sonyps4.ru

Нейронные сети: какие бывают и как их используют бренды. Рекуррентные нейронные сети

Искусственная нейронная сеть — совокупность нейронов, взаимодействующих друг с другом. Они способны принимать, обрабатывать и создавать данные. Это настолько же сложно представить, как и работу человеческого мозга. Нейронная сеть в нашем мозгу работает для того, чтобы вы сейчас могли это прочитать: наши нейроны распознают буквы и складывают их в слова.

Искусственная нейронная сеть - это подобие мозга. Изначально она программировалась с целью упростить некоторые сложные вычислительные процессы. Сегодня у нейросетей намного больше возможностей. Часть из них находится у вас в смартфоне. Ещё часть уже записала себе в базу, что вы открыли эту статью. Как всё это происходит и для чего, читайте далее.

С чего всё началось

Людям очень хотелось понять, откуда у человека разум и как работает мозг. В середине прошлого века канадский нейропсихолог Дональд Хебб это понял. Хебб изучил взаимодействие нейронов друг с другом, исследовал, по какому принципу они объединяются в группы (по-научному - ансамбли) и предложил первый в науке алгоритм обучения нейронных сетей.

Спустя несколько лет группа американских учёных смоделировала искусственную нейросеть, которая могла отличать фигуры квадратов от остальных фигур.

Как же работает нейросеть?

Исследователи выяснили, нейронная сеть - это совокупность слоёв нейронов, каждый из которых отвечает за распознавание конкретного критерия: формы, цвета, размера, текстуры, звука, громкости и т. д. Год от года в результате миллионов экспериментов и тонн вычислений к простейшей сети добавлялись новые и новые слои нейронов. Они работают по очереди. Например, первый определяет, квадрат или не квадрат, второй понимает, квадрат красный или нет, третий вычисляет размер квадрата и так далее. Не квадраты, не красные и неподходящего размера фигуры попадают в новые группы нейронов и исследуются ими.

Какими бывают нейронные сети и что они умеют

Учёные развили нейронные сети так, что те научились различать сложные изображения, видео, тексты и речь. Типов нейронных сетей сегодня очень много. Они классифицируются в зависимости от архитектуры - наборов параметров данных и веса этих параметров, некой приоритетности. Ниже некоторые из них.

Свёрточные нейросети

Нейроны делятся на группы, каждая группа вычисляет заданную ей характеристику. В 1993 году французский учёный Ян Лекун показал миру LeNet 1 - первую свёрточную нейронную сеть, которая быстро и точно могла распознавать цифры, написанные на бумаге от руки. Смотрите сами:

Сегодня свёрточные нейронные сети используются в основном с мультимедиными целями: они работают с графикой, аудио и видео.

Рекуррентные нейросети

Нейроны последовательно запоминают информацию и строят дальнейшие действия на основе этих данных. В 1997 году немецкие учёные модифицировали простейшие рекуррентные сети до сетей с долгой краткосрочной памятью. На их основе затем были разработаны сети с управляемыми рекуррентными нейронами.

Сегодня с помощью таких сетей пишутся и переводятся тексты, программируются боты, которые ведут осмысленные диалоги с человеком, создаются коды страниц и программ.

Использование такого рода нейросетей - это возможность анализировать и генерировать данные, составлять базы и даже делать прогнозы.

В 2015 году компания SwiftKey выпустила первую в мире клавиатуру, работающую на рекуррентной нейросети с управляемыми нейронами. Тогда система выдавала подсказки в процессе набранного текста на основе последних введённых слов. В прошлом году разработчики обучили нейросеть изучать контекст набираемого текста, и подсказки стали осмысленными и полезными:

Комбинированные нейросети (свёрточные + рекуррентные)

Такие нейронные сети способны понимать, что находится на изображении, и описывать это. И наоборот: рисовать изображения по описанию. Ярчайший пример продемонстрировал Кайл Макдональд, взяв нейронную сеть на прогулку по Амстердаму. Сеть мгновенно определяла, что находится перед ней. И практически всегда точно:

Нейросети постоянно самообучаются. Благодаря этому процессу:

1. Skype внедрил возможность синхронного перевода уже для 10 языков. Среди которых, на минуточку, есть русский и японский - одни из самых сложных в мире. Конечно, качество перевода требует серьёзной доработки, но сам факт того, что уже сейчас вы можете общаться с коллегами из Японии по-русски и быть уверенными, что вас поймут, вдохновляет.

