринимать информацию из окружающего мира, но не способен двигаться и даже что-то сказать. К сожалению, пока это заболевание остается неизлечимым, и больные до конца жизни не могут общаться с окружающими.

Первые попытки создать интерфейс «мозг - компьютер» были сделаны еще в 1960-е годы, однако серьезный интерес к этой технологии возник лишь после того, как в конце 1990-х немецкий ученый Нильс Бирбаумер с коллегами разработали так называемое «устройство для передачи мыслей» и стали обучать пользоваться им парализованных больных.

Некоторые пациенты благодаря этому устройству смогли общаться с родственниками и исследователями. Один из них написал с помощью «устройства для передачи мыслей» большое письмо, в котором рассказал, как он печатает буквы. Этот текст, который больной писал в течение шести месяцев, был опубликован в одном из научных журналов.

Работу с системой Бирбаумера нельзя назвать простой. Пациент должен выбрать сначала одну из половин алфавита, показываемого на экране, меняя идущие из мозга электрические потенциалы либо в позитивную, либо в негативную сторону. Таким образом он как бы мысленно говорит «да» или «нет». Электрический потенциал регистрируется прямо на поверхности кожи головы, подается в компьютер, и тот определяет, какую из половин алфавита надо выбрать. Дальше человек идет глубже по алфавиту и выбирает конкретную букву. Это неудобно и долго, зато метод не требует вживления электродов в мозг.

Инвазивные методы, когда электроды вводятся непосредственно в мозг, более успешны. Толчок к развитию этого направления дала война в Ираке. Многие военные тогда стали инвалидами, и американские ученые попытались придумать, как с помощью интерфейса «мозг - компьютер» такие люди смогли бы управлять механическими протезами. Первые эксперименты проводились на обезьянах, а потом электроды вживляли парализованным людям. В результате человек смог активно включиться в процесс освоения методики управления протезом.

В 2012 году команде Эндрю Шварца из Питтсбурга удалось обучить парализованную женщину настолько точно управлять механической рукой, что она смогла брать ею различные предметы и даже пожать руку ведущему популярной телевизионной программы. Правда, не все движения выполнялись безупречно, но, безусловно, система совершенствуется.

Как удалось это сделать? Был разработан подход, который позволяет на лету определять желаемое направление движения с помощью закодированных в нейронах сигналов. Для этого приходится имплантировать в моторную кору мозга маленькие электроды - они отводят от нейронов сигналы, которые передаются в компьютер.

Сразу же возникает вопрос: если человек двигает механической рукой, можно ли сделать механического двойника - аватара, который будет воспроизводить все движения человека? Такое механическое тело будет управляться через интерфейс «мозг-компьютер». Фантазий на этот счет немало, иногда ученые даже выдают какие-то реальные планы. Пока серьезные специалисты относятся к этому как к фантастике, но в отдаленном будущем такое возможно.

Управление взглядом

В лаборатории когнитивных технологий «Курчатовский институт» сейчас работают не только над интерфейсами «мозг - компьютер», но и «глаз - мозг - компьютер». Строго говоря, это не совсем интерфейс «мозг - компьютер», потому что в его работе используются глазные мышцы. Управление с помощью регистрации направления взгляда тоже очень важно, поскольку есть инвалиды с нарушениями двигательной функции, глазные мышцы которых продолжают действовать. Есть уже готовые системы, с помощью которых человек может набирать текст взглядом.

Тем не менее за пределами задачи набора текста возникают проблемы. Например, сложно научить интерфейс не отдавать команды тогда, когда человек смотрит на кнопку управления только потому, что он задумался и остановил на ней взгляд.

Чтобы решить эту проблему, в Курчатовском институте решили создать комбинированную технологию. Участники экспериментов играют в компьютерную игру, делая ходы только с помощью коротких задержек взгляда. В это время исследователи регистрируют на поверхности кожи головы электрические сигналы их мозга.

Оказалось, что когда участник эксперимента задерживает взгляд, чтобы сделать ход, в сигналах его мозга появляются особые маркеры, которых не бывает, когда взгляд задерживается просто так. На основе этих наблюдений и создается интерфейс «глаз - мозг - компьютер». Его пользователю будет достаточно лишь посмотреть на кнопку или ссылку на экране компьютера, захотеть по ней кликнуть, - система распознает это желание, и клик произойдет сам собой.

В будущем появятся новые способы, которые позволят без использования рискованных и очень дорогих операций подключать мозг к компьютеру. Сейчас мы наблюдаем зарождение этих технологий и скоро сможем их опробовать.

Прошлое столетие ознаменовало сильнейший скачок развития человечества. Пройдя нелегкий путь от букваря до интернета, люди так и не смогли разгадать главную загадку, терзающую умы великих на протяжении не одной сотни лет, а именно, как работает и на что способен человеческий мозг?

