sonyps4.ru

LCD - что это? LCD-телевизоры - что это? Технология LED телевизоров. В пользу LED-TV

Примечание:
К сожалению, данный документ не закончен, но, на мой взгляд, даже в таком виде он уже может быть полезен.

Ниже представлена обобщенная модель классификации дисплеев, использующих жидкие кристаллы в качестве оптического модулятора:

  • :
    • сегментный индикатор,
    • многослойный индикатор,
    • графический точечно-матричный дисплей.
  • :
    • прямая адресация (Direct Driving),
    • мультиплексирование (Multiplex Driving):
      • пассивная адресация ячеек ЖК-панели PMLCD (Passive Matrix LCD),
      • активная адресация ячеек ЖК-панели AMLCD (Active Matrix LCD).
  • (или порядок ЖК):
    • смектический порядок (смектики),
    • нематический порядок (нематики),
    • холестерический порядок (холестерики).
  • :
    • дисперсия (Scattering)
  • :
    • цветные светофильтры (Color filters)
    • электрически управляемое двулучепреломление ECB (Electrically Controlled Birefringence)
  • :
    • покадровая инверсия полярности
    • чересстрочная инверсия полярности
    • инверсия с чередованием пикселей (субпикселей)
  • :
    • использование тонкопленочного диода TFD (Thin Film Diode) по технологии MIM (Metal-Insulator-Metal),
    • использование тонкопленочного транзистора TFT (Thin Film Transistor), при производстве которого применяются три различных подхода:
      • аморфный кремний a-Si (Amorphous Silicon),
      • поликристалический кремений p-Si (Poly-Silicon),
      • низкотемпературный поликристаллический кремний LTPS (Low Temperature Poly-Silicon).
  • :
    • используется второй пассивный слой ЖК (Double Cell),
    • используется полимерная пленка ОCF (Optical Compensator Film).
  • :
    • межкадровое управление (Frame Rate Control), способ получения промежуточного цветового тона за счет применения схемы кадрового чередования основных цветов:
      • FRC — обеспечивает формирование 16.2 млн. оттенков с помощью 6-битных ячеек, способных отобразить 262 144 базовых оттенка.
      • Hi-FRC — обеспечивает формирование 16.7 млн. оттенков с помощью 6-битных ячеек, а также более 1000 млн. оттенков с помощью 8-битных ячеек.
    • внутрикадровое пространственное (spatial) смешение (dithering) полутонов.
  • :
    • работа на просвет (Transmissive) за счет использования устройства задней подсветки BLU (Back Light Unit),
    • отражение падающего света (Reflective) окружаещего освещения, или устройства фронтальной подсветки (Front Light Unit),
    • комбинированный подход (Transflective).
  • :
    • люминисцентная лампа с холодным катодом ССFL (Cold Cathode Fluorescent Tube),
    • светодиоды LED (Light Emission Device).
  • Протоколы цифровых интерфейсов подключения ЖК-панелей:
    • LVDS,
    • TMDS.

Исторически выделяются следующие технологические подходы к производству ЖК-панелей:

  • Twisted Nematic (TN) — пассивные ЖК-ячейки, использующие эффект скручивания ЖК (в нематической фазе),
  • High TN (HTN) — пассивные ЖК-ячейки с сильно скрученной ориентацией ЖК-молекул
  • Super TN (STN) — пассивные ЖК-ячейки с сильно скрученной ориентацией ЖК-молекул (еще больший угол поворота директора)
  • Electronically Controlled Birefrigence STN (ECB) или Vertical Aligned Nematic (VAN) — пассивные ЖК-ячейки, использующие усиленный эффект двойного лучепреломления (двулучепреломления) для получения нескольких оттенков цвета
  • Color STN (CSTN) — STN-ячейки с цветными фильтрами
  • Double STN (DSTN) — композит из двух разнонаправленно-скрученных STN-ячеек
  • Dual Scan DSTN — STN-панель с двумя незамисимыми полями управления
  • Active Matrix TN (AM TN) — активные ЖК-ячейки с твист-ориентацией, управляемые либо тонкопленочным тразистором Thin Film Transistor (TN TFT), либо диодом Thin Film Diode (TN TFD)
  • High Performance Array (HPA) — STN-панель
  • Vertical Alighnment (VA) — активные ЖК-ячейки с гомеотропной ориентацией директора
  • In-Plane Switching (IPS), Fringe-Field Switching (FFS) — активные ЖК-ячейки с планарной ориентацией директора
  • ASV — монодоменные VA-ячейки с осевой симметрией (Advanced Super View)
  • MVA, A-MVA, S-MVA, Prem. MVA — двухдоменные VA-ячейки (Multi-domain VA, Advanced MVA, Super MVA, Premium MVA)
  • PVA, S-PVA — двух-, четырех-доменные VA-ячейки (Patterned VA, Super PVA)
  • S-IPS, DD-IPS, SA-SFT, A-FFS, A-TW IPS, UA-SFT, PLS — двухдоменные IPS-ячейки (Super IPS, Dual Domain IPS, Super Advanced Super-Fine-TFT, Advanced FFS, Advanced True White IPS, Ultra Advanced SFT, Plane to Line Switching)

1. Регулярность формы элементов изображения

В качестве самого простого типа диспелея может выступать сегментный индикатор, в котором конструктивно заложено отображение определенных геометрических знаков. Для визуализации знаков разной формы на одном и том же индикаторе есть несколько способов:

  • сегментный индикатор
    • небходимо преобразовать формы требуемых знаков так, чтобы знаки приобрели наибольшее количество совпадающих по форме и положению элементов (без нарушения читаемости), а затем разложить их форму на неперсекающиеся сегменты;
  • многослойный индикатор
    • при конструктивной возможности построения многослойного индикатора.

«Вершиной» сегментного индикатора является графическая точечно-матричная панель, которая позволяет в дискретном «матричном» виде приблизить отображение произвольной графической формы. Графическая панель представляет собой совокупность ячеек на плоскости, отвечающих за отображение отдельных дискретных элементов изображения.