2. Яндекс на базе нейронных сетей создал два поисковых алгоритма: «Палех» и «Королёв». Первый помогал найти максимально релевантные сайты для низкочастотных запросов. «Палех» изучал заголовки страниц и сопоставлял их смысл со смыслом запросов. На основе «Палеха» появился «Королёв». Этот алгоритм оценивает не только заголовок, но и весь текстовый контент страницы. Поиск становится всё точнее, а владельцы сайтов разумнее начинают подходить к наполнению страниц.

3. Коллеги сеошников из Яндекса создали музыкальную нейросеть: она сочиняет стихи и пишет музыку. Нейрогруппа символично называется Neurona, и у неё уже есть первый альбом:

4. У Google Inbox с помощью нейросетей осуществляется ответ на сообщение. Развитие технологий идет полный ходом, и сегодня сеть уже изучает переписку и генерирует возможные варианты ответа. Можно не тратить время на печать и не бояться забыть какую-нибудь важную договорённость.

5. YouTube использует нейронные сети для ранжирования роликов, причём сразу по двум принципам: одна нейронная сеть изучает ролики и реакции аудитории на них, другая проводит исследование пользователей и их предпочтений. Именно поэтому рекомендации YouTube всегда в тему.

6. Facebook активно работает над DeepText AI - программой для коммуникаций, которая понимает жаргон и чистит чатики от обсценной лексики.

7. Приложения вроде Prisma и Fabby, созданные на нейросетях, создают изображения и видео:

Colorize восстанавливает цвета на чёрно-белых фото (удивите бабушку!).

MakeUp Plus подбирает для девушек идеальную помаду из реального ассортимента реальных брендов: Bobbi Brown, Clinique, Lancome и YSL уже в деле.


8.
Apple и Microsoft постоянно апгрейдят свои нейронные Siri и Contana. Пока они только исполняют наши приказы, но уже в ближайшем будущем начнут проявлять инициативу: давать рекомендации и предугадывать наши желания.

А что ещё нас ждет в будущем?

Самообучающиеся нейросети могут заменить людей: начнут с копирайтеров и корректоров. Уже сейчас роботы создают тексты со смыслом и без ошибок. И делают это значительно быстрее людей. Продолжат с сотрудниками кол-центров, техподдержки, модераторами и администраторами пабликов в соцсетях. Нейронные сети уже умеют учить скрипт и воспроизводить его голосом. А что в других сферах?

Аграрный сектор

Нейросеть внедрят в спецтехнику. Комбайны будут автопилотироваться, сканировать растения и изучать почву, передавая данные нейросети. Она будет решать - полить, удобрить или опрыскать от вредителей. Вместо пары десятков рабочих понадобятся от силы два специалиста: контролирующий и технический.

Медицина

В Microsoft сейчас активно работают над созданием лекарства от рака. Учёные занимаются биопрограммированием - пытаются оцифрить процесс возникновения и развития опухолей. Когда всё получится, программисты смогут найти способ заблокировать такой процесс, по аналогии будет создано лекарство.

Маркетинг

Маркетинг максимально персонализируется. Уже сейчас нейросети за секунды могут определить, какому пользователю, какой контент и по какой цене показать. В дальнейшем участие маркетолога в процессе сведётся к минимуму: нейросети будут предсказывать запросы на основе данных о поведении пользователя, сканировать рынок и выдавать наиболее подходящие предложения к тому моменту, как только человек задумается о покупке.

Ecommerce

Ecommerce будет внедрён повсеместно. Уже не потребуется переходить в интернет-магазин по ссылке: вы сможете купить всё там, где видите, в один клик. Например, читаете вы эту статью через несколько лет. Очень вам нравится помада на скрине из приложения MakeUp Plus (см. выше). Вы кликаете на неё и попадаете сразу в корзину. Или смотрите видео про последнюю модель Hololens (очки смешанной реальности) и тут же оформляете заказ прямо из YouTube.

Едва ли не в каждой области будут цениться специалисты со знанием или хотя бы пониманием устройства нейросетей, машинного обучения и систем искусственного интеллекта. Мы будем существовать с роботами бок о бок. И чем больше мы о них знаем, тем спокойнее нам будет жить.

P. S. Зинаида Фолс - нейронная сеть Яндекса, пишущая стихи. Оцените произведение, которое машина написала, обучившись на Маяковском (орфография и пунктуация сохранены):

« Это »

это
всего навсего
что-то
в будущем
и мощь
у того человека
есть на свете все или нет
это кровьа вокруг
по рукам
жиреет
слава у
земли
с треском в клюве

Впечатляет, правда?

Из точек на плоскости и соединений между ними можно построить множество графических фигур, называемых графами. Если каждую точку представить себе как один нейрон, а соединения между точками – как дендриты и синапсы, то мы получим нейронную сеть.

