sonyps4.ru

Основные виды помех и искажений в системах связи. Помехи и искажения в канале

Лекция № 4.

Помеха – это любое мешающее внешнее или внутреннее воздействие на сигнал, вызывающее случайные отклонения принятого сигнала от передаваемого .

Помехи очень разнообразны как по своему происхождению, так и по физическим свойствам. Иногда помехи резко отличаются от сигнала, а иногда даже трудно определить, где сигнал, а где помеха. Вдруг в телефоне слышно два разговора. Надо время, чтобы различить, где полезный сигнал, а где случайно подключившаяся «помеха». В то же время эта «помеха» - полезный сигнал для другого абонента.

Помехи можно классифицировать по следующим признакам:

По происхождению (месту возникновения);

По физическим свойствам;

По характеру воздействия на сигнал.

По происхождению в первую очередь надо отметить внутренние шумы аппаратуры, входящей в канал связи, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах. Эти помехи также называются тепловыми шумами . Квадрат эффективного напряжения теплового шума на сопротивлении R определяется известной формулой Найквиста

где – абсолютная температура сопротивления ; – полоса частот;

Вт·с/град – постоянная Больцмана.

Эти шумы принципиально устранимы только при абсолютном нуле ().

Помехи от посторонних источников делятся на:

- атмосферные помехи (грозовые разряды, полярные сияния и др.), обусловленные электрическими процессами в атмосфере;

- индустриальные помехи , возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, медицинские установки, системы зажигания двигателей и др.);

- помехи от посторонних станций и каналов , возникающие от различных нарушений режима их работы и свойств каналов;

- космические помехи , связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

По физическим свойствам различают флуктуационные и сосредоточенные помехи.

Флуктуационными называют помехи, обусловленные флуктуациями тех или иных физических величин. Название происходит от физического понятия флуктуации (лат. fluctuation – колебание) – случайные отклонения физических величин от среднего. Флуктуационная помеха представляет собой непрерывные колебания, меняющиеся случайным образом. Они проникают в систему связи не только извне, но и зарождаются также внутри самой системы в различных ее звеньях.

Причинами внутренних флуктуационных помех являются в основном тепловой шум в проводниках и дробовый эффект в электронных приборах. К внешним флуктуационным помехам относятся помехи космического происхождения, помехи, вызванные взаимными влияниями цепей в линиях связи (линейные и нелинейные переходы, попутный поток и некоторые другие).


Характерной особенностью флуктуационных помех является то, что явления, порождающие эти помехи, лежат в физической природе вещей (дискретное строение вещества, дискретная природа электромагнитного поля) и принципиально не могут быть устранены.

К сосредоточенным во времени (импульсным) помехам относятся помехи в виде одиночных коротких импульсов различной интенсивности и длительности, следующих один за другим через случайные, достаточно большие промежутки времени. Причинами импульсных помех являются: грозовые разряды; радиостанции, работающие в импульсном режиме; линии электропередачи и другие энергоустановки; система зажигания и энергообеспечения транспорта; перегрузки усилителей; плохие контакты в оборудовании и питании; недостатки разработки и изготовления оборудования; эксплуатационные работы (реконструкция, профилактика, подключение к действующему каналу измерительных приборов, ошибочная коммутация и т.п.).

К сосредоточенным по спектру помехам относятся помехи посторонних радиостанций, генераторов высокой частоты различного назначения (медицинские, промышленные, бытовые и др.), переходные помехи от соседних каналов многоканальных систем. Обычно это гармонические или модулированные колебания с шириной спектра меньшей или соизмеримой с шириной спектра полезного сигнала.

По характеру воздействия на сигнал различают аддитивные и мультипликативные помехи.

Аддитивной является помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействуют на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. Эти помехи непосредственно связаны с процессами прохождения сигнала в среде распространения и могут ощущаться только при наличии сигнала в системе связи.

В реальных каналах электросвязи обычно имеет место не одна, а совокупность помех. Но основными можно считать флуктуационные помехи, воздействующие на сигнал как аддитивные.

Искажения – это такие изменения формы сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линиях связи, цепях передатчика и приемника.

Существует два вида искажений:

- линейные искажения , возникающие в линейных цепях;

- нелинейные искажения , возникающие в нелинейных цепях.

Искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. А дальше изменение формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при дальнейшей обработке в приемнике. Другое дело помехи – они заранее неизвестны и поэтому не могут быть устранены полностью.

