sonyps4.ru

Необходимые преобразования матрицы данных. Вычислительная схема метода главных компонентов

Смысл того или иного преобразования исходных данных заключается в изменении характера эмпирического распределения с тем, чтобы привести его в соответствие с целью исследования. Чаще всего преобразование используется для того, чтобы ослабить влияние экстремальных значений признаков на результаты расчетов, компенсировать влияние возможных ошибок в исходных данных, сделать сопоставимыми изменения значений признака на разных участках шкалы его значений.

Влияние характера распределения на результаты расчетов весьма велико, поэтому при постановке задачи следует особо рассмотреть вопрос о выборе вида преобразования для каждого признака в отдельности.

В социально-экономических исследованиях преобладают ряды, имеющие правую скошенность (т. е. резкий спад частот с ростом значения признака). При работе с такого рода распределениями часто бывает удобным преобразование к логарифмической шкале. Переход от Xj к ряду значений 1 gXj уменьшает интервалы по мере роста значений Такое преобразование широко используется, например, при изучении систем городов. Различия в значениях признаков для крупных городов обычно во много раз превышают соответствующие различия для большого числа средних и мелких городов. Преобразование к логарифмической шкале делает возможным исследование этих данных в одной задаче.

Как правило, признаки, отобранные исследователем для всестороннего описания того или иного явления, имеют различную размерность, а поэтому и- различную единицу масштаба. Чтобы сделать возможным сопоставление признаков и устранить влияние размерности, матрицу исходных данных обычно трансформируют (нормируют), вводя единый для всех признаков масштаб. Самый распространенный вид такой нормировки матрицы данных - приведение к стандартной форме, т. е. переход от значений х^ к

где Xij - значение /-го признака для і-то объекта; Xj - среднее арифметическое значение /-го признака; Sj - среднеквадратичное отклонение /-го признака (Sj2 - дисперсия /-го признака).

Ниже, рассматривая матрицу исходных данных, мы будем иметь в виду матрицу, заданную в стандартной форме, т. е. с элементами гц.

Возможны и другие типы трансформации матрицы. Например,

а _ Xii~X* h ХИ

Z maxfxij}- шіп{д:іі} ИЛИ Z ІЗ ~ И т. д.

Следует отличать преобразование отдельных рядов* с целью привести их в соответствие с. содержательной постановкой задачи от нормировки матрицы в целом. В отличие от подбора вида преобразования индивидуально по каждому признаку матрицу нормируют единым способом.

Следует упоімянуть еще и специальные преобразования, которые служат важным инструментом учета качественной априорной информации об исследуемых данных, непосредственно в исходной матрице данных не содержащейся. К таким преобразованиям относятся различные способы пополнения исходной матрицы данных производными параметрами. Часто в качестве таких новых параметров фигурируют отношения некоторых из исходных параметров, или отношения сумм одних из исходных параметров к суммам других. Нередко используются заранее изученные нелинейные преобразования исходных параметров.

Ниже, рассматривая нормированную матрицу данных (матрицу данных в стандартной форме), будем предполагать, что все специальные преобразования, включая преобразования данных к однородному виду с желаемыми формами распределения статистических рядов отдельных параметров, выполнены до ее нормирования.

Нормирование - последнее преобразование исходной матрицы, непосредственно предшествующее обработке методами факторного анализа.

Таким образом, матрица. исходных данных, подготовленная для факторного анализа, представляет собой совокупность значений п признаков для N объектов. Будем обозначать эту матрицу через ||z Особое внимание должно быть уделено вопросам нормировки исходных данных при решении задачи классификации объектов. В основе анализа вариации переменной лежит понятие среднего значения и отклонения от этой средней. Если в качестве переменной выступает признак, понятие среднего значения имеет четкий содержательный смысл и определяется в тех же единицах измерения, что и признак. На показатели ва риации признака его размерность не влияет. При классификации объектов переменной является объект (страна, город, предприятие и т. д.), не имеющий определенной единицы измерения, поэтому понятие среднего значения здесь в общем случае не поддается интерпретации. Как правило, вариация переменной - объекта- это вариация значений, принимаемых данным объектом по признакам разной размерности, поэтому показатели вариации определяются прежде всего изменением единиц измерения от одного признака к другому. Даже если все признаки выражены в одних и тех же ^ единицах измерения, например в денежном выражении (объем производства в млн. руб., объем розничной торговли в тыс. руб., средний заработок в руб. и т. д.), различия между показателями по масштабу величин проявляются при факторизации.

При факторизации матриц данных, сопоставляющих объекты по значению различных признаков (т. е. при решении задач классификации объектов, при Q-анали- зе), вместо коэффициента корреляции используются особые, специально разработанные коэффициенты , измеряющие степень сходства двух объектов не только по характеру соизменения их значений от признака к признаку, но и по уровню проявления одноименных признаков на этих объектах.

Этой мерой часто пользуются для сравнения объектов в различных методах автоматической классификации и распознавания образов .

Если указанные векторы нормированы так, что их, длины равны одной й той же стандартной величине, например единице:

2 {%ji ^кг)2 "

Наиболее простой мерой для определения сходства двух объектов является эвклидово расстояние r(Xj, Хъ) между векторами-столбцами Xj и хи, определяющими объекты:

то в качестве меры сходства таких нормированных векторов можно выбрать скалярное произведение (хи Xj) векторов хІ и Xj (более подробно различные меры сходства между объектами разбираются в гл. 6). 1.

Еще по теме НЕОБХОДИМЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦЫ ДАННЫХ:

  1. ФАКТОРНЫЙ АНАЛИЗ КАК ЧАСТЬ ОБЩИХ МЕТОДОВ ОБРАБОТКИ МАТРИЦ ДАННЫХ
  2. КРИЗИС АДМИНИСТРАТИВНО-ПЛАНОВОЙ СИСТЕМ И НЕОБХОДИМОСТЬ ПЕРЕХОДА К РЫНОЧНОЙ СИСТЕМЕ ЗАДАЧИ МАКРОЭКОНОМИЧЕСКОЙ СТАБИЛИЗАЦИИ ПРИ ПЕРЕХОДЕ К РЫНОЧНОЙ СИСТЕМЕ ИНСТИТУЦИОНАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ ПРИ ПЕРЕХОДЕ К РЫНОЧНОЙ СИСТЕМЕ СОЦИАЛЬНАЯ ПОЛИТИКА ПРИ ПЕРЕХОДЕ К РЫНОЧНОЙ СИСТЕМЕ

Исходные данные в пространствах объектов и признаков

Независимо от природы наблюдаемых явлений или процессов в большинстве ситуаций исходные данные представляются в виде матрицы (таблицы) объект-признак, где строками являются объекты, а столбцами - признаки. Под объектом подразумевается любой предмет изучения, например, страна, фирма, регион, студенческая группа и т. п. Признак определяет характеристики рассматриваемого объекта, например, если объектом исследования является фирма, то к числу признаков, ее характеризующих, можно отнести численность персонала, ежемесячный объем расходов и доходов, число контрагентов и другие характеристики. Такая матрица исходных данных имеет вид, показанный на рис. 1.