Но не всякое соединение нейронов будет работоспособно или вообще целесообразно. Поэтому на сегодняшний день существует только несколько работающих и реализованных программно архитектур нейросетей. Я только вкратце опишу их устройство и классы решаемых ими задач.

По архитектуре связей нейросети могут быть сгруппированы в два класса: сети прямого распространения , в которых связи не имеют петель Рисунок 1, и сети рекуррентного типа , в которых возможны обратные связи Рисунок 3

Рисунок 2 Нейросети прямого распространения

Рисунок 3 Нейросети рекурентного типа

Сети прямого распространения подразделяются на однослойные перцепротроны (сети) и многослойные перцептроны (сети). Название перцептрона для нейросетей придумал американский нейрофизиолог Ф. Розенблатт, придумавший в 1957 году первый нейропроцессорный элемент (НПЭ) , то есть нейросеть . Он же доказал сходимость области решений для перцептрона при его обучении. Сразу после этого началось бурное исследование в этой области и был создан самый первый нейрокомпьютер Mark I.

Многослойные сети отличаются тем, что между входными и выходными данными располагаются несколько так называемых скрытых слоев нейронов, добавляющих больше нелинейных связей в модель.

Рассмотрим устройство простейшей многослойной нейросети. Любая нейронная сеть состоит из входного слоя и выходного слоя . Соответственно подаются независимые и зависимые переменные. Входные данные преобразуются нейронами сети и сравниваются с выходом. Если отклонение больше заданного, то специальным образом изменяются веса связей нейронов между собой и пороговые значения нейронов. Снова происходит процесс вычислений выходного значения и его сравнение с эталоном. Если отклонения меньше заданной погрешности, то процесс обучения прекращается.

Помимо входного и выходного слоев в многослойной сети существуют так называемые скрытые слои . Они представляют собой нейроны, которые не имеют непосредственных входов исходных данных, а связаны только с выходами входного слоя и с входом выходного слоя. Таким образом, скрытые слои дополнительно преобразуют информацию и добавляют нелинейности в модели. Чтобы лучше понять устройство многослойного перцептрона смотрите Рисунок 4

Рисунок 4 Многослойный перцептрон

Если однослойная нейросеть очень хорошо справляется с задачами классификации, так как выходной слой нейронов сравнивает полученные от предыдущего слоя значения с порогом и выдает значение либо ноль, то есть меньше порогового значения, либо единицу - больше порогового (для случая пороговой внутренней функции нейрона), и не способен решать большинство практических задач(что было доказано Минским и Пейпертом), то многослойный перцептрон с сигмоидными решающими функциями способен аппроксимировать любую функциональную зависимость (это было доказано в виде теоремы). Но при этом не известно ни нужное число слоев, ни нужное количество скрытых нейронов, ни необходимое для обучения сети время. Эти проблемы до сих пор стоят перед исследователями и разработчиками нейросетей. Лично мне кажется, что весь энтузиазм в применении нейросетей строится именно на доказательстве этой теоремы. Впоследствии я сам покажу, как нейроны могут моделировать различные классы функций, но я не претендую на полноту доказательства.



Класс рекуррентных нейросетей гораздо обширнее, да и сами сети сложнее по своему устройству.

Поведение рекуррентных сетей описывается дифференциальными или разностными уравнениями, как правило, первого порядка. Это гораздо расширяет области применения нейросетей и способы их обучения. Сеть организована так, что каждый нейрон получает входную информацию от других нейронов, возможно, и от самого себя, и от окружающей среды. Этот тип сетей имеет важное значение, так как с их помощью можно моделировать нелинейные динамические системы.

Среди рекуррентных сетей можно выделить сети Хопфилда и сети Кохонена .

С помощью сетей Хопфилда можно обрабатывать неупорядоченные (рукописные буквы), упорядоченные во времени (временные ряды) или пространстве (графики) образцы. Рекуррентная нейросеть простейшего вида была введена Хопфилдом и построена она из N нейронов, связанных каждый с каждым кроме самого себя, причем все нейроны являются выходными. Нейросеть Хопфилда можно использовать в качестве ассоциативной памяти. Архитектура сети Хопфилда изображена на Рисунок 5

