sonyps4.ru

Какое время отклика лучше для телевизора. Характеристики телевизоров: контрастность, яркость, угол обзора, время отклика, разрешение

14 милисекунд можно увидеть невооруженным глазом, эти два гоночных автомобиля находятся на расстоянии 14 миллисекунд.

Многие современные и старые ЖК-телевизоры с более длительным временем отклика отображают размытие вокруг быстро движущихся объектов, что делает их неприемлемыми для сценариев действий, спортивных состязаний, видеоигр и практически любого быстро движущегося видео. Например, при просмотре бейсбольной игры на более старом ЖК-телевизоре у шара может появиться комета как хвост, быстро перемещаясь по экрану. Наиболее часто это явление встречается в бюджетных ЖК-дисплеях, но вообще размытость изображения является проблемой, присущей технологии LCD. Причина, по которой этот эффект размазывания важен для нас, как потребителей, заключается в том, что высокое время отклика может полностью испортить красивую картинку, независимо от контраста и яркости телевизора.

В настоящее время производители значительно улучшили время отклика.

Последним решением этого вопроса является повышение частоты кадров ЖК-панелей, многие ЖК-панели теперь удваивают или увеличивают в четыре раза первоначальный стандарт от 60 Гц до 120 Гц и 240 Гц. Но поскольку производители все чаще конкурируют между собой по части технических новшеств, то тем самым ухудшается качество. Заводы-изготовители чаще обманывают потребителя в технических показателях или вовсе не уточняют время отклика. Это было с углами обзора, затем яркостью и контрастностью, а теперь временем отклика.

Одним из примеров хорошего времени отклика является линейка Aqua от Sharp. Это очень высокочувствительные ЖК-дисплеи и время отклика составляет 4 миллисекунды. Более старые ЖК-телевизоры имели время от 12 до 16 миллисекунд. На нынешних ЖК-дисплеях Sony XBR и Bravia указано время отклика 4 миллисекунды и 120 Гц или выше. По слухам, некоторые китайские производители ЖК-дисплеев имеют время отклика более 20 или даже 25 миллисекунд.

В этой статье я отвечу на мучающий многих вопрос: «Какой телевизор выбрать ?» Можно считать, что эта будет одна из самых важных покупок в качестве компонента для домашнего кинотеатра, но материал поможет и тем, кто просто задумался над покупкой телевизора, так как для правильного выбора надо располагать всей необходимой информацией о том, из чего и как выбирать.

Первое правило — при выборе телевизора стоит остановить внимание на известных марках, нежели на малоизвестных, то есть обойтись без экспериментов. Самые известные производители на рынке ТВ: PANASONIC, SONY, SAMSUNG, LG, TOSHIBA и PHILIPS). Говорить о том, что одно плохо, а другое хорошо, было бы заведомо неправильно.

Разрешение телевизора

Каждый ЖК телевизор имеет свое разрешение, то есть количество пикселей на экране. В небольших телевизорах (20 дюймов) разрешение может быть и 1024х768 и с увеличением диагонали оно повышается, приближаясь, в моделях с диагональю больше 40 дюймов, к разрешению телевидения высокой чёткости — 1920х1080. Большое разрешение необходимо, если у Вас есть спутниковая антенна, цифровое телевидение (некоторые кабельные операторы предоставляют такую услугу), DVD, Blu-Ray проигрыватели высокого качества с возможностью воспроизводить фильмы высокой чёткости или вы хотите смотреть BDRip’ы 720p — 1080p скачанные из интернета. Вот тогда Вы получите удовольствие от четкого изображения и детализации. При просмотре обычного эфирного телевидения большого разрешения не требуется. Телесигнал передаётся с разрешением 720х576. Поэтому перед тем как выбрать жк телевизор , определитесь, какой сигнал будет подаваться на вход.