Методы борьбы с помехами .

При всем многообразии методов борьбы с помехами их можно свести к трем основным направлениям:

1. Подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо, так как существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.).

2. Уменьшение помех на путях их проникновения в приемник. Помехи обычно воздействуют на сигнал в среде распространения, поэтому как проводные, так и радиолинии строятся так, чтобы обеспечить заданный уровень помех.

3. Ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление борьбы с помехами является предметом изучения в теории электросвязи.

Помеха – это любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывная связь. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

Классификацию помех можно провести по следующим признакам:

— по происхождению (месту возникновения);

— по физическим свойствам;

— по характеру воздействия на сигнал.

К помехам по происхождению в первую очередь относятся внутренние шумы аппаратуры (тепловые шумы) обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т- абсолютная температура, которую имеет сопротивление R;

F — полоса частот; k =1,37*10 (-23) Вт.сек/град- постоянная Больцмана.

К помехам по происхождению, во вторую очередь, относятся помехи от посторонних источников, находящихся вне каналов связи:

— атмосферные помехи (громовые разряды, полярное сияние, и др.), обусловленные электрическими процессами в атмосфере;

— индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, системы зажигания двигателей, медицинские установки и другие.);

— помехи от посторонних станций и каналов, возникающих от различных нарушений режима их работы и свойств каналов;

— космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

По физическим свойствам помех различают:

— Флуктуационные помехи;

— Сосредоточеные помехи.

Флуктуационные помехи . Среди аддитивных помех особое место занимает флуктационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Этот вид помех практически имеет место во всех реальных каналах.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя случайный непрерывный процесс.

Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот.

К сосредоточенным по времени (импульсным) помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса.

Сосредоточенные по спектру помехи . К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения и т. п. В отличие от флуктационных и импульсных помех, спектр которых заполняет полосу частот приёмника, ширина спектра сосредоточенной помехи в большинстве случаев меньше полосы пропускания приёмника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

По характеру воздействия на сигнал различают:

— аддитивные помехи;

— мультипликативные помехи.

Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействует на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. В реальных каналах электросвязи обычно имеют место не одна, а совокупность помех.

Под искажениями понимают такие изменения форм сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные и нелинейные возникающие в соответствующих линейных и нелинейных цепях. В общем случае искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. Дальнейшие изменения формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при последующей обработке в приемнике. Это уже дело техники.

ДРУГОЕ ДЕЛО ПОМЕХИ — ОНИ заранее не известны и поэтому не могут быть устранены полностью.

Борьба с помехами — основная задача теории и техники связи. Любые теоретические и технические решения, о выполнении кодера или декодера, передатчика и приемника системы связи должны приниматься с учетом того, что в линии связи имеются помехи. При всем многообразии методов борьбы с помехами их можно свести к трем направлениям:

— подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.);

— уменьшение помех на путях проникновения в приемник;

— ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление для нас является предметом изучения.

В реальном канале связи сигнал при передаче искажается и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала связи определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных звеньев канала. Если эти линейные и нелинейные искажения обусловлены известными характеристиками канала, то их в принципе можно устранить путем соответствующей коррекции.

Помехи в отличие от искажений имеют случайный характер, они заранее неизвестны и поэтому не могут быть полностью устранены. Подпомехой понимается любое воздействие на полезный сигнал, затрудняющее его прием. Помехи весьма разнообразны по своему происхождению и физическим свойствам. Это могут быть атмосферные помехи, обусловленные электрическими процессами в атмосфере (грозовые разряды и другие), которые в наибольшей степени влияют на сигналы в радиоканалах. Энергия этих помех сосредоточена в основном в области длинных и средних волн. Имеют место также индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях различных электрических устройств промышленного назначения (электротранспорт, системы зажигания двигателей, медицинские установки и т.д.). Существуют помехи от посторонних радиостанций и каналов, обусловленные нарушением регламента распределения рабочих частот, недостаточной стабильностью этих частот и плохой фильтрацией гармоник сигнала.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульсных шумов часто обуславливается автоматической коммутацией и перекрестными наводками. Прерывание связи это явление, при котором сигнал в линии резко затухает или совсем исчезает. Основной их причиной являются нарушения контактов в реле.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в различных элементах аппаратуры. Эти помехи особенно сказываются при радиосвязи в диапазоне ультракоротких волн. В этом диапазоне имеют место и космические помехи, связанные с электромагнитными процессами на Солнце, звездах.