Рисунок 5 Архитектура сети Хопфилда

Сеть Кохонена еще называют "самоорганизующейся картой признаков". Сеть такого типа рассчитана на самостоятельное обучение во время обучения сообщать ей правильные ответы необязательно. В процессе обучения на вход сети подаются различные образцы. Сеть улавливает особенности их структуры и разделяет образцы на кластеры, а уже обученная сеть относит каждый вновь поступающий пример к одному из кластеров, руководствуясь некоторым критерием "близости". Сеть состоит из одного входного и одного выходного слоя. Количество элементов в выходном слое непосредственно определяет, сколько различных кластеров сеть сможет распознать. Каждый из выходных элементов получает на вход весь входной вектор. Как и во всякой нейронной сети, каждой связи приписан некоторый синаптический вес. В большинстве случаев каждый выходной элемент соединен также со своими соседями. Эти внутрислойные связи играют важную роль в процессе обучения, так как корректировка весов происходит только в окрестности того элемента, который наилучшим образом откликается на очередной вход. Выходные элементы соревнуются между собой за право вступить в действи и "получить урок". Выигрывает тот из них, чей вектор весов окажется ближе всех к входному вектору.

Нейронные сети можно разделить по ряду признаков.

С точки зрения топологии , можно выделить три основных типа нейронных сетей (рис. 2.4):

· полносвязные;

· многослойные или слоистые;

· слабосвязные (с локальными связями).

Рис. 2.4. Архитектуры нейронных сетей: а – полносвязная сеть; б – многослойная сеть с последовательными связями;

в – слабосвязные сети

В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.

В многослойных (слоистых) нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами. Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях. В общем случае сеть состоит из слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя q к входам нейронов следующего слоя (q +1) называются последовательными.

В свою очередь, среди многослойных нейронных сетей выделяют следующие типы.

1) Монотонные. Это частный случай слоистых сетей с дополнительными условиями на связи и нейроны. Каждый слой, кроме последнего (выходного), разбит на два блока: возбуждающий и тормозящий. Связи между блоками тоже разделяются на тормозящие и возбуждающие. Если от нейронов блока к нейронам блока ведут только возбуждающие связи, то это означает, что любой выходной сигнал блока является монотонной неубывающей функцией любого выходного сигнала блока . Если же эти связи только тормозящие, то любой выходной сигнал блока является невозрастающей функцией любого выходного сигнала блока . Для нейронов монотонных сетей необходима монотонная зависимость выходного сигнала нейрона от параметров входных сигналов.

2) Сети без обратных связей . В таких сетях нейроны входного слоя получают входные сигналы, преобразуют их и передают нейронам первого скрытого слоя, и так далее вплоть до выходного, который выдает сигналы для интерпретатора и пользователя. Если не оговорено противное, то каждый выходной сигнал q - го слоя подается на вход всех нейронов (q +1)-го слоя; однако возможен вариант соединения q - го слоя с произвольным -м слоем.


Среди многослойных сетей без обратных связей различают полносвязные (выход каждого нейрона q –го слоя связан с входом каждого нейрона (q +1)–го слоя) и частично полносвязные . Классическим вариантом слоистых сетей являются полносвязные сети прямого распространения (рис. 2.5).

3) Сети с обратными связями . В сетях с обратными связями информация с последующих слоев передается на предыдущие. Среди них, в свою очередь, выделяют следующие:

· слоисто-циклические , отличающиеся тем, что слои замкнуты в кольцо: последний слой передает свои выходные сигналы первому; все слои равноправны и могут как получать входные сигналы, так и выдавать выходные;

· слоисто-полносвязные состоят из слоев, каждый из которых представляет собой полносвязную сеть, а сигналы передаются как от слоя к слою, так и внутри слоя; в каждом слое цикл работы распадается на три части: прием сигналов с предыдущего слоя, обмен сигналами внутри слоя, выработка выходного сигнала и передача к следующему слою;

· полносвязно-слоистые , по своей структуре аналогичные слоисто-полно-связным , но функционирующим по-другому: в них не разделяются фазы обмена внутри слоя и передачи следующему, на каждом такте нейроны всех слоев принимают сигналы от нейронов как своего слоя, так и последующих.

В качестве примера сетей с обратными связями на рис. 2.6 представлены частично-рекуррентные сети Элмана и Жордана.

В слабосвязных нейронных сетях нейроны располагаются в узлах прямоугольной или гексогональной решетки. Каждый нейрон связан с четырьмя (окрестность фон Неймана), шестью (окрестность Голея) или восемью (окрестность Мура) своими ближайшими соседями.

Известные нейронные сети можно разделить по типам структур нейронов на гомогенные (однородные) и гетерогенные . Гомогенные сети состоят из нейронов одного типа с единой функцией активации, а в гетерогенную сеть входят нейроны с различными функциями активации.