Совет . Если вы сидите слишком далеко от экрана телевизора, то можете и не замечатьразницу между разрешением 1080p или 720p . Так происходит, потому что даже при 100% зрении, существует предел разрешающей способности нашего глаза. Мелкие детали, в роли которых выступают отдельные пиксели, на удалении становятся незаметны. Дисплеи с разрешением 1080р, как правило, дороже тех, что поддерживают разрешение 720р. Если вы будете сидеть достаточно далеко от экрана, то не сможете заметить разницу между 720p и 1080p, в таком случае, зачем тратить лишние деньги на ЖК телевизор с поддержкой 1080p? Может быть, стоит эту сумму денег потратить на увеличение диагонали или расширенные функциональные возможности. Больше информации об HD разрешении вы получите чуть позже, узнаете чем отличается HD Ready от FullHD и так далее.

Для покупателей с девизом «хочу больше всех» подойдет телевизор с разрешением 3840×2160 и диагональю 55″ (Toshiba 55ZL2), который демонстрирует великолепное изображение при просмотре фильмов в режиме 2D. 3840×2160 — это разрешение UltraHD , его поддерживают современные ресиверы , приставки нового поколения, такие как PS4 и другие современные мультимедиа устройства. Подробнее о разрешении 4K (Ultra HD) читайте .

Время отклика телевизора

Немаловажный параметр при выборе телевизора — это время отклика . Для формирования цветного изображения, которое интенсивно меняется при просмотре любого видеоконтента, фильмов и т.п. жидкие кристаллы, на которых основана технология производства LCD телевизоров, должны перемещаться из начального положения в крайнее. Например, в горизонтальном положении виден только белый цвет, когда они перевернутся в вертикальное положение, будет виден только черный цвет. Время, за которое происходит перемещение жидких кристаллов из горизонтального положения в вертикальное и называется временем отклика жидких кристаллов. Поэтому, чем быстрее время отклика, тем качественнее будет цветопередача изображения. Иначе если время отклика будет иметь большое значение, то при просмотре динамических сцен за быстродействующими объектами будет оставаться «шлейф» или одно изображение будет накладываться на другое. Для современных LCD время отклика должно быть не более 8 мс (миллисекунд, то есть 1мс=1х10-3 с), что вполне достаточно для комфортного просмотра. Если при воспроизведении изображения с быстрой сменой плана появляется шлейф за объектом, то обратите внимание на этот параметр. Инерционность жк матрицы важный фактор для комфортного просмотра.

Совет . Забудьте о покупке ЖК или LED телевизора со временем отклика более 8 мс. При выборе телевизора, обратите внимание на технологии отображения динамичных сцен. В современных моделях Samsung используются технологии 100Гц Motion Plus и Clear Motion Rate. 100Hz Motion Plus более эффективна для динамичных сцен, так как рассчитывает составляющую движения в поступающем видеосигнале и выполняет интерполяцию нового кадра, удваивая развертку. Данная технология не уникальна и имеется у других моделей, просто имеет видоизмененное название, но это лишь «улучшайзер», в действительности изображение будет 60 Гц.

Интерфейсы телевизора (входы/выходы)

Вопрос «Какой телевизор выбрать? » во многом зависит от того, какую AV или мультимедиа технику собираетесь вы собираетесь подключать? Исходя их этого нужно выбрать телевизор с подходящими для всей сопрягаемой с ним техники интерфейсами. Обязательно продумайте дополнительные возможности вашего телевизора. Они напрямую зависят от устройств, которые планируется к нему подключать.

Большинство ЖК телевизоров имеют стандартный набор аналоговых выходов/входов, таких как S-Video, композитный, компонентный и SCART, но для совместного использования современных устройств, например Blu-Ray плееров или цифровых камер HD, необходимо, чтобы последний имел цифровые выходы/входы (подробнее о видеоинтерфейсах ), о которых я расскажу далее.