В общем случае влияние помехи N(t) на сигнал U(t) можно выразить оператором

В частном случае оператор f вырождается в сумму

и помеха называется аддитивной.

Когда оператор f представлен в виде произведения

помеха называется мультипликативной.

реальных сигналах имеют место оба вида помех.



Среди аддитивных помех особое место занимает флуктуационная помеха или флуктуационный шум, представляющий собой случайный процесс с нормальным распределением (гауссовский процесс). Эта помеха наиболее изучена и имеет место практически во всех реальных каналах связи. С физической точки зрения такие помехи порождаются случайными, т.е. флуктуационными отклонениями тех или иных физических величин от их средних значений. Так источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов).

Имеют место также импульсные или сосредоточенные по времени помехи (атмосферные, индустриальные), а также помехи сосредоточенные по спектру (основной вид помех для коротковолновой связи – это сигналы посторонних радиостанций, излучения генераторов высокочастотных в промышленности, медицине и т.д.).

Полезные сигналы редко присутствуют в электрических цепях в чистом виде. Практически всегда на них накладываются шумы и помехи. При этом полезный сигнал искажается при передаче, и сообщение воспроизводится с некоторой ошибкой. Причиной ошибок являются как искажения, вносимые самим каналом, так и различного вида помехи, воздействующие на сигнал при передаче. В собственно устройствах канала передачи информации имеются два основных источника шумов: дискретная структура тока в усилительных элементах (транзисторах, микросхемах и т.д.) и тепловое движение свободных электронов в проводниках электрической цепи. При этом временные и частотные характеристики канала определяют линейные искажения. Кроме того, радиоканал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных его звеньев, цепей или устройств.

В общем случае под помехой понимают случайный сигнал, однородный с полезным и действующий одновременно с ним. Для систем передачи информации помеха - любое случайное воздействие на полезный сигнал, ухудшающее верность приема и воспроизведения передаваемых по линии связи сообщений.

По месту возникновения помехи делят на внешние и внутренние. Причинами внешних помех являются природные процессы и работа различных технических устройств. В диапазонах дециметровых и менее волн имеют значение и космические помехи , связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах. В диапазоне оптических частот имеется квантовый шум , вызванный дискретной природой сигнала.

В радиоканалах встречаются атмосферные помехи , обусловленные электрическими процессами в атмосфере, прежде всего грозовыми разрядами.

Сильные помехи создают промышленные установки. Это так называемые индустриальные помехи , возникающие из-за резких изменений тока в мощных электрических цепях всевозможных электротехнических устройств. Распространенным видом внешних помех являются помехи от посторонних радио- и телестанций, систем военного назначения. Они обусловлены нарушением регламента распределения частот, недостаточной стабильностью частот генераторов и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к так называемым перекрестным искажениям (проявляются в переносе модуляции с мешающего внеполосного сигнала на полезный).

Основными видами внешних помех в проводных каналах связи являются импульсные шумы и прерывание связи.

Внутренние помехи обусловлены процессами, происходящими при работе самого устройства. В любом диапазоне частот имеют место внутренние шумы устройств, связанные с хаотическим движением носителей заряда в усилительных приборах, резисторах и других элементах.

Аналитически влияние помехи r(t) на полезный сигнал u(t) в общем виде можно выразить оператором Y:

где функция s(u(t)) отражает искаженный полезный сигнал.

Возможны два сочетания полезного сигнала и шума. Если оператор У в формуле (2.1) вырождается в линейную сумму сигнальной составляющей и помехи, т.е.

то помеху называют аддитивной (от англ, addition - сложение).

Если же оператор У может быть представлен в виде произведения некоторого коэффициента k(t) (здесь k(t) - случайный процесс) и сигнала u(t), т.е.

то помеху называют мультипликативной (от англ, multiplication - умножение).

Мультипликативные помехи обусловлены случайными изменениями параметров радиоканала. Они проявляются в изменении уровня сигнала. В реальных каналах передачи информации обычно имеют место и аддитивные, и мультипликативные помехи, и поэтому

По основным свойствам аддитивные помехи делят на три класса: сосредоточенные но спектру (узкополосные помехи), импульсные (сосредоточенные во времени) и флуктуационные (распределенные по частоте и во времени) помехи, не ограниченные ни во времени, ни но спектру.