Рис. 2.6. Частично-рекуррентные сети: а – Элмана; б – Жордана

Существуют бинарные и аналоговые сети . Первые из них оперируют только двоичными сигналами, и выход каждого нейрона может принимать значение либо логического ноля (заторможенное состояние) либо логической единицы (возбужденное состояние).

Еще одна классификация делит нейронные сети на синхронные и асинхронные . В первом случае в каждый момент времени лишь один нейрон меняет свое состояние, во втором – состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Алгоритмически ход времени в нейронных сетях задается итерационным выполнением однотипных действий над нейронами.

13.10.2017

Можно провести следующую классификацию нейронных сетей:

Характер обучения

Классификация нейронных сетей по характеру обучения делит их на:

  • нейронные сети, использующие обучение с учителем;
  • нейронные сети, использующие обучение без учителя.

Рассмотрим это подробнее.

Нейронные сети, использующие обучение с учителем. Обучение с учителем предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. Вместе они называются обучающей парой. Обычно сеть обучается на некотором числе таких обучающих пар. Предъявляется выходной вектор, вычисляется выход сети и сравнивается с соответствующим целевым вектором. Далее веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемого уровня.

Нейронные сети, использующие обучение без учителя. Обучение без учителя является намного более правдоподобной моделью обучения с точки зрения биологических корней искусственных нейронных сетей. Развитая Кохоненом и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы.

Настройка весов

  • сети с фиксированными связями – весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи;
  • сети с динамическими связями – для них в процессе обучения происходит настройка синаптических весов.

Тип входной информации

  • аналоговая – входная информация представлена в форме действительных чисел;
  • двоичная – вся входная информация в таких сетях представляется в виде нулей и единиц.

Применяемая модель нейронной сети

Сети прямого распространения – все связи направлены строго от входных нейронов к выходным. К таким сетям относятся, например: простейший персептрон (разработанный Розенблаттом) и многослойный персептрон.

Реккурентные нейронные сети – сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя.

Радиально базисные функции – вид нейронной сети, имеющий скрытый слой из радиальных элементов и выходной слой из линейных элементов. Сети этого типа довольно компактны и быстро обучаются. Предложены в работах Broomhead and Lowe (1988) и Moody and Darkin (1989). Радиально базисная сеть обладает следующими особенностями: один скрытый слой, только нейроны скрытого слоя имеют нелинейную активационную функцию и синаптические веса входного и скрытого слоев равны единицы.

Самоорганизующиеся карты или Сети Кохонена – такой класс сетей, как правило, обучается без учителя и успешно применяется в задачах распознавания. Сети такого класса способны выявлять новизну во входных данных: если после обучения сеть встретится с набором данных, непохожим ни на один из известных образцов, то она не сможет классифицировать такой набор и тем самым выявит его новизну. Сеть Кохонена имеет всего два слоя: входной и выходной, составленный из радиальных элементов.

Типы нейронных сетей

Проблема нарисованных выше графов заключается в том, что они не показывают, как соответствующие сети используются на практике. Например, вариационные автокодировщики (VAE) выглядят совсем как простые автокодировщики (AE), но их процессы обучения существенно различаются. Случаи использования отличаются ещё больше, поскольку VAE - это генератор, которому для получения нового образца подаётся новый шум. AE же просто сравнивает полученные данные с наиболее похожим образцом, полученным во время обучения.

Стоит заметить, что хотя большинство этих аббревиатур общеприняты, есть и исключения. Под RNN иногда подразумевают рекурсивную нейронную сеть, но обычно имеют в виду рекуррентную. Также можно часто встретить использование аббревиатуры RNN, когда речь идёт про любую рекуррентную НС. Автокодировщики также сталкиваются с этой проблемой, когда вариационные и шумоподавляющие автокодировщики (VAE, DAE) называют просто автокодировщиками (AE). Кроме того, во многих аббревиатурах различается количество букв “N” в конце, поскольку в каких-то случаях используется “neural network”, а в каких-то - просто “network”.

Часть 1: Базовые архитектуры

Нейронные сети прямого распространения (feed forward neural networks, FF или FFNN) и перцептроны (perceptrons, P) очень прямолинейны, они передают информацию от входа к выходу. Нейронные сети часто описываются в виде слоёного торта, где каждый слой состоит из входных, скрытых или выходных клеток. Клетки одного слоя не связаны между собой, а соседние слои обычно полностью связаны. Самая простая нейронная сеть имеет две входных клетки и одну выходную, и может использоваться в качестве модели логических вентилей. FFNN обычно обучается по методу обратного распространения ошибки, в котором сеть получает множества входных и выходных данных. Этот процесс называется обучением с учителем, и он отличается от обучения без учителя тем, что во втором случае множество выходных данных сеть составляет самостоятельно. Вышеупомянутая ошибка является разницей между вводом и выводом. Если у сети есть достаточное количество скрытых нейронов, она теоретически способна смоделировать взаимодействие между входным и выходными данными. Практически такие сети используются редко, но их часто комбинируют с другими типами для получения новых.