Какие входы\выходы и интерфейсы должны быть на телевизоре

Желательно, чтобы ЖК телевизор имел разъемы DVI (Digital Visual Interface), а главное — HDMI (High Definition Multimedia Interface). В отличие от DVI, интерфейс HDMI позволяют получать в цифровом виде не только видео, но и аудиосигнал. Таким образом, современный LCD телевизор просто обязан иметь цифровые входы/выходы формата DVI и HDMI. Самые современные модели AV-техники подключаются к телевизору напрямую — через передающий сигнал высокой четкости интерфейс HDMI (XBOX 360, PS3, Blu-Ray плеер, HD видеокамера, ноутбук и т.д.). Как правило, HDMI разъемов на телевизоре несколько, расположенных на задней или боковой панели, чтобы подключать HDMI-устройства было быстрее и удобнее.

Если вы предполагаете использовать устаревшие видеомагнитофоны и видеокамеры, которые передают видеосигнал в аналоговой форме, то для их соединения с LCD необходимо использовать аналоговые входы телевизора. Для этого используются кабели 2-х типов: композитный кабель (Сomposite, VHS) и компонентный S-Video (S-VHS) кабель. Для подключения композитного кабеля используется разъем RCA (тюльпан), а для кабеля S-VHS - разъем S-Video. AV-кабель предназначен для соединения видеокамеры, DVD-плеера или фотоаппарата с ЖК телевизором и используется для просмотра контента через экран телевизора. Другим способом соединения видеокамер и видеомагнитофонов с LCD, LED телевизором является евростандарт SCART.

Помимо стандартных интерфейсов для подсоединения видеокамер, DVD-плееров и цифровых устройств современные модели телевизоров предусматривают интеграцию в локальную сеть и выход в Интернет без помощи ПК.

Воспроизведение файлов с цифровых носителей: через слот для карт памяти на большой экран выводятся фотографии и видео с цифровых фото- и видеокамер. С помощью порта USB проигрываются музыкальные и видеофайлы с различных цифровых устройств (MP3, MPEG4, DivX, MKV и др.). Для достижения максимальной функциональности телевизоры должны быть оборудованы слотами для подключения различных типов карт памяти и 2-мя USB-портами.

ЖК и LED телевизор , совместимый со стандартом DLNA, станет частью домашней локальной сети: фильмы, музыка, фотографии с жесткого диска компьютера без проблем воспроизводятся на широкопанельном экране, а при наличии в телевизоре интерфейса беспроводной передачи данных (Wi-Fi адаптер) для такого подключения не потребуется дополнительных входов и кабелей. Кстати, Wi-Fi адаптер часто устанавливается опционально.

LED и ЖК телевизоры последнего поколения имеют доступ в Интернет без ПК, а также Skype для общения с друзьями и родственниками. Например, обладателям LED-телевизоров Sony BRAVIA уже открыт доступ к огромной библиотеке теле- и видеоконтента от российских и международных телеканалов с возможностью формировать собственную ТВ-программу.

Что такое HD и чем отличается HD Ready от Full HD

Как выбрать HD телевизор . Для улучшения качества изображения и звука телевизоров применяются различные технологии. Одной из таких технологий и является функция HD (High Definition) — технология высокой чёткости. Улучшение качества происходит за счёт увеличения разрешения (количества пикселей) телевизора. Если разрешение стандартного телевизионного сигнала 720 х 576 пикселей, то минимальное разрешения телевизора HD в два раза больше — 1280 х 720 пикселей. Самое большое разрешение таких телевизоров 1920 х 1080 пикселей. В этих телевизорах применяется прогрессивная развёртка. В отличие от чересстрочной развёртки здесь изображение выводится на экран целиком в одно время. В обозначении телевизоров чересстрочная развёртка обозначается «і», а прогрессивная —«р». В обозначении телевизора также указывается число строк на экране, например720р,1080р(лучший формат), 1080і.

HD Ready имеет 720 строк. Принимается сигнал 720р и 1080і. При сигнале 1080р, может, не воспроизводится полное разрешение. В телевизорах с таким форматом должно поддерживаться аналоговое телевещание и HDMI, может немного искажаться изображение.

HD 1080p (Full HD). В этих телевизорах поддерживается разрешение 1920 х 1080. Можно воспроизводить без искажений сигнал с разрешением 1080і и 1080р, что позволяет покупать телевизор с большей диагональю. И при этом Вы не увидите разложения изображения на квадратики. Такие телевизоры могут воспроизводить сигнал с кадровой частотой 24Гц, 50Гц, 60Гц.