Рис. 1. Матрица данных объект-признак

Объекты наблюдений представляют собой многомерные величины, для обработки которых используются методы многомерного статистического анализа (МСА). Основой этих методов является геометрическое представление объектов. Исследуемые объекты располагаются в теоретическом пространстве размерностью, соответствующей числу признаков, которыми они характеризуются. В том случае, когда число признаков не превышает трех, возможна визуализация объектов в пространстве признаков. В противном случае возможна лишь математическая идеализация представления объектов в многомерном пространстве, либо необходим переход к некоторым агрегированным признакам, позволяющим снизить размерность наблюдений.

В многомерном пространстве признаки или объекты имеют определенные количественные характеристики. Все принимаемые значения признаков (объектов) представляют собой множества вещественных чисел. При использовании методов МСА необходимо принимать во внимание следующие особенности:

  • в m-мерном пространстве сохраняют силу принципиальные положения и аксиомы евклидовой геометрии;
  • в МСА, как правило, используется большое число признаков, разнородных по своей природе. В связи с этим на первом этапе исследования обычно возникает проблема приведения всех признаков к одному основанию: сопоставимому виду. Подобные проблемы решаются нормированием данных, что геометрически означает изменение масштаба, и другими преобразованиями координатной системы.
  • обработка m-мерных совокупностей включает большое число сложных и трудоемких арифметических операций, поэтому осуществляется на основе пошаговых алгоритмов.

При обработке многомерных данных следует учитывать дуализм представления, так как имеются возможности визуализации как объектов в пространстве признаков, так и признаков в пространстве объектов.

Кроме представления исходных данных в виде матрицы объект-признак, имеются и другие возможности представления. Например, с помощью коэффициента корреляции между признаками, который вычисляется по формуле

где - среднее значение произведения величин признаков x i , x k ; , (- среднее значение признака x i , (x k); s i (s k) - среднеквадратичное отклонение соответствующих признаков, можно представить исходные данные в виде матрицы признак-признак (рис. 2).

Рис. 2. Матрица признак-признак

Эта матрица в отличие от предыдущей имеет размерность . В каждой ячейке матрицы расположены значения коэффициента корреляции между соответствующими признаками; на диагонали матрицы стоят единицы, так как корреляция признака с самим собой максимальна и равна единице. Матрица симметрична относительно своей диагонали. Такая матрица применяется при вычислении главных компонентов.

Сходство или различие между классифицируемыми объектами устанавливается в зависимости от метрического расстояния между ними. Если каждый объект описывается n признаками, то он может быть представлен как точка в n -мерном пространстве, и его сходство с другими объектами будет определяться как соответствующее расстояние. Указанное обстоятельство позволяет перейти к еще одному виду представления исходных данных, а именно, к матрице объект-объект, представляющей собой таблицу расстояний между анализируемыми объектами. В этом случае в каждой ячейке матрицы находится величина расстояния, допустим, евклидова, рассчитываемого по формуле

.

Здесь x ij , x kj - значения j -го признака, соответственно, у i -го и k -го объектов.

Такая матрица, размерностью , имеет вид, показанный на рис. 3.

Рис. 3. Матрица объект-объект

На диагонали матрицы находятся нули, поскольку расстояние от точки до нее самой равно нулю. Элементы матрицы симметричны относительно диагонали.

Таким образом, исходные данные могут быть представлены в виде матриц трех типов:

  • матрицы объект-признак;
  • матрицы признак-признак;
  • матрицы объект-объект.

Метод главных компонентов

Любое исследование многомерных данных невозможно без использования метода главных компонентов (ГК). Сущность этого метода заключается в снижении размерности данных путем определения незначительного числа линейных комбинаций исходных признаков, которые объясняют большую часть изменчивости данных в целом. Метод ГК связан с переходом к новой системе координат, которая является системой ортонормированных линейных комбинаций. Этот метод дает возможность по n исходным признакам объектов построить такое же количество ГК, являющихся обобщенными (агрегированными) признаками. На первый взгляд, такой переход не дает никакого преимущества в представлении данных, но существует возможность сохранения информации о рассматриваемых данных даже в том случае, если сократить количество вычисленных ГК. Кроме того, при сохранении двух или трех ГК реализуется возможность визуализации многомерных объектов в сокращенном признаковом пространстве. Метод ГК обладает рядом свойств, делающим его эффективным для визуализации структуры многомерных данных. Все они касаются наименьшего искажения геометрической структуры точек (объектов) при их проектировании в пространстве меньшей размерности.

Математическая модель ГК базируется на допущении, что значения множества взаимосвязанных признаков порождают некоторый общий результат. В этой связи при представлении исходных данных, о чем говорилось в предыдущем параграфе, как раз и важна матрица признак-признак, в которой содержится вся информация о попарной связи между признаками. Предположив линейную форму связи между признаками, можно записать в матричной форме уравнение зависимости результата F от признаков Х в виде

где В - вектор параметрических значений линейного уравнения связи.

Условием выполнения такого равенства является соответствие дисперсий, т. е. D (X )= D (XB ). Поскольку Х является многомерной случайной величиной, то ее дисперсионная оценка - это ковариационная матрица S. Постоянная величина В выносится за знак дисперсии и возводится в квадрат, в результате чего получаем D (F )= B " SB .

Первым ГК f 1 (х) набора первичных признаков Х=(х 1 ,х 2 ,…,х n ) называется такая линейная комбинация этих признаков, которая среди прочих линейных комбинаций обладает наибольшей дисперсией. Геометрически это означает, что первый ГК ориентирован вдоль направления наибольшей вытянутости гиперэллипсоида рассеивания исследуемой совокупности данных. Второй ГК имеет наибольшую дисперсию рассеивания среди всех линейных преобразований, некоррелированных с первым ГК, и представляет собой проекцию на направление наибольшей вытянутости наблюдений в гиперплоскости, перпендикулярной первому ГК. Вообще, j –м ГК системы исходных признаков Х=(х 1 , х 2 ,…,х n ) называется такая линейная комбинация этих признаков, которая некоррелирована с (j -1) предыдущими ГК и среди всех прочих некоррелированных с предыдущими (j -1) ГК обладает наибольшей дисперсией. Отсюда следует, что ГК занумерованы в порядке убывания их дисперсий, т.е. , а это дает основу для принятия решения о том, сколько последних ГК можно без ущерба изъять из рассмотрения.