Сети радиально-базисных функций (radial basis function, RBF) - это FFNN, которая использует радиальные базисные функции как функции активации. Больше она ничем не выделяется.

Нейронная сеть Хопфилда (Hopfield network, HN) - это полносвязная нейронная сеть с симметричной матрицей связей. Во время получения входных данных каждый узел является входом, в процессе обучения он становится скрытым, а затем становится выходом. Сеть обучается так: значения нейронов устанавливаются в соответствии с желаемым шаблоном, после чего вычисляются веса, которые в дальнейшем не меняются. После того, как сеть обучилась на одном или нескольких шаблонах, она всегда будет сводиться к одному из них (но не всегда - к желаемому). Она стабилизируется в зависимости от общей “энергии” и “температуры” сети. У каждого нейрона есть свой порог активации, зависящий от температуры, при прохождении которого нейрон принимает одно из двух значений (обычно -1 или 1, иногда 0 или 1). Такая сеть часто называется сетью с ассоциативной памятью; как человек, видя половину таблицы, может представить вторую половину таблицы, так и эта сеть, получая таблицу, наполовину зашумленную, восстанавливает её до полной.

Цепи Маркова (Markov chains, MC или discrete time Markov Chains, DTMC) - это предшественники машин Больцмана (BM) и сетей Хопфилда (HN). Их смысл можно объяснить так: каковы мои шансы попасть в один из следующих узлов, если я нахожусь в данном? Каждое следующее состояние зависит только от предыдущего. Хотя на самом деле цепи Маркова не являются НС, они весьма похожи. Также цепи Маркова не обязательно полносвязны.

Машина Больцмана (Boltzmann machine, BM) очень похожа на сеть Хопфилда, но в ней некоторые нейроны помечены как входные, а некоторые - как скрытые. Входные нейроны в дальнейшем становятся выходными. Машина Больцмана - это стохастическая сеть. Обучение проходит по методу обратного распространения ошибки или по алгоритму сравнительной расходимости. В целом процесс обучения очень похож на таковой у сети Хопфилда.

Ограниченная машина Больцмана (restricted Boltzmann machine, RBM) удивительно похожа на машину Больцмана и, следовательно, на сеть Хопфилда. Единственной разницей является её ограниченность. В ней нейроны одного типа не связаны между собой. Ограниченную машину Больцмана можно обучать как FFNN, но с одним нюансом: вместо прямой передачи данных и обратного распространения ошибки нужно передавать данные сперва в прямом направлении, затем в обратном. После этого проходит обучение по методу прямого и обратного распространения ошибки.

Автокодировщик (autoencoder, AE) чем-то похож на FFNN, так как это скорее другой способ использования FFNN, нежели фундаментально другая архитектура. Основной идеей является автоматическое кодирование (в смысле сжатия, не шифрования) информации. Сама сеть по форме напоминает песочные часы, в ней скрытые слои меньше входного и выходного, причём она симметрична. Сеть можно обучить методом обратного распространения ошибки, подавая входные данные и задавая ошибку равной разнице между входом и выходом.

Разреженный автокодировщик (sparse autoencoder, SAE) - в каком-то смысле противоположность обычного. Вместо того, чтобы обучать сеть отображать информацию в меньшем “объёме” узлов, мы увеличиваем их количество. Вместо того, чтобы сужаться к центру, сеть там раздувается. Сети такого типа полезны для работы с большим количеством мелких свойств набора данных. Если обучать сеть как обычный автокодировщик, ничего полезного не выйдет. Поэтому кроме входных данных подаётся ещё и специальный фильтр разреженности, который пропускает только определённые ошибки.

Вариационные автокодировщики (variational autoencoder, VAE) обладают схожей с AE архитектурой, но обучают их иному: приближению вероятностного распределения входных образцов. В этом они берут начало от машин Больцмана. Тем не менее, они опираются на байесовскую математику, когда речь идёт о вероятностных выводах и независимости, которые интуитивно понятны, но сложны в реализации. Если обобщить, то можно сказать что эта сеть принимает в расчёт влияния нейронов. Если что-то одно происходит в одном месте, а что-то другое – в другом, то эти события не обязательно связаны, и это должно учитываться.

