sonyps4.ru

Переход к канонической форме злп. Каноническая форма задач линейного программирования

Аналитическим методом решения задачи линейного программирования является симплексный метод. Для его применения задачи ЛП, представленные различным образом, должны быть приведены к канонической форме. Задача линейного программирования, записанная в виде (2.1.1)-(2.1.3), представляет собой развернутую форму записи общей задачи линейного программирования (ЗЛП).

Канонической задачей линейного программирования (КЗЛГТ) будем называть следующую задачу:

при ограничениях, имеющих вид равенств,


Если для задачи в форме (2.3.1)-(2.3.4) выполняется условие т = п, то ее решение сводится к решению системы уравнений

  • (2.3.2) . При этом задача не будет иметь решений, если условие
  • (2.3.3) не выполняется или система уравнений не имеет решения.

условие т

  • 1. Для перехода от задачи максимизации целевой функции (2.3.1) к задаче минимизации достаточно взять все коэффициенты Cj целевой функции с обратными знаками и решить полученную задачу на максимум. После нахождения максимума значение целевой функции надо взять с обратным знаком. Оптимальное решение останется прежним.
  • 2. Для перехода от ограничения типа «меньше или равно» к равенству в него необходимо со знаком «плюс»:

3. Для перехода от ограничения типа «больше или равно» к равенству в него необходимо ввести дополнительную неотрицательную переменную со знаком «минус»:

При этом в каждое неравенство вводится своя (п + /)-я дополнительная переменная.

  • 4. Все равенства, имеющие отрицательные свободные члены, делятся на -1, для того чтобы выполнялось условие (2.3.4).
  • 5. Если на некоторую переменнуюXj не накладывается условие неотрицательности , то делают замену переменных Xj=х". - х" x"j > 0, х"> 0. В преобразованной задаче все переменные неотрицательные.

Имеет место утверждение, что любую ЗЛП можно привести к канонической форме.

Пример 2.3.1. Преобразуем задачу, приведенную в примере 2.2.2, в каноническую форму. Целевая функция и система ограничений выглядят следующим образом:

Введем в первое неравенство дополнительную переменную jc 3 > 0 со знаком «плюс», во второе х 4 > 0 со знаком «минус» и в третье х 5 > 0 также со знаком «плюс». В результате получим систему ограничений задачи в канонической форме:

При этих ограничениях нужно найти максимальное значение функции:

Рассмотрим экономический смысл дополнительных переменных в канонической задаче оптимального использования ресурсов.

Пример 2.3.2. Задача оптимального использования ресурсов (задача о коврах) [ 17 J.

В распоряжении фабрики имеется определенное количество ресурсов трех видов: труд (80 человекодней), сырье (480 кг) и оборудование (130 станкочасов). Фабрика может выпускать ковры четырех видов. Информация о количестве единиц каждого ресурса, необходимых для производства одного ковра каждого вида, и о доходах, получаемых предприятием от единицы каждого вида товаров, приведена в табл. 2.3.1.

Требуется найти такой план выпуска продукции, при котором ее общая стоимость будет максимальной.

Экономико-математическая модель задачи Переменные : х х,х 2 , х 3 , х 4 - количество ковров каждого типа. Целевая функция - это общая стоимость продукции, которую необходимо максимизировать:

Ограничения по ресурсам :

Приведем задачу к канонической форме, вводя дополнительные переменные х 5 , х 6 и х 7:

Далее будет показано, что оптимальным планом выпуска продукции является вектор X* = (0; 30; 10; 0), значение целевой функции равно 150, т.е. для максимизации общей стоимости продукции необходимо выпустить 30 ковров второго вида и 10 ковров третьего вида. Подставим оптимальные значения вектора X в ограничения КЗЛП:

Получим, что ресурсы «труд» и «оборудование» используются полностью, ресурс «сырье» имеется в избытке:

В этом случае х в показывает, что сырья осталось 200 кг.

Таким образом, основные переменные x v х 2 , х 3 , х л означают количество ковров каждого типа, а дополнительные переменные х 5 , х 6 их 7 - объем недоиспользованных ресурсов.

Ответ. Оптимальный план выпуска продукции X* = (0; 30;

10; 0).

Планом , или допустимым решением , КЗЛП называется вектор X = (jc p х 2 ,..., х п ), удовлетворяющий условиям (2.3.2)-(2.3.4).