Сосредоточенными по спектру называют помехи, основная часть мощности которых приходится на отдельные участки диапазона частот, меньших полосы пропускания системы связи.

Импульсной (сосредоточенной во времени) помехой называют регулярную или хаотическую последовательность импульсных сигналов, однородных с полезным сигналом. Источниками таких помех являются цифровые и коммутирующие элементы цепей или работающего рядом с ними устройства. В зависимости от частоты следования импульсов одна и та же помеха может воздействовать как импульсная на приемник с широкой полосой пропускания и как флуктуациопная па приемник с относительной узкой полосой пропускания.

Флуктуационная помеха (флуктуационный шум) представляет случайный процесс с нормальным распределением - гауссовский процесс (закон Гаусса). Эти помехи имеют место практически во всех реальных каналах связи, и их называют шумами. С физической точки зрения аддитивные флуктуационные помехи порождаются в системах связи различного рода флуктуациями, т.е. случайными отклонениями тех или иных физических величин (параметров) от их средних значений. Среди таких шумов можно прежде всего назвать внутренние шумы электронных усилителей. Различают следующие виды флуктуационных шумов:

  • тепловой (шум Джонсона);
  • фликкер-шум (иногда - розовый шум);
  • дробовый (квантовый).

Тепловые шумы резисторов. Одной из главных причин возникновения шума являются флуктуации объемной плотности электрического заряда в резистивных элементах из-за хаотического теплового движения носителей. В любом резисторе всегда имеются свободные электроны, находящиеся в хаотическом тепловом движении. При этом может оказаться, что в определенный момент времени в одном направлении проходит больше электронов, чем в другом. Значит, даже в отсутствие внешней ЭДС мгновенное значение тока, текущего через резистор, отлично от нуля. Эти мгновенные изменения тока вызывают на выводах резистора шумовую разность потенциалов. Среднее значение такого напряжения равно нулю, а переменная составляющая проявляется как шум.

Важное значение для систем связи имеет спектр мощности шумового напряжения на концах резистора. Его определяют по формуле Найквиста:

где R - сопротивление резистора, Ом; к = 1,38- 10~ 23 Дж/К - постоянная Больцмана; Т - абсолютная температура резистора в градусах Кельвина. Часто удобнее пользоваться односторонним энергетическим спектром, который задают в области положительных частот | В 2 /Гц |:

Спектральную плотность мощности теплового шума оценим из такого примера: при Г= 300 К и R = 20 кОм значение N 0 = 4 -1,38 -10 23 -300-20 000 = = 3,31 10 1(> В 2 /Гц, откуда среднее квадратическое значение напряжения f/ m = 3,3M0 16 В/Гц 2 .

Спектральная плотность мощности теплового шума одинакова для всех частот, представляющих интерес для большинства систем связи; другими словами, источник теплового шума на всех частотах излучает с равной мощностью на единицу ширины полосы - от постоянной составляющей до частоты порядка 10 12 Гц. Следовательно, простая модель теплового шума предполагает, что спектральная плотность его мощности равномерна и достаточно точно соответствует модели белого шума (см. далее).

Фликкер-шум - шум, спектральная плотность которого изменяется с частотой по закону 1// (с примерно постоянной спектральной мощностью на декаду - изменение в 10 раз). Часто фликкер-шумом называют любой шум, спектральная плотность которого уменьшается с увеличением частоты. Обычно на частотах выше 10 кГц фликкер-шумами пренебрегают.

Дробовой шум обусловлен неравномерным движением дискретных носителей электрического тока в электронных приборах - диодах, транзисторах, микросхемах и лампах; он имеет равномерный спектр, т.е. является белым; в отличие от резисторов флуктуации возникают не за счет хаотического теплового движения электронов, а вследствие статистической независимости их упорядоченного перемещения.

Поскольку тепловой шум присутствует во всех системах связи и является заметным источником помех, характеристики теплового шума (аддитивный, белый и гауссов) часто применяются для моделирования шума в системах связи. Гауссов шум с нулевым средним полностью характеризуется дисперсией, поэтому эту модель особенно просто использовать и при детектировании сигналов, и при проектировании оптимальных приемников.