Поиск ГК сводится к задаче последовательного выделения первого ГК с наибольшей дисперсией, второго ГК и т. д. Подобная задача имеет место при условии введения ограничений. Пусть

При максимизируем , используя метод множителей Лагранжа, в результате чего получим

С учетом последнего равенства для характеристического уравнения, позволяющего найти значения j , имеем

где Е - единичная матрица.

Из множества значений характеристических (собственных) чисел j определяем наибольшее 1 и находим соответствующий собственный вектор В 1 , который используется при вычислении первого ГК. Для вычисления второго ГК определяются следующее по величине собственное число 2 и собственный вектор В 2 и т.д.

Если исходную матрицу данных Х предварительно стандартизировать, то матрица ковариаций S перейдет в матрицу парных корреляций R , и вектор B будет собственным вектором по стандартизованным данным U . Решающее уравнение в матричной форме принимает вид

Полученное уравнение называется характеристическим для матрицы R и представляет собой алгебраическое уравнение n -й степени относительно переменной l . Окончательно, соотношения для определения всех n ГК исходного n -мерного вектора Х могут быть представлены в виде

F = B Х.

Отметим основные свойства ГК:

  • математическое ожидание ГК равно нулю;
  • ГК некоррелированы между собой;
  • сумма дисперсий исходных признаков равна сумме дисперсий всех ГК;
  • значимость каждого ГК убывает с его номером и определяется соответствующим собственным числом.

Учитывая указанные свойства, можно предложить критерий для определения количества ГК, которые полезно оставить в качестве агрегированных признаков. Этот критерий может быть записан в виде

где n * - число оставленных в наборе агрегированных признаков.

Этот критерий достигает максимума, равного единице, только при n *= n .

Вычислительная схема метода главных компонентов

Решение задачи методом ГК сводится к поэтапному преобразованию матрицы исходных данных. Основные шаги метода показаны на схеме, приведенной на рис. 4.

Рис. 4. Вычислительная схема метода главных компонентов

Прокомментируем этапы вычислений. В качестве исходных данных обычно выбирается матрица объект-признак Х . Поскольку характеристиками объектов могут служить признаки различной природы, то данные необходимо стандартизировать, т. е. провести центрирование (вычитание среднего значения) и нормирование (деление на среднеквадратичное значение) данных.

На следующем шаге вычисляется матрица корреляций R между признаками, т.е. осуществляется переход к матрице признак-признак. Диагональные элементы этой матрицы равны единице, а сама матрица симметрична относительно этой диагонали, так как r ij = r ji .

Далее определяется матрица собственных векторов В , которая, также, как и предыдущая, является квадратной и состоит из n строк и n столбцов. Компоненты каждого собственного вектора представлены в виде вектора-столбца, сумма квадратов составляющих которого вследствие ортогональности равна единице.

На следующем этапе проводится расчет матрицы собственных чисел , которая в отличие от предыдущих матриц является диагональной, т. е. здесь только на диагонали матрицы находятся собственные числа: все прочие элементы матрицы равны нулю. Размерность этой матрицы, как и двух предыдущих, составляет . Каждое значение j определяет дисперсию каждого ГК. Суммарное значение равняется сумме дисперсий исходных признаков. При условии стандартизации исходных данных

На последнем шаге вычисляются ГК:

Например, при выборе только первых двух наибольших собственных чисел определяем соответствующие им составляющие собственных векторов (два столбца матрицы В ), которые перемножаем на строки матрицы Х. Перемножение первого столбца матрицы В на первую строку матрицы Х даст значение первого ГК для первого объекта, умножение того же столбца на вторую строку определяет значение первого ГК для второго объекта и т.д. После выполнения таких же операций со вторым выбранным вектором получаем возможность построить все объекты в плоскости первых двух ГК, где их взаимное расположение позволяет сделать предварительные выводы о сходстве (различии) объектов.

Проведение вычислений ГК по приведенной схеме возможно лишь на компьютере, на котором установлен подходящий пакет программного обеспечения из области многомерной статистики. Хотя в литературе и указываются вычислительные методы (в частности, метод Фаддеева), позволяющие определить ГК с помощью калькулятора , на самом деле такой прием возможен лишь в ситуации, когда число признаков не превышает трех. В реальной ситуации число признаков может достигать намного больших значений, поэтому необходима помощь ПК.

Из опыта работы автора наиболее приемлемыми пакетами для расчета ГК могут служить пакеты Statgraphics и Statistica, причем в силу большей простоты предпочтение следует отдать первому. В качестве примера на рис. 5 показан график, где в плоскости первых двух ГК представлена совокупность из 10 объектов, каждый из которых первоначально характеризуется 5 признаками.

Рис. 5. Объекты в плоскости первых двух ГК

Как видно из графика, можно получить некоторые выводы о сходстве (различии) объектов при переходе к сокращенному двумерному пространству. Например, достаточно четко прослеживается деление объектов на две группы (объекты с номерами 1-5 и 6-10) и значительное рассеяние внутри этих групп. Таким образом, от пятимерного признакового пространства с помощью ГК осуществлен переход к двумерному пространству агрегированных признаков и визуализация многомерных объектов.

Версия для печати

Хрестоматия

Название работы Аннотация

Цель работы: ознакомить студентов с видами представления исходных данных и обучить практическим навыкам визуализации многомерных данных в среде Statistica.

1 Основные сведения

1.1 Виды представления многомерных данных

Независимо от природы наблюдаемых явлений или процессов в большинстве ситуаций исходные данные представляются в виде матрицы (таблицы) объект-признак , где строками являются объекты, а столбцами ─ признаки. Под объектом подразумевается любой предмет изучения, например, страна, фирма, регион, студенческая группа и т. п. Признак определяет характеристики рассматриваемого объекта, например, если объектом исследования является фирма, то к числу признаков, ее характеризующих, можно отнести численность персонала, ежемесячный объем расходов и доходов, число контрагентов и другие характеристики. Каждый элемент такой матрицы Х обозначается как x ij , где - номер объекта; - номер признака. Размерность этой матрицы составляет . Матрица Х описывает m объектов в терминах n признаков, причем значения m и n обычно достаточно велики. Считается, что для получения статистически достоверных результатов число объектов должно превышать число признаков в несколько раз.

При обработке многомерных данных следует учитывать дуализм представления, так как имеются возможности визуализации как объектов в пространстве признаков, так и признаков в пространстве объектов. Кроме представления исходных данных в виде матрицы объект-признак, имеются и другие возможности представления. Например, с помощью коэффициента корреляции между признаками, который вычисляется по формуле

где ─ среднее значение произведения величин признаков x i , x k ; , ─ среднее значение признака x i , (x k); s i (s k) ─ среднеквадратичное отклонение соответствующих признаков, можно представить исходные данные в виде матрицы признак-признак.