Если все компоненты базисного решения системы ограничений КЗЛП неотрицательны, то такое решение называется опорным решением или опорным планом. Число положительных компонент опорного плана не может превышать т.

Опорный план называется невырожденным, если он содержит т положительных компонент, в противном случае он называется вырожденным.

Оптимальным планом или оптимальным решением ЗЛП называется план, доставляющий наибольшее (наименьшее) значение линейной функции (2.3.1).

Множество всех планов ЗЛП (если они существуют) является выпуклым многогранником. Каждой угловой (крайней) точке многогранника решений соответствует опорный план (неотрицательные базисные решения системы уравнений КЗЛП). Каждый опорный план определяется системой т линейно независимых векторов, содержащихся в данной системе из п векторов Д, Д,..., А п. Если существует оптимальный план, то существует такая угловая точка многогранника решений, в которой линейная функция достигает своего наибольшего (наименьшего) значения.

Для отыскания оптимального плана достаточно исследовать только опорные планы. Верхняя граница количества опорных планов, содержащихся в задаче, определяется числом сочетаний С т п (см. параграф 1.4).

Пример 2.3.3. Получить решение задачи об оптимальном использовании ограниченных ресурсов (решить ЗЛ П):

Решение. Приведем задачу к каноническому виду путем введения дополнительных переменныхх 3 , х 4 и х 5:

Найдем все опорные планы системы ограничений данной КЗЛП (л? - 5; /77 - 3); их количество не превышает 10:

Используя метод Жордана - Гаусса (см. параграф 1.4), выписываем все базисные решения системы уравнений (табл. 2.3.2).

Номер

базис

ного

решения

Базис

План

Среди десяти базисных решений пять опорных:

Указанным опорным планам на рис. 2.3.1 отвечают соответственно следующие угловые точки и значения ЦФ в них:


Рис. 2.3.1.

Согласно теории ЛП оптимальное решение содержится среди опорных планов.

Таким образом, максимальное значение, равное 2300, целевая функция достигает в точке В на опорном плане Х 5 = (70; 80; 0; 60; 0).

Ответ. Оптимальный план задачи: х { = 70, х 2 = 80, значение целевой функции f(x v х 2) = 2300.

канонической форме , если требуется максимизировать целевую функцию, все ограничения системы – уравнения и на все переменные наложено условие неотрицательности.

Задача линейного программирования задана в симметричной форме , если требуется максимизировать целевую функцию, все ограничения системы – неравенства «» (или минимизировать целевую функцию, все ограничения системы – неравенства «») и на все переменные наложено условие неотрицательности.

Набор чисел называется допустимым решением (планом) , если он удовлетворяет системе ограничений ЗЛП.

Множество всех допустимых решений называется областью допустимых решений (ОДР).

Допустимое решение , для которого достигается максимальное (минимальное) значение функции, называется оптимальным планом ЗЛП .

Термины «план» и «оптимальный план» возникли из экономических приложений.

Все три формы записи ЗЛП являются эквивалентными в том смысле, что имеются алгоритмы перехода от одной формы к другой. Таким образом, если имеется способ решения задачи в одной из форм, то всегда можно определить оптимальный план задачи, заданной в любой другой форме . Задача в симметричной форме решается графическим методом, а в канонической форме – симплекс–методом.

Рассмотрим алгоритмы перехода от одной формы к другой.


  • Симметричная  каноническая. Переход осуществляется путем добавления в левую часть каждого неравенства дополнительной неотрицательной переменной. Если неравенство было «≤», то балансовая переменная добавляется в левую часть неравенства со знаком «+». Если неравенство было «», то балансовая переменная добавляется в левую часть неравенства со знаком «–». Вводимые новые переменные называются балансовыми . Задачу минимизации функции Z заменяют на задачу максимизации функции (–Z) и используют, что min Z = –max (–Z).

  • Каноническая  симметричная. Для осуществления такого перехода находится общее решение системы уравнений – ограничений, целевая функция выражается через свободные переменные. Далее, воспользовавшись неотрицательностью базисных переменных, можно исключить их из задачи. Симметричная форма задачи будет содержать неравенства, связывающие только свободные переменные, и целевую функцию, зависящую только от свободных переменных. Значения базисных переменных находятся из общего решения исходной системы уравнений.