По виду частотного спектра помехи делят на стационарный (белый) и нестационарный шумы. Белый шум содержит гармонические составляющие с одинаковой амплитудой и случайной начальной фазой, которые равномерно распределены практически по всему частотному радиодиапазону - от постоянной составляющей до частоты порядка 10 12 Гц. В теории оптимальной фильтрации часто вводят понятие квазибелого шума (от лат. quasi - якобы; почти), параметры и характеристики которого близки к показателям белого шума.

Нестационарный шум - шум, длящийся короткие промежутки времени (меньшие, чем время усреднения в измерителях).

В зависимости от спектра помехи могут быть сплошными или селективными. Сигнал сплошной помехи характеризуется распределением его мощности по широкому спектру частот. Селективная помеха характеризуется тем, что ее мощность сосредоточена либо на одной частоте, либо в узкой полосе частот.

Хорошее техническое проектирование может устранить большинство шумов путем экранирования, фильтрации, выбора модуляции и оптимального местоположения приемника.

С математической точки зрения информационные случайные сигналы (сигналы случайного характера, несущие передаваемую информацию) и шумы подчиняются одним вероятностным законам, поэтому они получили обобщенное название случайные колебания или случайные процессы.

Для анализа случайных сигналов применяют методы статистической теории связи, базирующейся на математическом аппарате теории вероятностей и теории случайных процессов. С целью упрощения и наглядности анализа работу электрических цепей часто рассматривают при воздействии детерминированных сигналов. Для учета же случайного характера реального сигнала в качестве его математической модели используют не отдельную детерминированную функцию u(t ), а совокупность подобных функций {u k (t)} = u { (t), u 2 (t ),..., образующих случайный процесс, в котором будет заключена полезная информация.

При передаче сигнала по линии связи он искажается и воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения сигналов в канале связи и помехи, воздействующие на сигнал .

Искажения часто обусловлены известными характеристиками линии связи и тогда могут быть устранены путем надлежащей коррекции.

Помехи заранее неизвестны и поэтому не могут быть полностью устранены. Они весьма разнообразны как по своему происхождению, так и по физическим свойствам. Можно дать следующую классификацию помех по месту их возникновения:

атмосферные помехи;

промышленные помехи (индустриальные помехи);

космические помехи;

электризационные помехи;

помехи посторонних каналов связи;

внутренние шумы.

Атмосферные помехи обусловлены электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области ДВ и СВ.

Промышленные помехи возникают из-за резких изменений тока в электрических цепях всевозможных электроустановок. К ним относятся помехи от электротранспорта, электрических моторов, медицинских установок, систем зажигания двигателей и т.д.

Космические помехи создаются радиоизлучением внеземных источников. Они создают общий шумовой фон и в наибольшей степени проявляются на ультракоротких волнах.

Электризационные помехи, часто возникающие во время пурги или песчаной бури, создаются наэлектризованными снежными частицами или песчинками. Эти помехи возникают при скорости ветра свыше 5,5 м/с и ощутимы на частотах ниже 15 МГц.

Помехи посторонних каналов связи – обусловлены работой посторонних радиостанций. С учетом источника происхождения их называют также стационарными. Этот вид помех наиболее характерен для КВ диапазоне.

В зависимости от характера изменения во времени различают флуктуационные, импульсные (сосредоточенные во времени) и узкополосные (сосредоточенные по спектру) помехи.

Флуктуационная помеха представляет собой непрерывное колебание, меняющееся случайным образом. Часто она описывается нормальным законом распределения. Быстрое изменение во времени позволяет заменить реальные флюктуационные помехи так называемым белым шумом - процессом с постоянным спектром.

Импульсные помехи представляет собой случайную последовательность коротких сигналов обычно следующих редко, что реакция приемника на текущий импульс успевает уменьшится до нуля к моменту появления очередного импульса. Типичными примерами таких помех являются сигналы, создаваемые разрядами молний или искрением контактов в электрических двигателях.

Сосредоточенные по спектру помехи занимают сравнительно узкую полосу частот, существенно меньшую полосы частот сигнала. Чаще всего они обусловлены сигналами посторонних радиостанций, или излучениями промышленных или медицинских генераторов высокой частоты различного назначения.

В зависимости от характера воздействия различают аддитивную помеху суммирующуюся с полезным сигналом и мультипликативную помеху

,

где – переданный сигнал, – аддитивная помеха;



Загрузка...