Эта матрица R в отличие от предыдущей имеет размерность . В каждой ячейке матрицы расположены значения коэффициента корреляции между соответствующими признаками; на диагонали матрицы стоят единицы, так как корреляция признака с самим собой максимальна и равна единице. Матрица симметрична относительно своей диагонали.

Сходство или различие между классифицируемыми объектами устанавливается в зависимости от метрического расстояния между ними. Если каждый объект описывается n признаками, то он может быть представлен как точка в n -мерном пространстве, и его сходство с другими объектами будет определяться как соответствующее расстояние. Указанное обстоятельство позволяет перейти к еще одному виду представления исходных данных, а именно, к матрице D объект-объект , представляющей собой таблицу расстояний между анализируемыми объектами. В этом случае в каждой ячейке матрицы находится величина расстояния, допустим, евклидова, рассчитываемого по формуле:

.

Здесь x ij , x kj ─ значения j -го признака, соответственно, у i -го и k -го объектов.

На диагонали матрицы находятся нули, поскольку расстояние от точки до нее самой равно нулю. Элементы матрицы симметричны относительно диагонали.

Таким образом, исходные данные могут быть представлены в виде матриц трех типов:

· матрицы объект-признак;

· матрицы признак-признак;

· матрицы объект-объект.

1.2 Визуализация многомерных данных

Любое исследование многомерных данных невозможно без использования метода главных компонентов (ГК). Сущность этого метода заключается в снижении размерности данных путем определения незначительного числа линейных комбинаций исходных признаков, которые объясняют большую часть изменчивости данных в целом. Метод ГК связан с переходом к новой системе координат, которая является системой ортонормированных линейных комбинаций. Этот метод дает возможность по n исходным признакам объектов построить такое же количество ГК, являющихся обобщенными (агрегированными) признаками. На первый взгляд, такой переход не дает никакого преимущества в представлении данных, но существует возможность сохранения информации о рассматриваемых данных даже в том случае, если сократить количество вычисленных ГК. Кроме того, при сохранении двух или трех ГК реализуется возможность визуализации многомерных объектов в сокращенном признаковом пространстве. Метод ГК обладает рядом свойств, делающим его эффективным для визуализации структуры многомерных данных. Все они касаются наименьшего искажения геометрической структуры точек (объектов) при их проектировании в пространстве меньшей размерности.

Математическая модель ГК базируется на допущении, что значения множества взаимосвязанных признаков порождают некоторый общий результат. В этой связи при представлении исходных данных как раз и важна матрица признак-признак, в которой содержится вся информация о попарной связи между признаками.

Первым ГК набора первичных признаков Х=(х 1 ,х 2 ,…,х n) называется такая линейная комбинация этих признаков, которая среди прочих линейных комбинаций обладает наибольшей дисперсией. Геометрически это означает, что первый ГК ориентирован вдоль направления наибольшей вытянутости гиперэллипсоида рассеивания исследуемой совокупности данных. Второй ГК имеет наибольшую дисперсию рассеивания среди всех линейных преобразований, некоррелированных с первым ГК, и представляет собой проекцию на направление наибольшей вытянутости наблюдений в гиперплоскости, перпендикулярной первому ГК. Вообще, j–м ГК системы исходных признаков Х=(х 1 ,х 2 ,…,х n) называется такая линейная комбинация этих признаков, которая некоррелирована с (j-1) предыдущими ГК и среди всех прочих некоррелированных с предыдущими (j-1) ГК обладает наибольшей дисперсией. Отсюда следует, что ГК занумерованы в порядке убывания их дисперсий, т.е. , а это дает основу для принятия решения о том, сколько последних ГК можно без ущерба изъять из рассмотрения.

Решение задачи методом ГК сводится к поэтапному преобразованию матрицы исходных данных. Основные шаги метода показаны на схеме, приведенной на рис.1.

Рис. 1. Вычислительная схема метода главных компонентов

Прокомментируем этапы вычислений. В качестве исходных данных обычно выбирается матрица объект-признак Х . Поскольку характеристиками объектов могут служить признаки различной природы, то данные необходимо стандартизировать, т. е. провести центрирование (вычитание среднего значения) и нормирование (деление на среднеквадратичное значение) данных.

На следующем шаге вычисляется матрица корреляций R между признаками, т. е. осуществляется переход к матрице признак-признак. Диагональные элементы этой матрицы равны единице, а сама матрица симметрична относительно этой диагонали, так как r ij =r ji .

Далее определяется матрица собственных векторов В , которая, также, как и предыдущая, является квадратной и состоит из n строк и n столбцов. Компоненты каждого собственного вектора представлены в виде вектора-столбца, сумма квадратов составляющих которого вследствие ортогональности равна единице.

На следующем этапе проводится расчет матрицы собственных чисел Λ , которая в отличие от предыдущих матриц является диагональной, т. е. здесь только на диагонали матрицы находятся собственные числа: все прочие элементы матрицы равны нулю. Размерность этой матрицы, как и двух предыдущих, составляет . Каждое значение λ j определяет дисперсию каждого ГК. Суммарное значение равняется сумме дисперсий исходных признаков. При условии стандартизации исходных данных

На последнем шаге вычисляются ГК:

· с помощью матрицы Λ находятся два или три наибольших собственных числа (такой выбор обусловлен желанием визуализировать многомерные объекты в двумерной плоскости или трехмерном пространстве);

· по матрице В определяются собственные вектора (СВ), которые соответствуют выбранным собственным числам;

· найденные таким образом собственные вектора умножаются последовательно на строки исходной матрицы, формируя значения ГК для каждого объекта.

Например, при выборе только первых двух наибольших собственных чисел определяем соответствующие им составляющие СВ (два столбца матрицы В ), которые перемножаем на строки матрицы Х.

Перемножение первого столбца матрицы В на первую строку матрицы Х даст значение первого ГК для первого объекта, умножение того же столбца на вторую строку определяет значение первого ГК для второго объекта, т.е.

Y 1 = b 11 x 11 +b 21 x 12 + . . . + b n1 x 1n ,

где b 11 ,b 21 ,…, b n 1 - компоненты первого СВ; x 11 ,x 12 ,…, x 1 n - первая строка матрицы данных объект-признак.

После выполнения таких же операций со вторым выбранным вектором, рассчитанным по формуле

Y 2 = b 12 x 21 +b 22 x 22 + . . . + b n 2 x 2 n ,

получаем возможность построить все объекты в плоскости первых двух ГК, где их взаимное расположение позволяет сделать предварительные выводы о сходстве (различии) объектов.

2 Работа на компьютере

Выполнение данной работы производится с программным пакетом Statistica; версия 6.1.