  • Общая  каноническая. Каждая переменная, на которую не было наложено условие неотрицательности, представляется в виде разности двух новых неотрицательных переменных. Неравенства преобразуются в уравнения путем введения в левую часть каждого неравенства балансовой переменной таким же образом, как это было описано при переходе от симметричной к канонической форме. Задачу минимизации функции Z заменяют на задачу максимизации функции (–Z) таким же образом, как это было описано при переходе от симметричной к канонической форме..
    1. Графический метод решения задачи линейного программирования

Графический метод применяется для решения ЗЛП, заданной в симметричной форме . Этот метод наиболее эффективно применяется для решения задач с двумя переменными, т.к. требует графических построений. В случае трех переменных необходимы построения в R 3 , в случае четырех переменных необходимы построения в R 4 и т.д.

Множество точек называется выпуклым , если для любых двух точек множества оно содержит отрезок, их соединяющий.

Пример 1

Следующие множества точек на плоскости являются выпуклыми:

Следующие множества точек на плоскости не являются выпуклыми:

Теорема 1 Пересечение любого количества выпуклых множеств является выпуклым множеством.

Теорема 2 Пусть имеются две произвольные точки и в пространстве R n . Тогда для любой точки отрезка [PQ ] должно выполняться: .где .

Гиперплоскостью в пространстве R n называется множество точек, удовлетворяющее уравнению . Заметим, что в двумерном случае гиперплоскостью является прямая.

Полупространством называется множество точек, удовлетворяющее одному из неравенств или . Гиперплоскость делит точки пространства на два полупространства. В двумерном случае гиперплоскостью является полуплоскость.

Теорема 3 Полупространство является выпуклым множеством.

Следствие Пересечение любого количества полупространств является выпуклым множеством.

Многогранником называется пересечение одного или более полупространств. Многогранник в двумерном случае называется многоугольником.

Пример 2

Следующие множества являются многоугольниками.

Ограниченное множество

Неограниченное множество


Единственная точка

Пустое множество


Точка выпуклого множества называется угловой , если она не лежит внутри никакого отрезка, соединяющего две другие точки из множества.

Пример 3

Угловыми точками треугольника являются его вершины (их три). Угловыми точками круга являются точки окружности, которая его ограничивает (их бесконечное число).

Угловая точка многогранника называется его вершиной .

Рассмотрим ЗЛП, заданную в симметричной форме.

Теорема 4 Оптимальный план ЗЛП соответствует вершине многогранника решений, определяемого ее системой ограничений.

: Задачи линейного программирования (ЗЛП)

1. Линейное программирование

2. Виды задач линейного программирования

3. Формы записи ЗЛП

4. Каноническая форма задач линейного программирования

Линейное программирование

Линейное программирование - это раздел матпрограммирования, применяемый при разработке методов нахождения экстремума линейных функций нескольких переменных при линейных дополнительных ограничениях, налагаемых на переменные.

По типу решаемых задач методы ЛП разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные учитывают особенности модели задачи, ее целевой функции и системы ограничений.

Главная особенность задач линейного программирования заключается в том, что экстремум целевой функции находится на границе области допустимых решений.

Рисунок 1 - Экстремум целевой функции

Математическая модель ЗЛП записывается следующим образом:

max (или min) Z=z(X),(1)

ОДР может быть представлена системой линейных уравнений или неравенств.

Вектор Х=(х 1 , х 2 , .... x п) является вектором управления или управляющим воздействия.

Допустимый план Х, при котором критерий оптимальности Z=z(X) достигает экстремального значения, называется оптимальным и обозначается через X*, экстремальное значение целевой функции -- через Z*=z(X*).

Виды задач линейного программирования

Методы линейного программирования широко применяются на промышленных предприятиях при оптимизации производственной программы, распределении ее по цехам и по временным интервалам, при ассортиментной загрузке оборудования, планировании грузопотоков, определении плана товарооборота и т. д.

Наиболее распространенный тип задач - задача оптимального использования ресурсов. Пусть некоторая производственная единица (цех, предприятие, объединение и т.д.), исходя из конъюнктуры рынка, технических возможностей и имеющихся ресурсов, может выпускать n различных видов продукции, известных под номерами j.