HDTV телевизоры имеют цифровой тюнер. Поддерживает формат HD Ready. Преимущество в том, что не потребуется дополнительный тюнер для приёма сигналов HD. HDTV 1080p вместе с HDTV сможет показывать сигнал с разрешением 1920 х 1080 пикселей с частотой 24Гц.

Телевизоры обязательно имеют разрешение 1080 строк. Подключив телевизор к источнику сигнала (например,современная видеоприставка (XBOX 360, PS3) или Blu-Ray плеер) с поддержкой Full HD можно получить лучшее качество.

При выборе телевизора, то внимательно смотрите на стикеры, которые наклеены на телевизоре. Теперь вы знаете что они означают. Это особенно важно при выборе ЖК телевизора, плазменного телевизора или LED телевизора.

Яркость, контрастность и цветопередача плоских панелей

Каждый делает выбор телевизора , исходя из личных цветовых пристрастий и восприятий, но далеко не всегда определившись с моделью телевизора, можно определить, к какой системе цветопередачи вы склонны. Поэтому целесообразно выбрать телевизор с возможностью коррекции цветности. Почти все современные телевизоры имеют такую функцию, реализованную в процессоре. Для этого в меню выбирается один из параметров: холодные тона — приоритет синих оттенков, теплые тона — смещение белого в сторону коричневого и желтого цвета, и нормальные тона — когда баланс белого максимально приближен к реалистичным цветам. Некоторые модели позволяют корректировать цветопередачу вручную. С помощью ползунков на экране меню можно выставить баланс белого по своему вкусу. Чтобы не ограничивать себя, лучше выбирать модели ТВ с регулировкой баланса белого вручную.

Чтобы правильно выбрать LCD или LED телевизор, обратите внимание на уровень яркости и контрастности. Яркость должна быть не меньше 450 кд/м2. При проверке контрастности смотрите, что указано в характеристиках. Может быть указана динамическая контрастность, которая намного больше реальной. Контрастность должна быть не меньше, чем 500:1. У жк-телевизоров может быть система подстройки яркости экрана в зависимости от внешней освещённости или динамический контраст (меняющийся в зависимости от изображения). Хотя для современных LCD телевизоров яркость и контрастность не являются проблемой и вам нужно только проверить их нормальную работу.

Диагональ телевизора

Как выбрать диагональ или размер телевизора . Одним из наиболее важных параметров является размер телевизора, который определяется диагональю матрицы, измеряемой в дюймах («). Чем больше диагональ, тем больше цена. Выбирая размер телевизора, необходимо знать, с какого расстояния его предполагают смотреть. Прикиньте, какое у вас в комнате будет расстояние от любимого дивана до предполагаемого экрана телевизора и, исходя из этого, рассчитайте, какой размер диагонали будет подходящим. Так, 26» телевизор подойдет, если от экрана до места просмотра примерно 150 — 200 см, для 32» телевизора нужно, чтобы расстояние до места просмотра было 200 — 280 см.

Либо воспользуйтесь правилом: расстояние до ТВ = 4-5 диагоналей экрана телевизора.

Большинство пользователей выбирает ЖК телевизоры с диапазоном диагонали 30 — 60 дюймов. Наиболее популярные размеры экрана телевизора: 32 дюйма, 40 дюймов, 42 дюйма и 45 дюймов.

Совет. Выбираем ЖК телевизор . Определите подходящую диагональ. Попросите включить несколько моделей аналогичных телевизоров и отойдите от них на расстояние примерно 3,5÷4 м. Обязательно оцените самостоятельно качество передаваемой картинки. Выберите модель LCD, на котором картинка будет лучше на ваш вкус, и уточните следующие технические параметры. Помните, что настройками можно «довести картинку до ума».