Шумоподавляющие автокодировщики (denoising autoencoder, DAE) - это AE, в которые входные данные подаются в зашумленном состоянии. Ошибку мы вычисляем так же, и выходные данные сравниваются с зашумленными. Благодаря этому сеть учится обращать внимание на более широкие свойства, поскольку маленькие могут изменяться вместе с шумом.

Сеть типа “deep belief” (deep belief networks, DBN) - это название, которое получил тип архитектуры, в которой сеть состоит из нескольких соединённых RBM или VAE. Такие сети обучаются поблочно, причём каждому блоку требуется лишь уметь закодировать предыдущий. Такая техника называется “жадным обучением”, которая заключается в выборе локальных оптимальных решений, не гарантирующих оптимальный конечный результат. Также сеть можно обучить (методом обратного распространения ошибки) отображать данные в виде вероятностной модели. Если использовать обучение без учителя, стабилизированную модель можно использовать для генерации новых данных.

Свёрточные нейронные сети (convolutional neural networks, CNN) и глубинные свёрточные нейронные сети (deep convolutional neural networks, DCNN) сильно отличаются от других видов сетей. Обычно они используются для обработки изображений, реже для аудио. Типичным способом применения CNN является классификация изображений: если на изображении есть кошка, сеть выдаст “кошка”, если есть собака - “собака”. Такие сети обычно используют “сканер”, не парсящий все данные за один раз. Например, если у вас есть изображение 200×200, вы не будете сразу обрабатывать все 40 тысяч пикселей. Вместо это сеть считает квадрат размера 20 x 20 (обычно из левого верхнего угла), затем сдвинется на 1 пиксель и считает новый квадрат, и т.д. Эти входные данные затем передаются через свёрточные слои, в которых не все узлы соединены между собой. Эти слои имеют свойство сжиматься с глубиной, причём часто используются степени двойки: 32, 16, 8, 4, 2, 1. На практике к концу CNN прикрепляют FFNN для дальнейшей обработки данных. Такие сети называются глубинными (DCNN).

Развёртывающие нейронные сети (deconvolutional networks, DN), также называемые обратными графическими сетями, являются обратным к свёрточным нейронным сетям. Представьте, что вы передаёте сети слово “кошка”, а она генерирует картинки с кошками, похожие на реальные изображения котов. DNN тоже можно объединять с FFNN. Стоит заметить, что в большинстве случаев сети передаётся не строка, а какой бинарный вектор: например, - это кошка, - собака, а - и кошка, и собака.

Часть 2: Продвинутые конфигурации

Глубинные свёрточные обратные графические сети (deep convolutional inverse graphics networks, DCIGN) названы слегка некорректно, поскольку они по сути являются вариационными автокодировщиками, кодирующая и декодирующая части которых представлены свёрточной и развёртывающей НС соответственно. Сети такого типа моделируют свойства в виде вероятностей, поэтому их можно научить создавать картинку с собакой и кошкой, даже если сеть видела только картинки, на которых было только одно из животных. Возможно и удаление одного из двух объектов. Также были созданы сети, которые могли менять источник освещения и вращать объект. Сети такого типа обычно обучают методом обратного распространения ошибки.

Генеративные состязательные сети (generative adversarial networks, GAN) - это сети другого вида, они похожи на близнецов. Такие сети состоят из любых двух (обычно из FF и CNN), одна из которых контент генерирует, а другая - оценивает. Сеть-дискриминатор получает обучающие или созданные генератором данные. Степень угадывания дискриминатором источника данных в дальнейшем участвует в формировании ошибки. Таким образом, возникает состязание между генератором и дискриминатором, где первый учится обманывать первого, а второй - раскрывать обман. Обучать такие сети весьма тяжело, поскольку нужно не только обучить каждую из них, но и настроить баланс.

Рекуррентные нейронные сети (recurrent neural networks, RNN) - это сети типа FFNN, но с особенностью: нейроны получают информацию не только от предыдущего слоя, но и от самих себя предыдущего прохода. Это означает, что порядок, в котором вы подаёте данные и обучаете сеть, становится важным. Большой сложностью сетей RNN является проблема исчезающего (или взрывного) градиента, которая заключается в быстрой потере информации с течением времени. Конечно, это влияет лишь на веса, а не состояния нейронов, но ведь именно в них накапливается информация. Обычно сети такого типа используются для автоматического дополнения информации.