2. Методы адресации ЖК-панели (Drive Method)

2.1. Прямая адресация или мультиплексирование адресных линий (Direct driving vs multiplex driving)

Чем меньше удельный размер дискретных элементов изображения (ячеек) по отношению к линейным размерам дисплея, тем выше детализация изображения. Но с ростом количества ячеек расчтет и количество линий управления. Например для цифрового семисегментного (плюс знак точки) индикатора для формирования трехзначных чисел нужно 3 x 8 = 24 входных управляющих линии.

Самый распространенный способ сокращения количества линий управления основан на мультиплексировании управляющего сигнала. Данный метод позволяет для M × N сегментов индикатора использовать не M × N управляющих линий (или пар линий), а всего лишь M + N линий. В случае если M = N = 1000, возникает кардинальная экономия в 1000 х 1000 − (1000 + 1000) = 998 000 управляющих линий.

Здесь нужно отметить, следующее. В отличие от прямой адресации, метод мультиплексирования не позволяет контроллеру (управляющему устройству) поддерживать непрерывную связь с управляемым элементом. Таким образом, в один момент времени контроллер получает возможность управления меньшим числом элементов. Отсюда следует, что по сути контроллер использует не параллельный интерфейс, а параллельно-последовательный (или чисто последовательный), в котором управляющие импульсы к разным элементам управления чередуются во времени. То есть в этом случае существенное влияние на качество изображения начинают влиять такие параметры, как время опроса одного элемента, время автономной работы одного элемента, частота опроса всех элементов (например, частота регенерации кадра) и т. п.

Очевидно, что данный метод позволяет сократить число линий управления от индикатора к контроллеру. Но, с другой стороны, мультиплексирование не применимо для таких типов элементов управления, разрыв управляющей связи с которыми неприемлем и приводит к деградации функциональности.

К счастью, человеческий глаз обладает инерционностью восприятия (этот факт, например, обеспечил саму возможность передачи телевизионного изображения последовательным способом по одной линии связи). Подбирая подходящую частоту опроса элементов индикатора, можно обеспечить вывод устойчивого изображения даже при очень малом времени автономной работы отдельных элементов индикатора.

2.2. Пассивные ЖК-панели PMLCD (Passive Matrix LCD)

Управление ячейками пассивных ЖК-панелей основано на базовом принципе мультиплексирования адресных линий, поэтому контрастность изображения сильно зависит от времени восстановления ЖК-ячейки и от чувствительности к перекрестным помехам.

2.3. Активные ЖК-панели AMLCD (Active Matrix LCD)

3. Простраственная ориентация молекул ЖК (или порядок ЖК)

3.1. Смектический порядок (смектики)

Одним из представителей дисплеев со смектическим порядком ЖК-молекул является ферроэлектрический ЖК-дисплей — FLCD (Ferroelectric Liquid Crystal Display). В отличие от наиболее распространенных дисплеев на основе нематиков ферроэлектрический ЖК-дисплей имеет ряд интересных свойств:

  • бистабильность (эффект «памяти»),
  • высокая скорость реакции на управляющий импульс (малое время отклика).

Свойство бистабильности подразумевает наличие двух возможных устойчивых положений ориентации директора ЖК-молекул. Это значит, что в результате управляющего воздействия хиральные смектики принимают одну из двух стабильных пространственных ориентаций. При этом после прекращения управляющего импульа ЖК-молекулы сохраняют стабильное заданное направление. Это позволяет кардинально снизить энергозатраты при выводе статического изображения.

3.2. Нематический порядок (нематики)

3.3. Холестерический порядок (холестерики)

4.Режим светопропускания

  • светопропускание (Transmission Mode), при котором различают несколько способов ориентации директора в ячейке (Mode)
    • «твист»-ориентация TN (Twisted Nematic),
    • гомеотропная ориентация VA (Vertical Alignment),
    • планарная ориентация IPS (In-Plane Switching).
  • светопоглощение (Absorption Mode):
  • избирательное отражение (Selective Reflection)
  • дисперсия (Scattering)

4.1. Светопропускание

4.1.1. Гомеотропная ориентация VA (Vertical Alignment)

Super PVA (S-PVA)

Advanced Super View (ASV)

Линейка ЖК-панелей ASV разработана Sharp по технологии Continuous Pinwheel Alignment (CPA), основанной на гомеотропной ориентации директора в ЖК-ячейке с осевой симметрией.

4.2. Светопоглощение (Absorption Mode)

ЖК-дисплеи, использующие эффект светопоглощения делятся на следующие группы:

  • тип «гость-хозяин» («guest host», GH),
  • тип «гость-хозяин» с измененяемой фазой (Phase Change GH, PCGH) или дисплеи Уайта и Тейлора (White and Taylor type GH),
  • тип «» (Polymer Dispersed Liquid Crystal, PDLC),

4.3. Избирательное отражение (Selective Reflection)

4.4. Дисперсия (Scattering)

В дисплеях PDLC (Polymer Dispersed Liquid Crystal) ЖК нематического типа смешаны с полимерами. В свободном состоянии ячейка выглядит светлой, так как падающий свет равомерно рассеивается вследствие разных показателей рефракции составляющих ячейку полимеров и ЖК. После подачи управляющего напряжения нематики меняют показатель преломления света, сравниваясь по этой характеристике с дисперсированными частичками полимеров. Это приводит к тому, что падающий свет свободно достигает и поглощается задней матовой стенкой дисплея, и ячейка становится темной.

5. Методы формирования цветовых оттенков изображения (Color Image)

5.1. Цветные светофильтры (Color filters)

ЖК-ячейка по сути является оптическим модулятором, то есть изменяет величину пропускаемого светового потока пропорционально поданному к ячейке управляющему напряжению. Но для создания цветного изображения необходимо не только иметь возможность управления яркостью пикселей, но и их цветом. Одно из возможных относительно недорогих решений этой задачи заключается в том, чтобы использовать цветовые фильтры. Как известно, в аддитивной цветовой модели используются три основных цвета: красный, зеленый, синий. Поэтому один полноцветный пиксель ЖК-дисплея состоит из трех ЖК-ячеек, покрытых соответствующими цветовыми фильтрами. В качестве материалов для светофильтров используют органические пигменты, красители и окислы металлов. Недостатком данного подхода является низкий оптический КПД, так как ЖК-панель пропускает всего несколько процентов падающего или проходящего насквозь света.