2.1 Представление многомерных данных

1. Из папки Examples - Datasets открываем файл данных, озаглавленный Activities , в котором приведены различные характеристики образа жизни для 28 групп людей. В качестве активных переменных использовано семь видов социальной активности: work (работа), transport (транспорт), children (дети), household (домашний быт), shopping (покупки), personal care (личное время), meal (еда). Показателем является общее время, затраченное на данный вид деятельности представителями группы в часах. В качестве вспомогательных признаков выбраны: sleep (сон), TV (телевизор), leisure (досуг). В файл данных введена дополнительная переменная gender (пол), принимающая значения male (мужчины) и female (женщины). Для присвоения меток точкам на графиках добавлен группирующий признак geo. region (регион). Часть таблицы исходных данных приведена на рис.2.

Рис.2. Матрица объект-признак

2. Перейти к матрице признак – признак посредством следующих действий: в командной строке окна выбрать опцию Анализ , в которой указать позицию Основные статистики и таблицы . В открывшемся окне отметить Парные и частные корреляции и нажать OK. Далее выбрать первые семь переменных из первого списка. В итоге должна получиться матрица корреляций между признаками размерностью 7х7, вид которой показан на рис.3.

Рис.3. Матрица признак - признак

При обработке данных в этом случае строки с пропущенными данными исключаются из рассмотрения, поэтому из исходных 28 строк остается 23.

3. Перейти к матрице объект-объект следующими операциями: в командной строке окна выбрать опцию Анализ , в которой указать позицию и далее - Кластерный анализ - Иерархическая кластеризация , после чего нажать ОК. В открывшемся окне кластерного анализа на вкладке Дополнительно, в опции Объекты выбрать Наблюдения (строки) (рис.4), нажать ОК, далее отметить в окне те же 7 переменных и нажать ОК.

Рис.4. Окно кластерного анализа

В открывшемся окне выбрать Матрицу расстояний , которая и представляет собой матрицу «объект-объект», размерностью 23х23. Часть этой таблицы приведена на рис.5.

Рис.5. Матрица объект-объект

Пользуясь такой матрицей, можно построить дендрограмму объединения объектов, сходных или различных по семи признакам. Для этого в окне Результаты иерархической кластеризации нажать клавишу Вертикальная дендрограмма , в результате чего приходим к графику, показанному на рис.6.

Полученная дендрограмма указывает порядок и уровень объединения объектов, сходных между собой, а также сформировавшиеся кластеры (группы) сходных объектов. В данном примере образовано 4 кластера.

Рис.6. Дендрограмма объектов

2.2 Метод главных компонентов

1. Из папки Examples - Datasets открываем тот же самый файл данных Activities .

2. В командной строке окна выбрать опцию Анализ , в которой указать позицию Многомерный разведочный анализ и далее - Анализ главных компонент и классификация . В стартовой панели модуля на вкладке Дополнительно нажать кнопку Переменные . В открывшемся окне Выберите переменные… в поле Переменные анализа выделить первые 7 переменных; в поле Вспомогательные - переменные sleep - leisure; в поле С основными наблюдениями - gender ; в поле Группирующая - geo. region. После этих процедур окно Выберите переменные … принимает вид, показанный на рис. 7.

Рис.7. Окно выбора переменных

После нажатия ОК стартовая панель имеет вид, показанный на рис.8.

Рис.8. Стартовая панель после выбора переменных

Кроме того, на стартовой панели в поле Код для основных наблюдений указать значение переменной female. Здесь же в рамке Анализ основан на … выбрать опцию корреляцияхs , так как средние значения и дисперсии каждой переменной могут значительно различаться между собой. В рамке Удаление пропущенных данных указать опцию Замена средним , а в рамке Оценка дисперсии - опцию SS/ N-1 , поскольку данных не очень много, и выбор другой опции может привести к смещенным оценкам дисперсии. После выбора этих опций нажать ОК.

3. В появившемся окне результатов анализа в информационной части указано количество основных и вспомогательных переменных и наблюдений (рис. 9).

Рис.9. Окно результатов анализа

После нажатия кнопки График каменистой осыпи на вкладке Переменные программа построит график изменения собственных чисел (СЧ) корреляционной матрицы, показанный на рис.10.

Рис.10. График изменения собственных чисел

Сами СЧ можно увидеть после нажатия кнопки Собственные значения в появившейся таблице (рис.11).

Рис.11. Собственные числа

Анализ графика и таблицы позволяет выбрать число выделяемых ГК. Например, по графику можно определить СЧ, начиная с которого график теряет свою кривизну, и убывание СЧ максимально замедляется. Из графика видно, что такими СЧ являются 2 или 3, поэтому число выделяемых ГК может быть равно 2 или 3. Выбрав число, равное 2, введем его в поле Число факторов (рис.8), после чего Качество представления изменит свое значение со 100% на 81% (рис.12).

Рис.12. Качество представления при двух факторах

Тот же самый вывод следует из таблицы рис.10, где в последнем столбце приведены значения накопленной суммы СЧ: видно, что при двух оставляемых в анализе СЧ эта сумма составляет примерно 81%. Следовательно, потеря информативности при переходе от 7 СЧ к 2 СЧ составляет около 19%, но зато появляется возможность визуализации многомерных исходных данных.

4. Нажать кнопку Факторные координаты для получения таблицы координат исходных переменных в пространстве новых выделенных факторов (ГК) (рис.13).

Рис.13. Координаты исходных переменных в пространстве главных компонентов (факторов)

Эта таблица дает возможность интерпретации ГК в терминах корреляции: большее абсолютное значение координат (факторной нагрузки) исходного признака с каким-либо ГК (фактором) говорит о том, что переменная сильнее связана с этим фактором. Другими словами, чем больше величина координаты признака, тем лучше переменные показывают структуру, представленную этим фактором.

Рис.14. Переменные (признаки) в плоскости первых двух факторов (главных компонентов)

Как видно из рис.14, все переменные изображены в виде точек на единичном круге, так как корреляции (координаты точек) наблюдений с факторными осями принимают значения (по модулю) из интервала .

Горизонтальная ось соответствует фактору 1, вертикальная - фактору 2. Координаты точек - в таблице рис.12. Кроме того, этот рисунок дает возможность оценить корреляцию между признаками: чем меньше угол между радиус-векторами определенных признаков, тем сильнее корреляция между ними. Например, переменные work и transport находятся достаточно близко между собой, что свидетельствует об их сильной корреляции. Этот же вывод следует и из матрицы признак-признак.

5. На вкладке Наблюдения нажать кнопку 2М графики факторных наблюдений. Появится график (рис.15), на котором изображены все наблюдения (строки), использованные при расчете. При этом основные наблюдения (female) указаны кружочками синего цвета, а вспомогательные (male ) отмаркированы квадратиками красного цвета. Из графика видно, что основные и вспомогательные наблюдения сгруппированы в разных областях плоскости, т.е. они объединены в разные кластеры.