Формат

Формат кадра, а следовательно, и экрана, долгие годы соответствовал пропорциям 4х3. Но сейчас рынок ТВ заполнили модели с пропорциями 16х9. Этот формат более приемлем для просмотра с точки зрения физиологии человека, лучше подходит для просмотра цифрового телевидения и НD видео контента, использования видеоприставок последнего поколения, да и центральные каналы российского тв постепенно переходят на широкоформатное вещание. А если вы предпочитаете смотреть HD видео, Blu-Ray диски, скачанные с торрентов фильмы в HD качестве, то преимущество широкого формата очевидно.

Частота развертки современных телевизоров (Гц)

Важный параметр при выборе телевизора . Число отображаемых на экране кадров в единицу времени имеет несколько названий: частота развёртки, частота кадров или кадровая частота. Правильно будет говорить об этом параметре — развёртке с частотой кадров X Гц, но так получается слишком громоздко. Привычные ранее телевизоры с электронно-лучевой трубкой и созданные для них форматы аналогового телесигнала имели кадровую частоту 50-60 Гц, иными словами демонстрировали за одну секунду экран показывает нам 50-60 кадров, в зависимости от используемого стандарта. Электронный луч формирует изображение на покрытии кинескопа построчно (при этом используется так называемая черезстрочная развёртка — изображение передаётся полукадрами, состоящими из чётных или нечётных строк). Подобный подход приводит к мерцанию картинки, которое тем заметнее, чем больше диагональ экрана по причине высокой чувствительности периферийного зрения. Режим 100 Гц в телевизорах с кинескопами решал проблему за счёт повторного показа кадров. Таким образом, кадровая частота увеличивалась в два раза, и мерцание было незаметно.

Частота смены телевизионных кадров долгие годы составляла 50 — 60 Герц (50 — 60 кадров в секунду). Теперь производители стали предлагать телевизоры с частотой развертки 100 — 600 Герц. Их различия очевидны даже для самого неискушенного зрителя. Картинка на экране 100-герцового телевизора отличается большей стабильностью, плавностью изображения и напоминает вид из окна. Раньше недостатком 100-герцовых телевизоров являлся шлейф, который оставляет быстродвижущийся объект, сейчас этим «пороком» обладают лишь недорогие модели. Многие компании, начиная с 29-й диагонали, оснащают свои изделия фильтрами для подавления шумов. Благодаря фильтрам шлейф становится едва заметным. Как правило это запатентованные системы подавления шлейфа.

Особенности частоты развертки ЖК-телевизоров

В жк-телевизорах важна не сама частота, а способность процессора строить промежуточные кадры (100 Гц может быть маркетинговым ходом и не содержать никакой улучшающей плавность изображения технологии, производитель может просто не упоминать об этом). Подавляющее большинство эфирных телеканалов вещают с частотой 25 кадров в секунду (SECAM), так же и все видеозаписи выпускаются в таком формате, и если процессор телевизора не способен интерполировать кадры (или проигрыватель видеодисков — проставлять промежуточные кадры), то хоть 200 Гц — все будет лишним. Телевизоры с жидкокристаллической матрицей основаны на других физических принципах и мерцание исключено из-за особенностей устройства. Высокая кадровая частота в них необходима для других целей. С первыми жидкокристаллическими мониторами особых проблем не было, поскольку отображаемый ими контент динамичностью не отличался. Современные ЖК-телевизоры предназначены для воспроизведение видео с высоким разрешением, компьютерных игр и т.д. При попытке показать динамично меняющееся изображение с частотой, скажем, 50 кадров в секунду оно может казаться размытым, а движения перемещающихся быстро объектов могут становиться дёргаными.

Для избавления от подобных эффектов производителям приходится увеличивать кадровую частоту. Получить 100 Гц на ЖК-телевизоре довольно просто — с помощью специальных алгоритмов устройство анализирует два последовательных кадра и создает один промежуточный, который вставляется между оригинальными. Для дальнейшего повышения кадровой частоты можно увеличивать количество промежуточных кадров (скажем, для получения частоты 200 Гц их нужно уже три), что требует дополнительных вычислительных мощностей.