При выпуске продукции предприятие ограничено имеющимися ресурсами, количество которых обозначим m, а вектор ресурсов В = (b 1 , b 2 , ..., b т). Известны также технологические коэффициенты a ij , которые показывают норму расхода i-го ресурса на производство единицы j-ой продукции. Эффективность выпуска единицы j-и продукции характеризуется прибылью p j .

Требуется определить план выпуска продукции Х=(х 1 , х 2 , ..., x п), максимизирующий прибыль предприятия при заданных ресурсах.

Целевая функция выглядит следующим образом

при ограничениях

Часто ассортимент продукции устанавливается вышестоящей организацией, т. е. его объемы должны быть заключены в некоторых границах D н j и D в j:тогда задается следующее ограничение:

Модель задачи оптимального использования ресурсов лежит в основе моделей оптимизации годовой производственной программы предприятия . В модель включаются ограничения по фонду времени работы оборудования.

Сохраняя прежние обозначения, запишем через б j и с j соответственно отпускную цену и затраты на единицу j-й продукции. В качестве критерия оптимальности могут быть приняты:

1) максимум прибыли

2) минимум затрат на производство

3) максимум выпуска в стоимостном выражении (выручки от реализации продукции)

Пример. Предприятие может изготовлять четыре вида продукции 1, 2, 3 и 4. Сбыт любого ее объема обеспечен. Предприятие располагает в течение квартала трудовыми ресурсами в 100 человеко-смен, полуфабрикатами массой 260 кг, станочным оборудованием в 370 станко-смен. Нормы расхода ресурсов и прибыль от единицы каждого вида продукции представлены в табл.1.

Необходимо:

а) составить математическую модель задачи определения плана выпуска продукции, при котором достигается максимум прибыли;

б) решить задачу с требованием комплектации, чтобы количество единиц третьей продукции было в 3 раза больше количества единиц первой;

в) выяснить оптимальный ассортимент при дополнительных условиях: первого продукта выпускать не менее 25 единиц, третьего -- не более 30, а второго и четвертого -- в отношении 1:3.

Таблица 1

Исходные данные

Математическая модель задачи:

целевая функция:

max: Z=40x 1 +50x 2 +100x 3 +80x 4

при ограничениях:

а) на трудовые ресурсы:

2,5x 1 +2,5x 2 +2x 3 +1,5x 4 ? 100;

на полуфабрикаты:

4x 1 +10x 2 +4x 3 +6x 4 ? 260;

на станочное оборудование:

8x 1 +7x 2 +4x 3 +10x 4 ? 370;

условие неотрицательности:

б) дополнительное требование комплектации выразится условием

3x 1 =x 3 , т.е 3x 1 x 3 =0;

в) граничные условия и условие комплектации представим так: х 1 ?25,

х 3 ?30, 3*х 2 =х 4 .

Задача о размещении заказов или загрузке взаимозаменяемых групп оборудования . Речь идет о распределения заказов между m (i=1,…, m) предприятиями (цехами, станками, исполнителями) с различными производственными и технологическими характеристиками, но взаимозаменяемыми в смысле выполнения заказов. Требуется составить такой план размещения заказов, при котором задание было бы выполнено, а показатель эффективности достигал экстремального значения.

Сформулируем задачу математически. Пусть на т однородных группах оборудования нужно изготовить п видов продукции. План выпуска каждого вида продукции на определенный период задан набором х j (j=1,2, …п). Мощность каждого вида оборудования ограничена и равна b i . Известна технологическая матрица A=||a ij ||, где a ij --число единиц j-ой продукции, выпускаемой в единицу времени на i-м оборудовании. Матрица С - матрица затрат, где c ij --затраты, связанные с выпуском единицы j-й продукции на i-м оборудовании. Х -- вектор объема выпускаемой продукции.

Модель задачи примет следующий вид:

целевая функция -- минимизация расходов на реализацию всех заказов

при ограничениях:

а) по мощности оборудования

б) на выпуск продукции

в) условие неотрицательности

Данную задачу называют распределительной или задачей распределения.