Рис.15. Наблюдения (строки) в плоскости первых двух факторов (главных компонентов)

3. Задание

В пакет Statistica ввести данные по результатам сессии 9 студенческих групп, сдавших по 4 экзамена (табл.). Ввод данных осуществляется через Файл -Создать , где в появившемся окне указать число переменных, равное 4, а число строк - 9. В таблице приведены средние баллы экзаменов по каждой дисциплине (ОИ - отечественная история; ЭТ – экономическая теория; МА – математический анализ; ЛА – линейная алгебра) для каждой из 9 групп.

Таблица Средние баллы каждой группы по 4 дисциплинам

Номер группы Отечественная история Экономическая теория Математический анализ Линейная алгебра
4,59 4,77 4,82 4,59
4,68 4,73 4,27 4,38
4,52 4,29 3,95 3,95
4,64 4,5 4,45 4,41
4,32 4,09 4,14 4,23
4,36 4,27 4,05 4,23
4,05 4,05 3,62 4,0
3,9 3,95 3,63 3,86
3,76 3,33 3,48

Вычислить:

1. Корреляцию между дисциплинами (построить матрицу признак-признак).

2. Расстояние между группами (построить матрицу группа-группа).

3. Собственные числа и главные компоненты (ГК).

4. Качество представления при двух ГК.

Построить графики:

1. Дендрограмму студенческих групп.

2. Дисциплины в плоскости ГК.

3. Группы в плоскости ГК.

4. Дисциплины в плоскости ГК.

Вопросы к защите работы

1. Как рассчитываются матрицы «объект-объект», «признак-признак»?

2. Что определяет собой дендрограмма?

3. Какая из матриц представления данных используется при кластерном анализе?

4. Как вычисляются ГК?

5. Какова размерность ГК?

6. Как выбирается число ГК?

7. Можно ли оценить потери информации при переходе к ГК?

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19


Понятно, что общее число возможных карточек–примеров в данном случае равно числу всех гипотез с 4 признаками, т.е. 81. Именно столько карточек и составляет стимульный материал в методике Брунера. Каждому понятию с одним признаком соответствует 27 карточек–примеров, с двумя признаками – 9 карточек, с тремя – 3, а с четырьмя – 1.

2. Сокращение числа гипотез и информативность различных примеров. Рассмотрим теперь, каким образом будет сокращаться число возможных для испытуемых гипотез о содержании задуманного экспериментатором понятия при последовательных встречах с различными примерами. Легко видеть, что первый же положительный пример (любой!) устраняет 80 гипотез с четырьмя признаками, 104 – с тремя, 30 – с двумя и 8 – с одним. Иначе говоря, выбор испытуемого после встречи с первым положительным примером ограничивается 1 + 4 + 6 + 4 = 15 гипотезами (понятно, что их число равно числу всех возможных сочетаний признаков – табл. 2). Важно также заметить, что число гипотез, остающихся после встречи с первым положительным примером, не зависит от содержания задуманного понятия.

На втором шаге работы испытуемого он может встретиться как с положительными, так и с отрицательными примерами, причем – с положительными, совпадающими с первым примером по одному, двум или трем признакам, а с отрицательными – отличающимися от первого по одному, двум, трем или всем четырем признакам. Число гипотез, устраняемых в каждом из этих случаев, дано в таблице.

2. Число гипотез, устраняемых на втором шаге испытуемого, при встрече с различными типами примеров

Из табл. 2 видно, что на втором шаге работы испытуемого различные типы встречаемых им примеров существенно различаются по числу гипотез, которые они позволяют устранить при рациональной работе испытуемого. Наиболее «информативными» являются примеры первого типа – такой пример позволяет устранить все гипотезы, кроме одной, и, таким образом, уже на втором шаге отгадать задуманное понятие. Наименее информативными, пустыми, оказываются отрицательные примеры первого типа – они не позволяют устранять ни одной гипотезы. Легко заметить, что пустых или комплементарных положительных примеров быть уже не может.

На очередном, третьем шаге работы испытуемый может встретить уже только три типа примеров, совпадающих/различающихся по одному или двум признакам, а также пустые. Причем встреча с положительным примером, совпадающим, или с отрицательным, различающимся с первым по одному признаку, снова ведет к решению задачи. Наконец, на четвертом шаге испытуемый может встретиться или с пустым примером, или же с примером, совпадающим/отличающимся по одному признаку, и, таким образом, даже в случае наиболее неблагоприятных примеров на предыдущих шагах отгадать задуманное экспериментатором понятие. Иначе говоря, если не считать пустых примеров, рационально действующий испытуемый непременно решит задачу за четыре шага. Это и есть минимальное «логически необходимое» число непустых примеров, которое гарантирует уверенное решение задачи даже в наиболее неблагоприятном случае.

Идеальные и реальные стратегии. Из разбора шагов, ведущих к последовательному сокращению числа альтернативных гипотез, можно увидеть, что всегда существует некоторая идеальная (рациональная) стратегия, с необходимостью приводящая к решению поставленной задачи. В данном случае нетрудно было опознать стратегию фокусировки. Было бы неверным, однако, считать, что это единственная идеальная стратегия, ведущая к решению задачи, или даже что она наиболее эффективна в любом случае. Применение всякой идеальной стратегии позволяет достигать конкретных целей, которыми (в разных случаях) могут становиться: 1) максимизация получаемой информации; 2) снижение нагрузки на память и логическое членение; 3) образование данного понятия за минимальное число шагов; 4) сведение к минимуму числа ошибочных гипотез в процессе образования понятия; 5) достижение субъективной уверенности в правильном образовании понятия вне зависимости от числа примеров, с которыми встретился испытуемый, и др.

Понятие идеальных стратегий является средством анализа и описания реальной работы испытуемого в эксперименте. Оно не только задает единицу анализа процесса образования понятия, позволяя рассматривать отдельные шаги этого процесса как необходимые и несамостоятельные моменты целого, но также открывает путь для исследования разнообразных зависимостей, существующих между отдельными составляющими ситуации.

Типы реальных стратегий представляют собой качественные значения зависимой переменной в экспериментах по образованию искусственных понятий. Умение правильно идентифицировать рассмотренные стратегии является критерием освоения методики Брунера. Если цель достигнута, можно приступить к постановке и решению собственно исследовательских вопросов о факторах, определяющих выбор той или иной стратегии. Пример такого использования методики в исследовательских целях дает задание № 11 в разделе «Экспериментальный метод» исследовательского практикума.

Литература: 10; 15.

§ 14. Задание 12. Использование теории информации в модифицированном варианте методики образования искусственных понятий

Тема задания

Знакомство с модификацией методики образования искусственных понятий, предложенной О. К. Тихомировым.