Сети с долгой краткосрочной памятью (long short term memory, LSTM) стараются решить вышеупомянутую проблему потери информации, используя фильтры и явно заданную клетку памяти. У каждого нейрона есть клетка памяти и три фильтра: входной, выходной и забывающий. Целью этих фильтров является защита информации. Входной фильтр определяет, сколько информации из предыдущего слоя будет храниться в клетке. Выходной фильтр определяет, сколько информации получат следующие слои. Ну а забывающий фильтр, каким бы странным не казался, также выполняет полезную функцию: например, если сеть изучает книгу и переходит на новую главу, какие-то символы из старой можно забыть. Такие сети способны научиться создавать сложные структуры, например, писать как Шекспир или сочинять простую музыку, но и ресурсов они потребляют немало.

Управляемые рекуррентные нейроны (gated recurrent units, GRU) - это небольшая вариация предыдущей сети. У них на один фильтр меньше, и связи реализованы иначе. Фильтр обновления определяет, сколько информации останется от прошлого состояния и сколько будет взято из предыдущего слоя. Фильтр сброса работает примерно как забывающий фильтр.

Нейронные машины Тьюринга (neural Turing machines, NTM) можно рассматривать как абстрактную модель LSTM и попытку показать, что на самом деле происходит внутри нейронной сети. Ячейка памяти не помещена в нейрон, а размещена отдельно с целью объединить эффективность обычного хранилища данных и мощь нейронной сети. Собственно, поэтому такие сети и называются машинами Тьюринга - в силу способности читать и записывать данные и менять состояние в зависимости от прочитанного они являются тьюринг-полными.

Двунаправленные RNN, LSTM и GRU (bidirectional recurrent neural networks, bidirectional long / short term memory networks и bidirectional gated recurrent units, BiRNN, BiLSTM и BiGRU) не показаны в таблице, поскольку они ничем не отличаются от своих однонаправленных вариантов. Разница заключается в том, что эти сети используют не только данные из «прошлого», но и из «будущего». Например, обычную сеть типа LSTM обучают угадывать слово «рыба», подавая буквы по одной, а двунаправленную - подавая ещё и следующую букву из последовательности. Такие сети способны, например, не только расширять изображение по краям, но и заполнять дыры внутри.

Глубинные остаточные сети (deep residual networks, DRN) - это очень глубокие сети типа FFNN с дополнительными связями между отделёнными друг от друга слоями. Такие сети можно обучать на шаблонах глубиной аж до 150 слоёв - гораздо больше, чем можно было бы ожидать. Однако, было показано, что эти сети мало чем отличаются от рекуррентных, и их часто сравнивают с сетями LSTM.

Нейронная эхо-сеть (echo state networks, ESN) - это ещё одна разновидность рекуррентных сетей. Её особенностью является отсутствие сформированных слоёв, т.е. связи между нейронами случайны. Соответственно, метод обратного распространения ошибки не срабатывает. Вместо этого нужно подавать входных данные, передавать их по сети и обновлять нейроны, наблюдая за выходными данными.

Метод экстремального обучения (extreme learning machines, ELM) - это, по сути, сеть типа FFNN, но со случайными связями. Они очень похожи на сети LSM и ESN, но используются как FFNN. Так происходит не только потому, что они не рекуррентны, но и потому, что их можно обучать просто методом обратного распространения ошибки.

Метод неустойчивых состояний (liquid state machines, LSM) похож на эхо-сеть, но есть существенное отличие: сигмоидная активация заменена пороговой функцией, а каждый нейрон является накопительной ячейкой памяти. Таким образом, при обновлении нейрона его значение не становится равным сумме соседей, а прибавляется само к себе, и при достижении порога сообщается другим нейронам.

Метод опорных векторов (support vector machines, SVM) находит оптимальные решения задачи оптимизации. Классическая версия способна категоризировать линейно разделяемые данные: например, различать изображения с котом Томом и с котом Гарфилдом. В процессе обучения сеть как бы размещает все данные на 2D-графике и пытается разделить данные прямой линией так, чтобы с каждой стороны были данные только одного класса и чтобы расстояние от данные до линии было максимальным. Используя трюк с ядром, можно классифицировать данные размерности n. Что характерно, этот метод не всегда рассматривается как нейронная сеть.

И наконец, нейронные сети Кохонена (Kohonen networks, KN) , также известные как самоорганизующиеся карты (self organising (feature) maps, SOM, SOFM) , завершают наш список. Эти сети используют соревновательное обучение для классификации данных без учителя. Сети подаются входные данные, после чего сеть определяет, какие из нейронов максимально совпадают с ними. После этого эти нейроны изменяются для ещё большей точности совпадения, в процессе двигая за собой соседей. Иногда карты Кохонена также не считаются нейронными сетями.



Загрузка...