5.2. Электрически управляемое двулучепреломление ECB (Electrically Controlled Birefringence)

Из недостатков следует отметить высокую чувствительность к высоким и низким температурам, а также малое количество формируемых тонов. Широкого применения технология ECB не получила.

6.1. Покадровая инверсия полярности

Изменение полярности всех пикселей при отрисовке каждого кадра является наиболее простым в реализации. Основной недостаток этого метода — изображение начинает мерцать с частотой, равной половине частоты кадровой регенерации. То есть если дисплей отображает видеосигнал с кадровой частотой 60 Гц, то мерцание изображения будет раздражать наблюдателя, так как мерцание на частоте 30 Гц заметно почти каждому человеку. Важно, что если бы не было необходимости менять полярность управляющего напряжения ячеек, то воспроизводимое избражение было бы одинаково стабильно, не зависимо от кадровой частоты входного сигнала. Именно переход управляющего напряжения через «ноль» в противоложный знак и приводит к тому, что пиксель кратковренно изменяет свой цвет.

6.2. Чересстрочная инверсия полярности

Объединение четных и нечетных строк ЖК-панели в две группы, изменяющие полярность в противоположных направлениях, позволяет слегка уменьшить эффект мерцания изображения.

6.3. Инверсия с чередованием пикселей (субпикселей)

Чередование полярности соседних пикслеей или субпикселей в противофазе дает наиболее качественный результат. Изображение получается максимально стабильным, а инверсия полярности при этом может проявиться только на специально синтезированных изображениях.

7. Методы управления ячейками активных ЖК-панелей (Drive Mode)

Тонкопленочный диод TFD (Thin Film Diode)

Технология MIM (Metal-Insulator-Metal) производства TFD-панелей позволяет использовать основу из некаленого стекла, которое на порядок дешевле, так как для изготовления тонкопленочных диодов достаточно температуры около 300 о C. К недостаткам TFD-панелей относится температурная нестабильность, а также высокая чуствительность к неоднородностям толщины ЖК-слоя, выраженная в неравномерности отображения серого поля.

Тонкопленочный транзистор TFT (Thin Film Transistor)

Аморфный кремний a-Si (Amorphous Silicon)

Поликристалический кремний p-Si (Poly-Silicon)

Процесс изготовления тонкопленочного транзистора из поликристаллического кремния состоит из меньшего количества операций и позволяет создавать ЖК-панели с более высоким разрешением, по сравнению с формированием транзисторов из аморфного кремния. Но необходимость использования более высоких температур существенно удорожает производство панелей больших диагоналей из-за более высоких требований к термостойкости стекляной основы.

Низкотемпературный поликристаллический кремний LTPS (Low Temperature Poly-Silicon)

8. Способы компенсации низкого контраста и малых углов обзора (Low Contrast & Viewing Angles Compensation)

используется второй пассивный слой ЖК (Double Cell)

используется полимерная пленка ОCF (Optical Compensator Film)

9. Метод увеличения количества отображаемых полутонов (Color Range Expanding)

При малом угловом размере элемента изображения невооруженный человеческий глаз не способен точно определить цвет этого элемента. В связи с этим восприятие изображения, насыщенного мелкими контрастными деталями, будет почти одинаковым как при просмотре его в исходном виде, так и после небольшого уменьшения количества промежуточных полутонов за счет снижения разрядности представления цифровых координат.

Но при просмотре изображений ясного неба, туманов, полированных поверхностей и т. п. наблюдатель сразу обнаружит «пропажу» полутонов в случае, если количество отображаемых оттенков не будет превышать 300 тысяч. Плавные переходы полутонов будут «расчерчены» визуально отчетливыми границами перехода от одного тона к соседнему, так как занимаемая одним цветовым тоном площадь будет достаточна, чтобы глаз наблюдателя адаптировался и зафиксировал границу цветового перехода.

Именно для этой крайней ситуации применяется метод увеличения отображаемых полутонов на ЖК-дисплеях, управляющая электроника которых не позволяет управлять ЖК-ячейками с достаточной точностью для отображения более 300 тыс. оттенков. Среди таких устройств наиболее распространены дисплей с 6-битным представлением цветовых координат. Ячейки таких ЖК-дисплеев аппаратно могут отображать не более 262 тысяч отттенков ((2 6) 3 = 262 144), поэтому в этом случае зачастую применяются методы как межкадрового (Frame Rate Control), так и внутрикадрового (Spatial Dithering) цветового смешения для получения промежуточных полутонов.

9.1. FRC

Межкадровое чередование основных цветовых тонов (Frame Rate Control) формирует у наблюдателя ощущение восприятия промежуточного цветового оттенка:

Color average = (Color n + Color n + 1) / 2

Таким образом, благодаря парному чередованию можно сформировать восприятие N " = N + N − 1 = 2N − 1 оттенков. Очевидно, что при увеличении периода кадровой серии, например, до 4 кадров количество различимых цветовых оттенков вырастет примерно 4 раза:

N " = N + 3(N − 1) = 4N − 3

Если предложенную схему применить для ЖК-панели с 6-битными контроллерами, то глубина представления цвета при N = 2 6 = 64 (по каждому каналу) вырастет до 16,2 млн. оттенков:

N " = (4 × 64 − 3) 3 = 16 194 277 .

9.2. Hi-FRC

По мере разработки более скоростных TN TFT ЖК-панелей был предложен метод высокочастотного межкадрового чередования Hi-FRC. В дисплеях с Hi-FRC длина кадровой серии увеличена до 8 кадров, что расширило потенциальную глубину представления цвета до 129 млн. оттенков.

N " = (8 × 64 − 7) 3 = 505 3 = 128 787 625 .

Поскольку на практике большинство видеоинтерфейсов работает с 24-битной глубиной цвета, контроллеры Hi-FRC «отбрасывают» младшие биты и округляют расчетное значение воспринимаего цветового тона, «вписывая» его в диапазон 16,7 млн. воспроизводимых цветов.