Введение

Информация как количественное понятие имеет смысл только как результат осуществления какого–либо события, имеющего некоторую вероятность. Вероятностные же свойства объектов в экспериментах Дж. Брунера не анализировались и не являлись предметом исследования. Эксперименты проводились с испытуемыми однократно. Целью их было только посмотреть, какую стратегию выберет испытуемый в зависимости от варьирования некоторых условий. В таком эксперименте, естественно, нельзя было ставить вопрос о том, могут ли испытуемые прийти к оптимальной в соответствующих условиях стратегии в результате тренировки, какими факторами обусловливается изменение стратегий.

Для того чтобы ответить на эти вопросы, необходимо было изменить методику таким образом, чтобы испытуемый находился в ситуации выбора различных информативных элементов в течение длительного времени, что достигается многократным предъявлением ему ограниченного набора задач. При таких условиях оказывается возможным выяснить, чем обусловливается его поисковая деятельность, вскрыть факторы, определяющие и регулирующие ее осуществление.

Модификация методики О. К. Тихомировым. Соответствующая методика была предложена О. К. Тихомировым. Задачей исследований О. К. Тихомирова являлось изучение закономерности самостоятельного решения человеком задач с неопределенностью, т.е. задач, решение которых может заканчиваться различным результатом, и следовательно, до нахождения решения существует известная неопределенность относительно конечного результата задач на распознавание явлений.

Для этой цели было применено сопоставление хода реального процесса решения мыслительной задачи на классификацию с оптимальным способом ее решения, выводимым на основании специальных математических расчетов, в результате чего оказывается возможным получить некоторую характеристику реального процесса.

Использованная методика была во многих отношениях сходной с методикой образования искусственных понятий в варианте Выготского–Сахарова. И в том, и в другом случае задача испытуемого заключается в нахождении методом последовательных проб принципа классификации, избранного экспериментатором. Если же рассматривать группы объектов, которые в результате классификации должен был выделить испытуемый по аналогии с образованием искусственных понятий (определение каждой группы рассматривать как образование искусственного понятия), то основное отличие данной методики от методики Выготского–Сахарова заключается в том, что основание такой классификации является переменным, – центральный момент методики О. К. Тихомирова. Именно переменный характер классификации объектов позволил использовать для описания оптимальных способов решения задач методы теории вероятности и теории информации, так как это приводило к созданию статистической характеристики обследуемых объектов. С описанной модификацией методики Выготского–Сахарова студенты должны ознакомиться в настоящем задании.

Цель задания – применить использование теории информации для изучения процесса образования искусственных понятий.

Статистическая структура обследуемого поля. В методику входит весь набор стимульного материала, и указаны наборы карточек, которые рекомендуется использовать в опытах.

В качестве наборов гипотез предлагается рассмотреть те 3 набора, которые представлены ниже, в разделе «Экспериментальный материал» с 2, 4 и 14 объектами в группе.

При заданных условиях в длинном ряду предъявлений стимульных объектов (карточек) (рис. 12) каждая гипотеза может реализоваться (соответствовать предъявляемым карточкам) в среднем одинаковое число раз. Следовательно, вероятность реализации для каждой гипотезы равна: для I набора Р 1 = Р 2 = 1 / 2 ; для II набора Р 1 = Р 2 = Р 3 = Р 4 = 1 / 4 ; для III набора Р 1 = Р 2 = Р 3 = ... = Р 14 = 1 / 14 . Очевидно, что чем больше возможных исходов, предъявляемых испытуемому для распознавания гипотез, тем более неопределенен конечный исход решения. Используя теорию информации, можно выразить неопределенность опыта более точно. В теории информации показано, что неопределенность опыта – Н, или энтропия, – является функцией числа возможных исходов и вероятности их реализации:

где Р – вероятность отдельного исхода опыта. Если исходы равновероятны, то Н = lg 2 M , где М – число возможных исходов опыта.

Таким образом, условия разбираемой нами задачи будут описываться так: 1) Н= lg 2 2 = 1 дв. ед.; 2) Н= lg 2 4 = 2 дв. ед.; 3) Н– lg 2 14 = 4 дв. ед. В принятых условиях эксперимента каждый из объектов, помимо своих постоянных признаков – количества фигур, нарисованных на карточках, их цвета, формы и фона (или числа каемок), приобретает совершенно определенную статистическую характеристику частоты, с которой этот объект оказывается входящим в искомую группу при многократном решении задач. Все объекты, таким образом, распределяются на две категории: объекты, которые никогда не входят в искомую группу; объекты, которые всегда входят в группу с вероятностью больше нуля, но меньше единицы. В связи с тем что объекты помимо своих постоянных признаков в принятых условиях приобретают еще один переменный признак (вхождения или невхождения в искомую группу), каждую отдельную пробу следует рассматривать также как опыт, могущий иметь несколько различных исходов с различной вероятностью их реализации и, следовательно, характеризующийся неопределенностью:

Таким образом, процесс решения задачи выступает как процесс последовательного обследования поля, имеющего некоторую статистическую характеристику, а отдельные пробы могут относиться к объектам с различной энтропией появления проверяемого признака. Поскольку получаемая информация равна уменьшению исходной неопределенности: I = H 1 – Н 2 , результаты проверки различных объектов могут различаться по их информативности. Применим теперь тот же метод к анализу второй пробы с учетом одного осложняющего условия: если перед первой пробой для каждой программы статистическая характеристика обследуемого поля является постоянной, то перед вторым выбором распределение вероятностей получения «да» для всех объектов поля зависит от результатов предшествующего выбора, т.е. имеет место некоторое распределение условных вероятностей.

Поскольку отдельные пробы имеют различную информативность, множество различных способов решения данной задачи можно оценивать по тому, как соотносятся необходимая и избыточная информации, собираемые испытуемым, для решения этой задачи при применении различных способов.

При распознавании гипотез в одном наборе оптимальным способом поиска будет выбор любого объекта с вероятностью получения положительного ответа 0,5, дающий информацию, равную 1 дв. ед. При распознавании гипотез во втором наборе оптимальным способом поиска будет являться последовательный выбор двух объектов, дающий каждый соответственно по 1 дв. ед.

Методика

Опыт состоит из 2 частей: 1) с расположением объектов, данном в Приложении; 2) с измененным (произвольно) порядком карточек, но с тем же набором гипотез.

Полученные данные должны быть использованы для ответов на следующие вопросы:

♦ Как влияет неопределенность условий задачи на ход ее решения?

♦ Как протекает обследование поля до выявления его статистической характеристики и после?

♦ Влияет ли пространственное расположение объектов на протекание поиска?