Если по некоторым видам продукции допускается превышение плана, то ограничение (б) примет вид

В качестве целевой прибыли также можно принять:

а) максимум прибыли

б) минимум затрат станочного времени

Т.к. любая модель содержит упрощающие предпосылки, для корректного применения полученных результатов необходимо четкое понимание сути этих упрощений, что, в конечном счете, и позволяет сделать вывод об их допустимости или недопустимости. Наиболее существенным упрощением в рассмотренных моделях является предположение о прямопропорциональной (линейной) зависимости между объемами расхода ресурсов и объемами производства, которая задается с помощью норм затрат a ij . Очевидно, что это допущение далеко не всегда выполняется. Так объемы расхода многих ресурсов (например, основных фондов) изменяются скачкообразно - в зависимости от изменения программы производства Х. К другим упрощающим предпосылкам относятся предположения о независимости цен j от объемов x j , что справедливо лишь для определенных пределов их изменения. Данные «уязвимые» места важно знать еще и потому, что они указывают принципиальные направления усовершенствования модели.

Формы записи ЗЛП

Существует 3 формы записи ЗЛП:

1) в виде функций

max(или min)Z=,max(или min)Z=,

2) векторная форма

(скалярное произведение векторов)

при ограничениях

A 1 х 1 +A 2 х 2 +..+A n x n = B

Где векторы

С = (С 1, С 2 .. С n), Х = (Х 1, Х 2 .. Х n), и.

3) матричная форма

при ограничениях

где С = (с 1 , с 2 ,…с n),

Каноническая форма задач линейного программирования

Если все ограничения в задаче линейного программирования являются уравнениями и на все переменные x j налагаются условия неотрицательности, то она называется задачей линейного программирования в канонической форме или канонической задачей линейного программирования (КЗЛП).

при ограничениях

Для того чтобы перейти от ЗЛП к КЛЗП, необходимо перейти от ограничений неравенств к ограничениям равенствам и заменить переменные, которые не подчиняются условиям неотрицательности.

Правила приведения ЗЛП к каноническому виду:

1) если в ограничениях правая часть отрицательная, то следует умножить это ограничение на -1;

2) если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;

3) если некоторая переменная xk не имеет ограничений по знаку, то она заменяется в целевой функции и во всех ограничениях разностью между двумя новыми неотрицательными переменными: xk=x * k - xl, где l - сводный индекс, x * k>=, xl>=0.

Рассмотрим пример. Приведем к канонической форме:

Введем в каждое уравнение системы ограничений выравнивающие переменные х 4 , х 5 , х 6 . Система запишется в виде равенств, причем в первое и третье уравнение системы ограничений переменные х 4 , х 6 вводятся в левую часть со знаком «+», а во второе уравнение вводится х 5 со знаком «-».

Свободные члены в канонической форме должны быть положительными, для этого два последних уравнения умножим на -1:

В канонической форме записи задач линейного программирования все переменные, входящие в систему ограничений, должны быть неотрицательными. Допустим, что

Подставляя данное выражение в систему ограничений и целевую функцию и записывая переменные в порядке возрастания индекса, получим задачу линейного программирования, представленную в канонической форме:

оптимизационный симплексный линейный программирование

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалента минимизации той же функции, взятой с противоположным знаком, и наоборот.

Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:

  • если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;
  • если в ограничениях правая часть отрицательна, то следует умножить это ограничение на -1;
  • если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;
  • если некоторая переменная x j не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными:
    x 3 = x 3 + - x 3 - , где x 3 + , x 3 - ≥ 0 .

Пример 1 . Приведение к канонической форме задачи линейного программирования:

min L = 2x 1 + x 2 - x 3 ;
2x 2 - x 3 ≤ 5;
x 1 + x 2 - x 3 ≥ -1;
2x 1 - x 2 ≤ -3;
x 1 ≤ 0; x 2 ≥ 0; x 3 ≥ 0.

Введем в каждое уравнение системы ограничений выравнивающие переменные x 4 , x 5 , x 6 . Система запишется в виде равенств, причем в первое и третье уравнения системы ограничений переменные x 4 , x 6 вводятся в левую часть со знаком "+", а во второе уравнение переменная x 5 вводится со знаком "-".

2x 2 - x 3 + x 4 = 5;
x 1 + x 2 - x 3 - x 5 = -1;
2x 1 - x 2 + x 6 = -3;
x 4 ≥ 0; x 5 ≥ 0; x 6 ≥ 0.

Свободные члены в канонической форме должны быть положительными, для этого два последних уравнения умножим на -1:

2x 2 - x 3 + x 4 = 5;
-x 1 - x 2 + x 3 + x 5 = 1;
-2x 1 + x 2 - x 6 = 3.