До сих пор этот орган остается самым плохо изученным, а ведь именно он сделал человека тем, кем он сейчас является – высшей ступенью эволюции. Мозг, продолжая хранить свои секреты и тайны, продолжает определять деятельность и сознание человека на каждом этапе его жизни. Разгадать все возможности, на которые он способен, не в силах пока ни один современный ученый. Именно поэтому вокруг одного из главнейших органов нашего организма сконцентрировано большое количество мифов и ничем не обоснованных гипотез. Это может свидетельствовать только о том, что скрытый потенциал человеческого мозга только предстоит изучить, а пока его способности выходят за грани уже устоявшихся представлений о его работе.


Фото: Pixabay/geralt

Устройство мозга

Данный орган состоит из огромного количества связей, создающих устойчивое взаимодействие клеток и отростков. Ученые предполагают, что, если эту связь представить в виде прямой линии, ее длина восьмикратно превысит дистанцию к Луне.

Массовая доля этого органа в общей массе тела составляет не более 2%, а его вес варьируется в пределах 1019-1960 грамм. С момента рождения и до последнего вздоха человека он ведет непрерывную деятельность. Поэтому ему необходимо поглощать 21% всего кислорода, постоянно поступающего в организм человека. Ученые составили примерную картину усваивания мозгом информации: его память может вмещать в себе от 3 до 100 терабайт, в то время как память современного компьютера в данный момент совершенствуется до объема 20 терабайт.

Самые распространённые мифы о биологическом компьютере человека

Нейронные ткани мозга на протяжение жизнедеятельности организма погибают, а новые – не образуются. Это заблуждение, абсурдность которого доказала Элизабет Гуд. Нервная ткань и нейроны постоянно обновляются, и на смену умершим приходят новые соединения. Исследования подтвердили, что в очагах клеток, уничтоженных инсультом, организм человека способен «наращивать» новый материал.

Мозг человека раскрыт только на 5-10%, все остальные возможности не задействованы. Некоторые ученые объясняли это тем, что природа, создав такой сложный и развитой механизм, придумала для него защитную систему, оградив орган от излишней нагрузки. Это не так. Достоверно известно, что мозг во время любой деятельности человека задействован на все 100%, просто в момент совершения каких-либо действий реагируют отдельные его части поочередно.

Сверхспособности. Чем может удивить человеческий разум?

Некоторые люди, внешне не показывающие признаки наличия невероятных способностей, могут обладать поистине невероятными возможностями. Проявляются они не у каждого, но ученые утверждают, что регулярные усиленные тренировки мозга способны развить сперхспособности. Хотя секрет «отбора» людей, которые могут обладать правом называться гением, не раскрыт до сих пор. Кто-то умеет грамотно выходить из затруднительных ситуаций, кто-то на подсознательном уровне предчувствует приближающуюся опасность. Но более интересными с точки зрения науки являются следующие сверхспособности:

  • Возможность выполнения математических операций любой сложности без помощи калькулятора и расчетов на бумаге;
  • Возможность создавать гениальные творения;
  • Фотографическая память;
  • Скоростное чтение;
  • Экстрасенсорные способности.

Удивительные случаи раскрытия уникальных способностей человеческого мозга

За всю историю существования людей появилось большое количество историй, подтверждающих тот факт, что мозг человека может иметь скрытые способности, адаптироваться к изменению ситуации и перекладывать определенные функции с пострадавшего отдела на здоровую часть.

Сонарное зрение . Такая способность вырабатывается обычно после потери зрения. Дэниэл Киш сумел освоить технику эхолокации, присущую летучим мышам. Издаваемые им звуки, например, щелчок языком или пальцами, помогают ему ходить без трости.

Мнемоника – уникальная техника, позволяющая воспринимать и запоминать любой объем информации, независимо от ее характера. Многие люди осваивают ее в зрелом возрасте, а у американца Кима Пика — это врожденный дар.

Дар предвиденья . Некоторые люди уверяют, что способны видеть будущее. На данный момент этот факт полностью не доказан, но истории известно немало людей, которых такая способность прославила на весь мир.

Феномены, на которые способен человеческий мозг

Карлос Родригез в 14 лет после аварии потерял более 59% мозга, но при этом до сих пор живет совершенно обычной жизнью.

Яков Циперович после клинической смерти и недельного пребывания в коматозном состоянии перестал спать, мало ест и не стареет. С этого момента прошло уже три десятка лет, а он по-прежнему молод.

Фениас Гейдж в середине 19го века получил ужасную травму. Сквозь его голову прошел толстый лом, лишив его доброй части мозга. Медицина тех лет не была достаточна продвинута, и врачи предвещали ему скорую смерть. Однако мужчина не только не умер, но и сохранил память и ясность сознания.

Человеческий мозг, как и его тело, необходимо подвергать постоянным тренировка. Это могут быть как сложные, специально разработанные программы, так и чтение книг, разгадывание ребусов и логических задач. При этом не следует забывать про насыщение данного органа питательными элементами. К примеру, усилитель мозговой активности HeadBooster http://hudeemz.com/headbooster обладает большим количеством таковых. Но все же, только постоянные тренировки позволяют мозгу постоянно развиваться и увеличивать свои возможности.



Загрузка...