Экспериментальный материал. В эксперименте используется набор объектов (81 шт.): карточки белого, желтого и зеленого цветов, на которых изображены геометрические фигуры разной формы – квадраты, треугольники, кружки; все они разного цвета – черные, красные или синие в разном количестве по 1, 2, 3. Полный комплект карточек (81 шт.) раскладывается перед испытуемым в таком порядке, как они представлены на вкладке (см. рис. 12). Экспериментатором заранее составляются некоторые наборы гипотез и соответствующих им объектов, составляющих определенную группу, которые будут предложены испытуемому для распознавания, т.е. для образования экспериментального понятия.

Возможные наборы гипотез:

1. 3 квадрата

2. 3 черные фигуры

1. 3 квадрата

2. 3 черные фигуры

3. Все черные фигуры

4. Все черные фигуры на белом фоне

1. Квадраты

2. Черные фигуры

3. 3 фигуры

4. Фигуры на белом фоне

5. 3 квадрата

6. 3 черные фигуры

7. Черные фигуры на белом фоне

8. Квадраты на белом фоне

9. 3 фигуры на белом фоне

10. Черные квадраты

11.3 черных квадрата

12. 3 квадрата на белом фоне

13. Черные квадраты на белом фоне

14. 3 черные фигуры на белом фоне

Ввиду трудоемкости вычислений и значительного времени, которого требует проведение данного опыта, в особенности с предъявлением для распознавания испытуемому набора, состоящего из 14 гипотез, последний приводится здесь для иллюстрации; студенты могут ограничиться предъявлением лишь первых двух наборов гипотез или не доводить поиск в случае предъявления 14 гипотез до оптимального способа.

Подготовка экспериментального материала включает также следующий этап: используя таблицу случайных чисел, экспериментатор составляет последовательность предъявления испытуемым каждой гипотезы (в случайном порядке); каждой соответствует определенный набор объектов (20 предъявлений к I и II набору и 28 предъявлений к III набору). В случае если за такое количество времени испытуемым не находится оптимальный способ решения данной задачи, экспериментатор начинает задавать гипотезы снова в том же порядке. Испытуемый не должен знать, какие гипотезы и сколько раз могут быть предъявлены ему для распознавания.

Отработка задания

Опыт проводится с одним испытуемым первоначально с набором из 2 гипотез, а затем, после перехода испытуемого в этом случае к оптимальному поиску, экспериментатор без предупреждения переходит к предъявлению для распознавания набора из 4 гипотез. Весь опыт продолжается до тех пор, пока испытуемый не начинает стабильно, в течение ряда задач (6–8), определять в каждом случае требуемую гипотезу, используя оптимальную стратегию поиска. Пробы, делаемые испытуемым в процессе опыта, регистрируются на специальном бланке, каждая клетка которого соответствует определенному объекту (карточке) из всего набора, предлагаемого испытуемому. Экспериментатор отмечает номер сделанного испытуемым выбора на бланке. Каждый такой бланк является протоколом решения испытуемым каждой отдельной задачи – распознавания задуманной группы объектов в каждом конкретном случае. На бланке–протоколе обязательно фиксируются номера задач. Образец бланка с зафиксированным ходом опыта дан в Приложении.

В каждой части опыта участвуют экспериментатор и один испытуемый. Вся группа испытуемых делится на две подгруппы – для участия в первой и второй частях опыта.

Инструкция испытуемому: «Перед вами расположен набор объектов (карточек), характеризующихся различными признаками. Экспериментатор задумывает некоторую группу этих объектов. Вам предстоит определить, что это за группа. Для этого Вы можете указать на любой объект и спросить экспериментатора, входит ли он в задуманную группу карточек. Подобные выборы объектов осуществляйте до тех пор, пока Вам не станет ясно, какую группу объектов задумал экспериментатор. Вы должны назвать эту группу. Если ответ экспериментатора окажется отрицательным, продолжайте поиск. Старайтесь при нахождении требуемой группы делать как можно меньше проб отдельных объектов».

Последнее требование инструкции повторяется часто, перед решением почти каждой задачи, пока испытуемый не перейдет к оптимальному поиску с минимальным числом проб.

Обработка результатов

Для получения данных в целях ответа на первый вопрос требуется подсчитать общее количество решенных задач, предшествующее устойчивому осуществлению испытуемыми оптимального поиска в случае предъявления первого и второго набора гипотез.

Как уже указывалось, оптимальным способом поиска для I набора гипотез будет опробование любой карточки с вероятностью получения положительного ответа 1 / 2 . Для II набора гипотез необходимо опробовать уже две карточки: первую – с вероятностью получения ответа «да» – 1 / 2 , и вторую, вероятность получения ответа «да» которой будет 1 / 2 после осуществления первого выбора.

В табл. 1 показано распределение вероятностей получения положительного ответа для I набора гипотез при расположении карточек первой части опыта.

Для получения данных по второму вопросу требуется проследить, каким образом испытуемый осуществляет поиск в каждой конкретной задаче, для чего требуется подсчитать количество информации, получаемой им при осуществлении каждого выбора.

При предъявлении I набора гипотез это делается просто, так как из приведенных выше формул ясно, какое количество информации получает испытуемый в каждом выборе. Экспериментатор должен фиксировать, на каком этапе испытуемым получена требуемая информация 1 дв. ед. и как долго продолжается после этого последующий поиск. При каждом выборе в этом случае испытуемый будет получать нулевую информацию.

При предъявлении II набора гипотез дело несколько усложняется, так как после первых выборов по–разному будет изменяться статистическая характеристика обследуемого поля, и экспериментатор должен сам научиться ее определять. Покажем на примере, как это делается. Предположим, что испытуемый первым назвал объект «3 синих круга на желтом фоне». Из табл. 2 видно, что вероятность получения положительного ответа при выборе этой карточки равна 0, и полученная информация, следовательно, тоже равна 0; статистическая характеристика поля остается неизменной.

Допустим теперь, что испытуемый назвал карточку «3 черных квадрата на белом фоне». Вероятность получения положительного ответа в этом случае равна 1 и, следовательно, полученная информация также равна 0 при неизменной статистической характеристике поля. Возьмем, наконец, случай первого выбора испытуемым карточки, характеризующейся некоторой средней вероятностью получения положительного ответа о принадлежности ее к задуманной группе, например карточки «1 черный круг на белом фоне». Из табл. 2 видно, что вероятность ее равна 0,5. Следовательно, при ее выборе испытуемый получает 1 дв. ед. информации. Экспериментатор должен рассуждать следующим образом: если ответ положительный, следовательно, искомыми могут оставаться или группа «все черные фигуры», или группа «черные фигуры на белом фоне», а группы «3 квадрата» и «3 черные фигуры» быть не могут. Если же ответ отрицательный, напротив, остаются возможными последние две гипотезы. Исходя из этих соображений составляется новая статистическая характеристика поля: при положительном ответе (табл. 3) и отрицательном ответе (табл. 4).



Загрузка...