9.3. Внутрикадровое пространственное (spatial) смешение (dithering) полутонов

Данный метод основан на том, что при малом угловом размере элемента изображения невооруженный человеческий глаз не способен точно определить цвет этого элемента. В связи с этим восприятие изображения, насыщенного мелкими контрастными деталями, будет почти одинаковым как при просмотре его в исходном виде, так и после небольшого уменьшения количества промежуточных полутонов за счет снижения разрядности представления цифровых координат. Таким образом, области изображения, насыщенные мелкими деталями, выводятся без обработки. Но для областей с плавными тоновыми переходами различимых пространственных размеров выполняет преобразование по шаблонам.

Рассмотрим одну из самых простых схем смешения 2×2. Для формирования более точного восприятия областей изображения с плавными переходами через промежуточные тона выполняется квантование данных областей на группы размером 2×2 пикселя. После вычисления среднего значения цвета в каждой группе выбирается подходящий шаблон комбинирования цветов. Данная схема позволяет расширить количество ращличимых цветовых оттенков почти в 4 раза:

N " = 4N + 1 .

Таким образом, схема смешения 2×2 для 6-битных ЖК-панелей позволяет увеличить количество воспринимаемых наблюдателем оттенков до 16,97 млн.

N " = (4 × 64 + 1) 3 = 16 974 593 .

10. Метод подсветки

10.1. Отражение падающего света (Reflective) окружаещего освещения, или устройства фронтальной подсветки (Front Light Unit)

Наиболее распространенными среди отражающих ЖК-дисплеев являются модели, построенные на базе TN, STN, GH (guest host), PCGH (phase changed guest host) или PDLC (polymer dispersed liquid crystal) ЖК-панелей. ЖК-панели, использующие для подсветки свет окружающего освещения, обладают намного более узким цветовым диапазоном и уровнем контрастности. Такие панели используются в основном в таких условиях, при которых устройство принудительной подсветки не может по мощности своего светового потока конкурировать с яркостью внешнего освещения.

При разработке качественного отражающего ЖК-дисплея производителям приходится решать сложные задачи. Во-первых, падающий свет перед тем, как достигнуть наблюдателя, проходит дважды через все рабочие слои ЖК-панели: поляризаторы, рассеиватели, светофильтры и сам слой ЖК. Это сильно снижает уровень контраста выводимого изображения. Во-вторых, наличие рассеивателя для обеспечения равномерной яркости по всему полю изображения приводит к появлению смешения цветов. Поэтому производители стремятся по возможности уменьшить суммарную толщину рабочих слоев ЖК-панели, работающей на просвет.

На иллюстрациях выше показано, что применение для TN TFT панели диффузного отражающего слоя (рис. 10.1.3) вместо рассеивающего и отражающего слоев позволяет повисить качество изображения.

10.2. Работа на просвет (Transmissive) за счет использования устройства задней подсветки BLU (Back Light Unit)

ЖК-панели с устройством задней подсветки нашли широчайшее применение в настольных мониторах и дисплеях портативных компьютеров. ЖК-ячейки трансмиссионных дисплеев работают на просвет, то есть световой поток, формируемый устройством задней подсветки, проходит через ячейки в направлении от задней стенки к передней в сторону наблюдателя. При этом сам источник света устройства задней подсветки не обязательно находится позади ЖК-ячеек. Световой поток может достигать ячейки по световодам от источника, располагающегося как непосредственно сзади дисплея, так и, например, сбоку, за пределами рабочей области ЖК-панели.

10.3. Комбинированный подход (Transflective)

Для устройств, рассчитанных на применение, как в закрытых помещениях, так и на открытом пространстве, комбинированный подход является оптимальным решением. Трансфлективные дисплеи обладают чуть меньшей контрастностью, углами обзора и цветовым диапазоном, но при этом не теряют информативности даже при наличии мощного окружающего освещения (например, солнечный свет).

11. Источники света для устройств подсветки

Подсветка на базе люминесцентной лампы с холодным катодом CCFL (Cold Cathode Fluorescent Tube)

Применение люминесцентной лампы с холодным катодом широко распространено во многих устройствах, оснащенных ЖК-панелями. Люминесцентные лампы обладают хорошим запасом по сроку службы, достаточно экономичны (высокая яркость и низкое энергопотребление).

Подсветка на базе светодиодов LED (Light Emission Device)

Светодиоды устойчивы к вибрациям, обладают большим сроком службы, нетребовательны к схеме питания. Существенным недостатком светодиодов является недостаточный КПД, что тормозит их широкое применение в портативных устройствах. В последнее время были разработаны достаточно эффективные «белые» светодиоды, ставшие пионерами в устройствах задней подсветки некоторых моделей портативных компьютеров (ноутбуков и коммуникаторов).

Список литературы:

  • П. де Жен. Физика жидких кристаллов . — М.: Мир, 1977.
  • Seung-Woo Lee, Sang-Soo Kim. A Novel Dithering Algorithm A Novel Dithering Algorithm for High Color Depth and for High Color Depth and High Color Performance: Hi High Color Performance: Hi-FRC — SID 2004.
  • Creating a Neo-Outdoor Work Style. Low-Temperature Polysilicon TFT Reflective Color LCD . — Techno World.
Максим Проскурня

Хотя по написанию LED схожа с OLED, но обозначает она совсем другую технологию. Жидкокристаллический LED телевизор, что это значит – это аппарат с использованием другой системы подсветки по сравнению с обычными lcd моделями. И если OLED (Organic Light-Emitting Diode) это значит, что экран состоит из органических светоизлучающих диодов, то LED (Light Emitting Diode) – это использование диодов для подсветки матрицы жидкокристаллического телеприемника.

LED (Light Emitting Diode) – светоизлучающий диод, а в телевизионной технике эта аббревиатура означает экран на жидкокристаллической матрице (LCD) и с подсветкой от этих светоизлучающих диодов . После введения нового вида подсветки производители телевизоров в названиях моделей стали заменять "LCD" на "LED".

Это делалось скорее с маркетинговой точки зрения. На самом деле это была не новая технология экрана, а только другой вид подсветки. Но это название телевизоров сохранилось и применяется сегодня.

Если в обычных жк телевизорах используется лампа с холодным катодом, те же флуоресцентные (люминесцентные) лампы (Cold Cathode Fluorescent Lamps, CCFL) , то lcd led используют светоизлучающие диоды. Как известно жк (lcd) экраны в телевизорах состоят из ячеек (пикселей) с жидкими кристаллами и в зависимости от положения кристалла в ячейке пропускает или нет свет. Так создается свечение экрана.