В канонической форме записи задач линейного программирования все переменные, входящие в систему ограничений, должны быть отрицательными. Допустим, что x 1 = x 1 " - x 7 , где x 1 " ≥ 0, x 7 ≥ 0 .

Подставляя данное выражение в систему ограничений и целевую функцию и, записывая переменные в порядке возрастания индекса, получим задачу линейного программирования, представленную в канонической форме:

L min = 2x 1 " + x 2 - x 3 - 2x 7 ;
2x 2 - x 3 + x 4 = 5;
-x 1 " - x 2 + x 3 + x 5 + x 7 = 1;
-2x 1 " + x 2 - x 6 + 2x 7 = 3;
x 1 " ≥ 0; x i ≥ 0, i=2, 3, 4, 5, 6, 7.

Условие оптимальности базисного плана канонической задачи ЛП. Симплекс-метод и его сходимость.

Симплексный метод является универсальным, так как позволяет решать практически любую задачу линейного программирования, записанную в каноническом виде.

Идея симплексногометода последовательного улучшения плана, заключается в том, что, начиная с некоторого исходного опорного решения, осуществляется последовательно направленное перемещение по опорным решениям задачи к оптимальному.

Значение целевой функции при этом перемещении для задач на максимум не убывает.

Так как число опорных решений конечно, то через конечное число шагов получим оптимальное опорное решение.

Опорным решением называется базисное неотрицательное решение.

Алгоритм симплексного метода

1. Математическая модель задачи должна быть канонической. Если она неканоническая, то ее надо привести к каноническому виду.

2. Находим исходное опорное решение и проверяем его на оптимальность.
Для этого заполняем симплексную таблицу 1.
Все строки таблицы 1-го шагазаполняем по данным системы ограничений и целевой функции.

Возможны следующие случаи при решении задач на максимум:

1. Если все коэффициенты последней строки симплекс-таблицы Dj ³ 0, то найденное

решение оптимальное.

2 Если хотя бы один коэффициент Dj £ 0, но при соответствующей переменной нет ни одного положительного оценочного отношения, то решение задачи прекращаем , так как F(X) ® ¥ , т.е.целевая функция не ограничена в области допустимых решений.

Если хотя бы один коэффициент последней строки отрицателен, а при соответствующей переменной есть хотя бы одно положительное оценочное отношение, то нужно перейти к другому опорному решению.

4. Если отрицательных коэффициентов в последней строке несколько, то в столбец базисной переменной (БП) вводят ту переменную , которой соответствует наибольший по абсолютной величине отрицательный коэффициент.

5. Если хотя бы один коэффициент Dk < 0 ,то k - тый столбец принимаем за ведущий.

6. За ведущую строку принимаем ту, которой соответствует минимальное отношение свободных членов bi к положительным коэффициентам ведущего, k – того столбца.

7. Элемент, находящийся на пересечении ведущих строк и столбца, называется ведущим элементом.

Заполняем симплексную таблицу 2:

· заполняем базисный столбец нулями и единицей

· переписываем ведущую строку, разделив ее на ведущий элемент

· если ведущая строка имеет нули, то в следующую симплекс-таблицу можно перенести соответствующие столбцы

· остальные коэффициенты находим по правилу “прямоугольника”

Получаем новое опорное решение, которое проверяем на оптимальность:

Если все коэффициенты последней строки Dj ³ 0, то найденное решение максимальное.

Если нет, то заполняем симплексную таблицу 8-го шага и так далее.

Если целевая функция F(X) требует нахождения минимального значения , то критерием оптимальности задачи является неположительность коэффициентов Dj при всех j = 1,2,...n.

Сходимость симплекс-метода. Вырожденность в задачах ЛП. Важнейшим свойством любого вычислительного, алгоритма является сходимость, т. е. возможность получения в ходе его применения искомых результатов (с заданной точно­стью) за конечное число шагов (итераций).

Легко заметить, что проблемы со сходимостью симплекс-ме­тода потенциально могут возникнуть на этапе выбора значения r (п. 2") в случае, когда одинаковые минимальные значения от­ношения

будут достигнуты для нескольких строк таблицы Т (q) одновре­менно. Тогда на следующей итерации столбец b(β(q+1)) будет со­держать нулевые элементы.