Есть и обусловленный особенностями конструкции матрицы нюанс. Инженеры ограничены временем отклика пикселей — кристаллы должны успевать менять своё положение с нужной скоростью. Важно понимать, что телевизоры могут и не достигать заявленной производителем кадровой частоты из-за особенностей матрицы, если обновление пикселей не успевает за сменой изображения. В этом случае происходит их рассинхронизация, и на экране появляются разнообразные артефакты, блики, размытие и т.д. Особенно хорошо это заметно на просмотре спортивных передач или другого динамичного контента в режиме 3D.

Другой способ — увеличить видимое обновление экрана за счёт мерцающей с высокой частотой подсветки. Применяя её, можно получить 200 Гц всего лишь с одним промежуточным кадром, но качество картинки в этом случае хуже, чем в случае «реальных» 200 Гц. Поднять кадровую частоту ещё выше можно, к примеру, за счёт комбинирования двух подходов, и к ЖК-телевизорам с очень высокими кадровыми частотами нужно относиться с большой осторожностью — часто этот параметр является всего лишь маркетинговым ходом и не способен серьёзно влиять на качество изображения.

У плазменных панелей нет проблем с размытым изображением, поскольку переключением состояния пикселей здесь происходит значительно быстрее. Раньше производители испытывали некоторые сложности с длительным временем послесвечения, но с разработкой новых люминофоров и этот вопрос был решён. Плазменной панели очень высокая кадровая частота попросту не нужна, но необходимость конкурировать с ЖК-телевизорами заставляет производителей также идти на маркетинговые ухищрения. Так появились технологии вроде Sub-field motion или Sub-field drive, позволяющие написать на коробке 480 Гц и даже 600 Гц. Суть их проста: на плазменной панели чередуются не целые изображения, а их фрагменты или точки (dots). Особого практического смысла в том нет, но следует отметить, что разработчики предлагают пользователям реальные способы увеличения кадровой частоты, и преимущества плазмы в этом смысле (особенно для вывода 3D-изображения) очевидны.

Увеличение кадровой частоты не всегда приводит к хорошим результатом. В отличие от телевизионного контента, фильмы снимаются в формате 24 кадра в секунду. Хотя в скором времени ситуация может измениться. Например, вторую часть «Аватара» собираются делать уже по-другому — увеличение частоты кадров здесь приводит к нежелательным последствиям, в просторечии называемым эффектом мыльной оперы. Эта тема очень спорна и достойна отдельной заметки.

С точки зрения кадровой частоты наилучшие результаты показывают плазменные телевизоры, но они обладают одним существенным недостатком: из-за большого размера пикселя устройство с маленькой диагональю сделать невозможно. Если говорить о ЖК-телевизорах, то обеспечить реальную частоту обновления кадров выше 200 Гц производители пока не могут и вынуждены идти на маркетинговые ухищрения с использованием мигающей подсветки. Тем не менее если нужно устройство для просмотра контента высокой чёткости или для игр, то 100 или 200 Гц совершенно необходимы. Если это реальная кадровая частота, что можно проверить только на практике, посмотрев в магазине, как телевизор справляется с отображением динамичных сцен в высоком разрешении. Особенно в 3D. Проще всего с отображением аналогового телесигнала — оно по силам любой модели.

Звук (встроенная акустическая система)

Как оценить качество звука на телевизоре . Встроенная звуковая система современных телевизоров редко обладает высоким качеством. Позаботиться о будущем звучании телевизора вы можете, присмотревшись к моделям с отдельнымсаундбаром (см. фото выше), распологающимся внизу корпуса. Это устройство дополнит звучание чистым звуком и басом.