От качества жк матрицы зависят такие параметры как статическая контрастность, уровень черного, углы обзора, частота обновления, время отклика. Различают такие технологии производства матрицы на жидких кристаллах для телевизоров: TN, IPS (S-IPS, IPS-Pro, P-IPS, AH-IPS), VA/MVA/PVA, PLS.


От подсветки зависят такие параметры как яркость, цветопередача, цветовой охват, динамическая контрастность. Хотя правильнее рассматривать именно систему матрица+подсветка в телевизоре и для нее измерять параметры.


Производители утверждают, что применение светодиодной подсветки может увеличить:

  • яркость,
  • контрастность,
  • четкость изображения,
  • цветовую гамму.

Еще снижается энергопотребление LED телевизора примерно на 40%. Так же в лед телевизорах не используется ртуть, которая применяется в лампах дневного света, что сказывается на экологии.

Действительно, современные сверхяркие светодиоды могут обеспечить высокую яркость изображения на дисплее.

Контрастность увеличивается и вводится понятие динамической контрастности, когда регулируется яркость свечения светодиодов локально для разных участков экрана, и засчет этого растет показатель динамической контрастности. При этом уровень статической контрастности телевизора остается одним и тем же, он зависит от матрицы дисплея.

Уровень черного так же улучшается за счет регулирования свечения диодов во время просмотра видео. На темной сцене уровень подсветки снижается и экран становится темнее, а отсюда и улучшается уровень черного.

А вот насчет увеличения цветовой гаммы телевизора, то здесь нужно рассматривать все подробнее.

Белые или составные светодиоды

Технологически подсветка дисплея в LCD телевизоре осуществляется от светодиодов. Для этого используют белые диоды, свет от которых попадает на светофильтры и получают синий, зеленый и красный цвета. Подобный вид называется WLED.

Для улучшения цветового охвата сначала стали использовать в качестве подсветки сразу три вида светодиодов: красные, зеленые, синие. Такая технология называется RGB LED.

Но получить с помощью таких технологий нужный спектр света не получалось. И цветовой охват был недостаточен для использования в телевизорах UHD. Для решения этой проблемы были изобретены новые виды светодиодов в телевизорах.

Сейчас в премиум моделях телевизоров используются составные диоды (GB-R LED, RB-G LED) или квантовые точки.

В составных светодиодах объединяют синий и зеленый в один и покрывают красным люминофором (GB-R), или в другом случае объединяют красный и синий и покрывают зеленым люминофором (RB-G).

Квантовые точки в LED телевизоре

Совсем другую технологию изменения подсветки WLED предложила компания Nanosys.

Квантовые точки в телевизоре заменяют часть диодов, в данном случае красные и зеленые. Остается только синий светодиод, который формирует поток света и для возбуждения квантовых точек и для работы синих суб-пикселей на экране. А поток света на красные и зеленые суб-пиксели формируют квантовые точки.

Методы лед подсветки

Для повышения качества изображения на экране телевизора появилась технология локального затемнения local dimming , по которой управление светодиодами происходит группами из нескольких диодов. Система local dimming имеет несколько недостатков:

  1. плохая однородность цвета на изображении, то есть заметны яркие и темные пятна на участках где ярко включена и выключена подсветка;
  2. на контрастных переходах появляются цветные ореолы;
  3. на темных участках пропадают детали изображения.

Эти недостатки трудно определить по обычной видео картинке на экране телевизора, поэтому сегодня метод локального затемнения широко используется в моделях с led подсветкой.




Так же можно разделить LED телевизоры по способу расположения светодиодов: Direct и Edge.

Direct - это когда диоды располагаются сзади экрана равномерно, в виде матрицы.

Edge – это когда они располагаются по периметру экрана совместно с рассеивающей панелью. При подобном расположении нельзя сделать эффективное локальное затемнение по методу local dimming.

При прямом (Direct) методе можно получить более равномерную подсветку, по сравнению с методом Edge, но увеличится толщина телевизора и энергопотребление за счет увеличения количества светодиодов. Сверхтонкие телевизоры (толщина может быть меньше 3 сантиметров) можно получить, только применяя расположение диодов Edge.

Из-за своей экономичности и при этом показывающей достаточно хорошие результаты, наиболее часто используется боковая (Edge) подсветка с локальным затемнением.

На 2015 год LED телевизоры выиграли конкуренцию у плазменных телевизоров, а OLED панели пока по стоимости не могут сравняться с лед моделями. Поэтому в 2015 году у всех мировых производителей в модельном ряде телевизоров все места занимают LED аппараты. Только некоторые производители решились выпустить OLED телевизоры, особенно здесь лидерство держит LG. Так что покупая телевизор этого года, вы наверняка купите именно LED модель.

Помнится, когда-то плазменные телевизоры занимали преобладающую долю рынка. Было даже модным говорить «плазма» и хвастаться ее наличием: «Я купил плазму », «У меня дома стоит большая плазма » и т.п. Сейчас это уже прошлый век. Технологии меняются во всех сферах – когда-то и Nokia выпускала лучшие мобильные телефоны. А сейчас понятие «мобильный телефон» практически изжито сенсорными смартфонами.

Пик популярности плазмы также со временем начал затмевать, а именно тогда, когда появилась более выгодная альтернатива – ЖК-панель. С распространением последней расходы на производство плазмы стали относительно убыточными. Кроме того, ключевую роль сыграла неутихающая тенденция делать технику компактнее, тоньше, легче, практичнее. С плазмой все эти манипуляции сложно реализовать. Поэтому сейчас преобладающую долю рынка отхватывают производители ЖК-телевизоров.

Заголовок этой статьи: «Какая разница между LCD и LED?». Но тема ее не столько об отличиях, сколько о выяснении правильности постановки данного вопроса. Чтобы выяснить это, рассмотрим для начала, что такое LCD и что такое LED.