В исходной постановке ЗЛП могут допускать различные формы записи. Так, в одних задачах требуется максимизировать целевую функцию, в других - минимизировать; некоторые линейные ограничения могут иметь вид равенств, другие - неравенств и т.д.

Для единообразия записи ЗЛП вводится так называемая каноническая форма записи.

Говорят, что ЗЛП записана в канонической форме, если она имеет следующий вид:

Отметим следующие особенности канонического вида:

1) требуется минимизировать целевую функцию;

2) все линейные ограничения, кроме требований неотрицательности переменных, имеют вид равенств;

    на все переменные наложены требования неотрицательности.

Покажем, что любую ЗЛП можно привести к каноническому виду.

1) Если в ЗЛП требуется максимизировать целевую функцию f, то положим g = - f и потребуем минимизировать функцию g. Получится новая ЗЛП, которая эквивалентна исходной в том смысле, что каждое оптимальное решение исходной задачи будет оптимальным решением новой задачи и наоборот.

2) Предположим, что в ЗЛП есть линейное ограничение вида

Заменим такое ограничение следующими двумя ограничениями:

где z - новая переменная, которая в целевую функцию вводится с коэффициентом 0 (иначе говоря, переменная z не вводится в целевую функцию). Значение переменной z можно не учитывать после решения новой задачи.

Аналогично, ограничение вида заменяется двумя ограничениями:

3) Предположим, что в ЗЛП не ко всем переменным предъявлено требование неотрицательности. Тогда каждую, переменную , на которую не наложено требование неотрицательности, представим в виде разности двух неотрицательных переменных:

Каждое вхождение переменной в целевую функцию или ограничения заменим разностью
. Решив новую задачу с помощью (2.6), вернемся к прежним переменным.

Указанными приемами любая ЗЛП приводится к каноническому виду.

Пример. Привести к каноническому виду

Проделаем описанные действия.

Теперь получим ЗЛП в каноническом виде:

2.7. Понятие опорного плана злп.

Пусть ВЛП задана в каноническом виде (2.3 - 2.5). Предположим, что система уравнений (2.4) приведена к жордановой форме с неотрицательными правыми частями:

(2.6)

где
.

Приравняв к нулю свободные переменные, получим базисное решение системы (2.4)

В силу условия
набор значений переменных (2.7) удовлетворяет и ограничениям (2.5). Поэтому (2.6) являетсядопустимым решением ЗЛП .

Допустимое решение (2.7) называется базисным допустимым решением или опорным планом ЗЛП. При этом говорят, что переменные
образуют допустимый базис.

Оказывается, что если ОДР изобразить геометрически, то каждый опорный план ЗЛП соответствует вершине многогранника. Поэтому справедлива следующая теорема.

Если ЗЛП разрешима, то существует оптимальный опорный план.

3. Симплексный метод решения злп

3.1. Общая характеристика и основные этапы симплекс – метода

Основоположниками симплекс-метода являются советский математик Л.В. Канторович и американский математик Дж. Данциг.

Симплекс-методом можно решить любую ЗЛП или обнаружить ее неразрешимость. Многие специальные классы ЗЛП можно решить другими, более эффективными для этих классов методами. Однако преимущество симплекс-метода - его универсальность. Почти для всех ЭВМ разработаны стандартные программы для решения ЗЛП симплекс - методом.

Опишем общую идею симплекс-метода.

Считаем, что ЗЛП записана в каноническом виде и целевую функцию нужно минимизировать. Как мы уже знаем, оптимальный план следует искать среди опорных планов ЗЛП. Симплекс-метод не перебирает все опорные планы (что было бы часто невозможно из-за их огромного количества), а, начиная с некоторого исходного опорного плана, он последовательно переходит к другим опорным планам с уменьшением целевой функции. Симплекс-метод прекращает свою работу тогда, когда либо будет найден оптимальный опорный план, либо установлена неразрешимость задачи.

При решении ЗЛП симплекс-методом можно выделить следующие этапы:

1) приведение ЗЛП к каноническому виду;

2) приведение системы линейных уравнений к жордановой форме с неотрицательными правыми частями с одновременной проверкой на неразрешимость ЗЛП из-за противоречивости системы линейных ограничений;

3) исследование опорного плана на оптимальность;

4) исследование ЗЛП на неразрешимость из-за неограниченности снизу на ОДР целевой функции;

5) переход к новому, "лучшему" опорному плану.



Загрузка...