Кто до сих пор не знал – LCD и есть та самая ЖК-панель. Например, газоразрядный дисплей (чем и является плазма) основан на люминофоре, который создает световое излучение в сопровождении ультрафиолетовых лучей. В свою очередь, ЖК-дисплей формирует изображение за счет жидких кристаллов наряду со светофильтрами и поляризованным светом. В отличие от ЖК, плазма не требует подсветки, поскольку каждая ее ячейка представляет собой отдельный источник света. В случае с жидкокристаллическими дисплеями изображение попросту не сформируется без подсветки, от которой проходит поляризованный свет.

Различают два типа подсветок LCD-панелей :

  • CCFL – флуоресцентная лампа с холодным катодом;
  • LED – светоизлучающие диоды.

Вот мы и выяснили. LED – это не тип дисплея, это один из типов подсветок ЖК-дисплея . Поэтому постановка вопроса: «Что лучше – LCD или LED?», очевидно, неправильная. В статьях, посвящённых теме отличия LED и LCD, идёт сравнение подсветок CCFL и LED, а не LCD и LED. Вот и всё.

Так в чем отличие LED от LCD? …точнее, от CCFL?

Если подойти к ближайшему прохожему с вопросом, знает ли он, что такое CCFL или холодный катод, то наверняка он либо переспросит, либо его ответ будет отрицательным. Оно и неудивительно, ведь сейчас ЖК-дисплей с холодным катодом практически и не встретишь. К преимуществам CCFL-подсветки можно отнести, пожалуй, только равномерность подсвечивания. В остальном она проигрывает LED-подсветке: CCFL не позволяет изготовлять тонкие панели и плюс ко всему является менее экономичной в плане энергопотребления.

Понятия «LED» или «светодиоды» нередко используются в обиходе, особенно среди пользователей смартфонов. Ко всему прочему, широкого распространения приобрели светодиодные лампочки, известные энергосберегающими свойствами.

Глупо ставить на весы CCFL и LED – любой производитель телевизоров, а также смартфонов, планшетов и прочей «экранной» техники отдаст предпочтение светодиодной подсветке. Кто откажется производить тонкие панели, на которые нынче спрос? Зачем предлагать потребителю телевизор с менее качественным изображением? И наконец, кто выберет телевизор с высоким энергопотреблением? Светодиоды не только меньше расходуют энергии, но и вдобавок обеспечивают более высокую максимальную яркость.

Пожалуй, теперь вопрос относительно того, какой телевизор лучше купить – LED или LCD CCFL, отпадает. Даже если бы вы и хотели купить телевизор с холодным катодом, то пришлось бы изрядно постараться, чтобы его найти. И при этом остаться довольным покупкой.

Типы LED-подсветки

Различают два типа:

  • Edge;

Edge-LED подсветка предусматривает размещение диодов по периметру, то есть по краям матрицы (Edge с англ. «край»), в связи с чем ее еще называют краевой. Находясь по краю матрицы, свет диодов, попадая на диффузор, рассеивается по всей площади. Из-за краевого расположения источников света подсветка получается неравномерной. Кроме того, Edge-LED не позволяет добиться насыщенного черного цвета. Но зато значительно уменьшено энергопотребление. А вместе с ним и расход тепла.

RGB-LED предусматривает расположение диодов по всей матрице. Следовательно, получаем более равномерную подсветку и вдобавок еще и цветную, в то время как Edge – белая. В основе RGB лежат диоды красного, зеленого и синего цвета. Особенность этого вида подсветки заключается в способности отключаться (позволяет получить абсолютно чёрный цвет) и, наоборот, светиться определенным цветом (делает изображение ярким и насыщенным).

Edge – более экономный вариант, поэтому находится в спросе среди потребителей. Эстеты же выбирают RGB-LED – здесь и цветопередача лучше, и подсветка равномернее. В принципе, в обоих случаях потребитель выигрывает – любая LED-подсветка однозначно проявит себя лучше по сравнению с электролюминесцентными лампами.

Помимо этого, есть еще технология WRGB , которую разработала LG . В основе WRGB лежат четырехцветные пиксели – вместе с зеленым, красным и синим идет еще и белый субпиксель. Следовательно, изображение выглядит реалистичнее, поскольку матрице удаётся отобразить больше многообразных оттенков.

Есть ли у LCD LED конкуренты?

Мы выяснили, какая разница между телевизорами LED и LCD CCFL и в чём первые превосходят вторых. Но является ли LCD LED лучшим решением на рынке? Если заглянем в каталог, то увидим, что практически весь ассортимент забит именно ЖК-телевизорами со светодиодной подсветкой:

Исходя из рисунка, второй по распространенности тип – OLED. Да, по сравнению с ЖК, телевизоров с OLED-панелью значительно меньше. Причиной этого послужил факт новшества в сфере телевизоров. К новому, как правило, относятся с осторожностью и ясно почему: не так много людей успело испробовать инновацию, поэтому не до конца понятно, что это и с чем её едят. К тому же стоимость далеко неутешительная:

Преимущества OLED

Подобно плазме, каждая ячейка OLED-панели представляет собой отдельный источник света, поэтому нет необходимости в подсветке. Положительным следствием этого, а также отсутствия поворачивающихся молекул, стали высокий контраст и низкое время отклика (как и в случае с плазмой). Из-за подсветки LCD не может похвастать идеальным черным цветом – свет просачивается и оттенок становится больше серым и порой даже фиолетовым. OLED же, напротив, обеспечивает жгучий черный цвет, что говорит о высокой контрастности органических панелей.

Если сопоставить OLED с Edge-LED LCD (подсветка матрицы по периметру, а не по всей площади), то в плане равномерности подсвечивания опять выигрывают органические светодиоды. Если весь экран затмить чёрным цветом, местами будут виднеться более светлые участки, что особенно заметно в темное время суток. OLED-телевизоры этой проблемы лишены.

Еще одно преимущество органических светодиодов – широкие углы обзора . В каком бы ракурсе вы ни посмотрели на телевизор, цветопередача и уровень яркости сохранятся. Впрочем, у LCD LED телевизоров тоже есть, чем ответить – например, матрицей IPS, характеризующейся углами обзора до 178 градусов. Но идеальной её также не назовешь, поскольку до сих находится в спросе другая ЖК-матрица – TN+film. В её случае углы просмотра с натяжкой можно назвать широкими, но зато по сравнению с IPS у TN+film лучшее время отклика – буквально мгновенное.

Современный человек половину своего времени проводит у экранов, поэтому ему так важно знать, какими преимуществами и недостатками обладают те или иные технологии производства дисплеев. Пользователи постоянно смотрят в экраны своих мониторов, телевизоров, телефонов, камер и других устройств. Поэтому огромную важность приобрел не только показатель , но и та технология, в соответствии с которой он изготовлен. Наиболее распространенной технологией является LCD (ЖК). Если экран телевизора описывается как «LED», то речь, скорее всего, идет именно об этой технологии. Источником света в данной технологии являются светодиоды.

Различия в устройстве экранов LED LCD и OLED

В опубликованной ресурсом TrustedReviews иллюстрированной заметке заметке «OLED vs LED LCD – Which display tech is the best?» Эндрю Уильямс (Andrew Williams) рассмотрел особенности каждой из наиболее популярных технологий производства экранов современных устройств. О великолепных качествах OLED наслышаны многие. Настала пора поговорить и о том, какими преимуществами обладает LCD-технология.

OLED-технология характеризуется существенными отличиями от LED LCD. Она применяется, например, в смартфонах Samsung Galaxy и таких телевизорах, как LG 55EC930V. Некоторые люди полагают, что именно за этой технологией будущее. На самом ли деле она превосходит хорошие LED LCD-дисплеи?

OLED и LED LCD. Основное различие

Основным различием является то, что в LED LCD пиксели подсвечиваются, а в OLED они излучают собственный свет. Вы могли слышать о том, что пиксели OLED называют «emissive» («излучающими»). Это значит, что яркость OLED-дисплея может контролироваться попиксельно. Такой уровень контроля недоступен в LED LCD.

В недорогих телевизорах и телефонах с LCD-экранами используется светодиодная подсветка, которая находится на стороне дисплея, а не прямо под ним. Свет от этих светодиодов проходит через матрицу с красными, зелеными и синими пикселями, которые и формируют понятную человеческим глазам картинку.

В экранах этого типа контроль над уровнем яркости ограничен. В темной комнате на таком LCD-экране видно, что некоторые части изображения не абсолютно черные, поскольку через них также проходит свет.


Контраст означает то, насколько различаются между собой черный и белый цвета, насколько белый цвет ярче черного. В хороших LCD-экранах это соотношение составляет 1000:1. Это значит, что белый цвет ярче черного в тысячу раз.

Контраст OLED

В OLED-дисплеях чистый черный цвет вообще не излучает света. Поэтому изображение, например, при просмотре фильма, будет смотреться непредсказуемо. Часть изображения будет резко выделяться своей яркостью.

Существуют также Direct LED-дисплеи, где светодиоды располагаются непосредственно под панелью, позволяя более тонкий контроль над тем, насколько яркими будут те или иные области экрана. Эта технология применяется в некоторых премиальных телевизорах.

В Direct LED-телевизорах возможность контроля изображения на уровне пикселей также недоступна. Вместо этого можно приглушить яркость изображения на определенных участках экрана. Это может оказаться весьма полезной возможностью в тех случаях, когда вы смотрите фильм с соотношением сторон 21:9 на телевизоре, соотношение сторон которого составляет более привычные 16:9.

Может ли LCD посоревноваться с OLED?

Профессиональный специалист по калибровке телевизоров Винсент Тио (Vincent Teoh) сказал: «LED LCD никогда не будет сравнима с OLED по уровню черного», при этом добавив: «при этом превосходит по максимальной яркости».

Для просмотра контента в темных комнатах лучшим решением является OLED-дисплей. Такие дисплеи хороши в телефонах. Основным производителем таких смартфонов является Samsung. В телефонах Nokia Lumia и одно время использовались OLED-экраны. Sony, Apple и LG преимущественно используют в своих телефонах LCD-дисплеи.

LCD-продолжает доминировать и в телевизорах. Тио отмечает, что LCD и в будущем «сохранит свое положение доминирующей технологии для телевизоров до тех пор, пока OLED не достигнет подобной цены для такого же размера и технических характеристик, чего не случится как минимум еще 5 лет — если OLED вообще сохранится и спустя столь долгое время».

Недостаток OLED-технологии

Если OLED-технология столь хороша, то почему все телевизоры на базируются на ней? Дело в том, что производство таких телевизоров невероятно сложное и они выходят дорогими. В основном известны OLED-телевизоры Samsung и LG. В OLED от Samsung (KE55S9C) при невероятно высокой цене известен дефект — синие светодиоды работают меньше, чем зеленые и красные. Да, они проработают годы, но за такие деньги пользователям хотелось бы приближения к совершенству.

LG удалось избежать этого дефекта, благодаря использованию белых светодиодов и цветных фильтров над их поверхностью, что приближает данную технологию к LCD.

Преимущества LCD-технологии

Сравнительно невысокая стоимость является основным преимуществом LCD-дисплеев. Вы можете найти высококачественные LCD-экраны в не очень дорогих девайсах. Примерами тому является IPS-панель в Moto E. Благодаря LCD-технологии возможны сравнительно недорогие -телевизоры, цена которых более чем в 10 раз ниже, чем их OLED-аналогов. Не исключено, что со временем таким разрешением обладать также и экраны смартфонов.

Изображение на LCD-экране часто выглядит более четко, чем на OLED при одинаковом разрешении. И проблема не только в разной продолжительности работы светодиодов различных цветов. Различается также уровень вывода ими света. Если LCD-экраны характеризуются равномерными цветами (красных, зеленых и синих субпикселей), то OLED-дисплеи отображают их более… «динамически».

Sony продемонстрировала разницу в контрасте между LED LCD и OLED

К примеру, в Galaxy Note 4 вместо использования трех постоянных субпикселей присутствуют маленькие точки красного, синего и зеленого, которые эффективно формируют два пикселя. Они различаются формой — красные и синие ромбовидны, а зеленые являются маленькими овалами.

Это называется расположением PenTile и делает изображение на экране несколько неоднородным. Впрочем, в новейших телефонах этот эффект постепенно исчезает. При этом OLED остается более сложной и в меньшей степени доведенной до совершенства технологией, чем LCD.

Достаточно ли значительны преимущества OLED-технологии для той невероятно высокой цены, которой характеризуются экраны на ее основе?

Перед тем как приобрести новый телевизор, многие покупатели задаются вопросом: какая из технологий лучше. Чаще всего выбирать приходится между ставшим уже классическим LCD телевизором, который также называют ЖК, и телевизором LED. Однако перед тем как решать, какой из них лучше, необходимо узнать, что же каждый из них представляет.


LCD телевизор, или как у нас его называют, ЖК, обладает монитором, созданным из жидких кристаллов и обладающей задней флюоресцентной подсветкой, для которой используется лампа с холодным катодом.

LED телевизор имеет в своем составе полупроводники, которые сами являются источниками излучения, при подаче на них напряжения. В качестве подсветки используются светодиоды, которые могут располагаться по бокам дисплея или сзади него по периметру.

Что собой представляют ЖК телевизоры

LCD монитор представляет собой две прозрачные пластины с электродами, между которыми располагаются жидкие кристаллы. Изменения и передача изображения происходит тогда, когда на электроды подается электрический ток. Такая технология сама не способна излучать свет, поэтому нуждается в дополнительной задней подсветке экрана.

В качестве такой подсветки зачастую используется флюоресцентная лампа, обладающая холодным катодом. Состоит она из электронно-лучевых горизонтальных трубок, которые размещаются вдоль монитора.


Технология LED телевизоров

LED телевизоры отличаются от ЖК вариантов только подсветкой, само же устройство экрана не отличается. У таких моделей телевизоров при этом существует два вида подсветки:

  1. Боковая (Edge). При таком виде подсветки светодиоды располагаются сбоку от экрана, а свет от них направлен в торец панели. Это наиболее дешевая технология. Равномерное освещение экрана в данном случае обеспечивают рассеиватели, а компенсация световых потерь происходит благодаря установленным отражателям.
  2. Задняя (Direct) подсветка. При этом светодиоды располагаются с задней стороны стекла по всей его площади. Для равномерного освещения и компенсации потерь в данной технологии также обеспечивают компенсаторы и рассеиватели. Считается, что данный тип подсветки намного лучше, чем боковой.

Благодаря второму типу подсветки каждый диод, при подаче на него напряжения, начинает светиться определенным цветом и создает необходимый оттенок пикселя, соответствующий изображению на экране. Благодаря этому контрастность и яркость изображения становится намного лучше, чем могут передать стандартные LCD телевизоры.

Благодаря использованию светодиодов, телевизоры типа ЛЕД отличаются меньшей толщиной, чем ЖК модели с электронно-лучевыми трубками, предназначенными для подсветки. При этом модели с боковой подсветкой тоньше, чем с задней, хоть и немного хуже передают контрастность и глубину черного.

Виды освещения в LED экранах

Также подсветка в таких телевизорах делится на разноцветную и белую. Белая подсветка по своим характеристикам напоминает подсветку в классических LCD мониторах. Для ее создания используется синий источник света, которые покрывается серой, в результате чего получается белый цвет. Располагаются такие источники света по бокам экрана. Благодаря такому освещению экран будет особенно хорошо передавать зеленый оттенок. Однако в некоторых старых моделях телевизоров с белой подсветкой, зеленого может оказаться слишком много.

Разноцветная подсветка располагается сзади экрана и способна намного лучше передавать цвета и оттенки, так как для ее создания используются диоды красного, зеленого и синего цвета. При таком типе подсветки проблем с большим количеством зеленого цвета не возникнет.

Чем LED телевизор лучше LCD

У LED телевизоров, по сравнению с ЖК моделями, есть целый ряд преимуществ. Разберемся с каждым из них по отдельности.

Точность передачи цветов и их оттенков Все дисплеи типа ЛЕД, по сравнению с LCD экранами, обладают максимально точной передачей оттенков и цветов. Это достигается благодаря использованию светодиодов RGB. Они способны воспроизводить наиболее яркие и насыщенные цвета
Уровень черного цвета и контрастность изображения В ЖК телевизорах для создания черного цвета жидкие кристаллы просто блокируют прохождения света. Однако небольшое количество света через них все равно проникает, поэтому достигнуть при помощи такой технологии особенной глубины черного цвета или контрастности сложно. Световые диоды при этом могут либо вообще не получать напряжения, а соответственно и не светиться, или излучать совсем слабый свет. Благодаря этому контрастность, как и насыщенность черного цвета в них лучше.
Энергоэффективность Светодиоды могут светиться совсем слабо, при этом они будут использовать небольшое количество энергии. В LCD телевизорах уровень напряжения всегда один и тот, же, поэтому LED телевизоры потребляют меньше электроэнергии и сокращают количество его потребления.
Угол обзора Этот параметр зависит от многих технологий, но в первую очередь от переднего стекла монитора. Современные модели LED и LCD телевизоров способны достигать как вертикального, так и горизонтального угла обзора в 180 градусов. Но старые ЖК телевизоры обладали углом обзора всего в 45 градусов, а вот у LED моделей угол обзора был лучше и начался со 160
Долговечность Люминесцентные лампы имеют меньший срок годности, чем обычные светодиоды, а значит, LED экран прослужит вам намного дольше.
Экологичность По сравнению в ЖК моделями такие телевизоры практически не наносят никакого вреда окружающей среде, так как не содержат в себе ртути, которая присутствует в обычных лампах подсветки.
Толщина корпуса Так как диоды занимают намного меньше места, чем люминесцентные лампы, появляется возможность создавать более тонкие и компактные модели телевизоров.
Большое количество дополнительных возможностей В современных моделях ЛЕД телевизоров имеется огромное количество различных интерфейсов и разъемов, благодаря которым к ним можно подключать любое цифровое устройство, игровую консоль или даже компьютер. Кроме того, такие телевизоры поддерживают огромное количество аудио, видео и фото форматов, могут обладать функцией Smart TV, а также 3D.

LCD мониторы стараются догнать LED устройства, и у них это пока что получилось только в размерах диагонали и быстроте отклика. Единственное их существенное преимущество – небольшая цена. Однако с каждым годом стоимость LED моделей также начинает подать, а значит, в скором времени и в этом параметре они тоже сравняются.



Загрузка...