Как правило, вопрос качества звука в телевизорах стоит на втором месте по значимости после изображения, особенно для обладателей акустических систем. Ожидать и потому требовать какого-то качества звучания следует, начиная с диагонали в 32″. У небольших 22-дюймовых телевизоров качественный звук невозможен по определению, ввиду ограниченных размеров корпуса и динамиков соответственно. При средней и повышенной громкости корпус не должен создавать неприятных резонансов, но если для воспроизведения звука будет использоваться внешний усилитель (или ресивер) и акустика, то качество звука телевизора не представляет важности вовсе. Любая компания, выпускающая телевизоры высокого класса с разверткой от 100 Гц, старается сделать не только качественную картинку, но и приемлемый звук. Поэтому, покупая практически любую модель с частотой 100 Гц, вы вправе рассчитывать на неплохое изображение и качественное звучание. Для более простых моделей справедливо правило: чем больше мощность телевизионных динамиков, тем лучшего качества звука можно добиться на меньшей громкости, получается, что покупка телевизора с диагональю менее 26″ не целесообразна. При выборе ЖК телевизора для проверки звука сделайте громкость максимально необходимой для вас и послушайте нет ли помех. Если Вы не будете подсоединять внешнюю аудио систему, то поинтересуйтесь, есть ли встроенные декодеры звука Dolby Digital,Dolby Pro Logic, Virtual Dolby или SRS TrueSurround.

Немного о стандарте Dolby Digital

Что значит надпись Dolby Digital . Данный стандарт обрабатывает цифровой звук для эффективной передачи. Звуковой сигнал стандарта Dolby Digital обеспечивает воспроизведение любого звука: от моно (1/0) до полноценного 5.1-канального Surround (объемный звуковой стереосигнал). Dolby Digital является универсальным звуковым форматом для цифрового вещательного телевидения стандартов ATSC и DVB-T. Аналогом стандарта Dolby Digital является Dolby Surround с его единственным ограниченным по частоте окружающим каналом, обычно воспроизводящимся через два громкоговорителя. Dolby Surround — это процесс обработки, позволяющий представить любой звуковой стереосигнал четырьмя каналами звука.

На большинстве моделей LCD и LED телевизоров возможен вывод звука через оптический или коаксиальный кабель. Например, можно подключить к телевизору Blu-Ray плеер, XBOX 360 и PS3 в HDMI входы, а вывести звук с помощью оптического кабеля (выход), вставленного в оптический вход ресивера/усилителя. Кстати, видеоприставка PS3 заменит вам Blu-Ray плеер.

Коэффициент полезного действия акустической системы (КПД). Этот параметр очень важен при использовании колонок, так как определяет звуковое давление, которое создается на расстояние 1 м от динамика сателлита при мощности равной 1 Вт. Выбор за вами, чем больше, тем лучше. Но такой информации о встроенной в ТВ акустики найти тяжело.

Меню и дистанционный пульт управления

Меню телевизора должно быть интуитивно понятным, удобным, на доступном вам языке. Главное, чтобы в меню присутствовали все основные настройки изображения, звука и приема сигнала.
Дистанционный пульт управления телевизором не должен быть слишком громоздким и хорошо сбалансированным в руке. Очень удобно, если кнопки нажимаются жестко, но четко. И желательно, чтобы на них были специальные выступы, чтобы можно было находить нужную кнопку в темноте на ощупь. Современные модели телевизоров могут обладать, наряду со стандартным пультом дистанционного управления, еще и сенсорным (Samsung UE55ES8000). Он облегчит работу с приложениями Smart TV.

Современные устройства для управления телевизором

Первой компанией, внедрившей новые концепции управления в телевизорах является компания Samsung. Например, модель UE55ES8000, которая реагирует на жесты и речь. Данный телевизор способен быстро реагировать на голосовые команды, а функция локального поиска воспринимает и целые предложения, исходящие от пользователя. Пока функция голосового управления не работает в веб-браузере. Помимо голоса, телевизором можно управлять жестами, которые он улавливает специальной камерой на передней панели. Это даст вам возможность переключать каналы, регyлировать громкость, а также управлять с помощью жестов
приложениями Smаrt TV, но с одним условием: использование в светлом помещении.

Потоковая трансляция на мобильные устройства

Функция Smаrtviеw (в телевизорах Samsung) позволяет передавать трансляцию на смартфон или планшет с дополнительной информацией и устанавливать время записи программы. Данную функцию поддерживают смартфоны Galaxy S 2, 3 и планшеты Galaxy Таb и Galaxy Tab 2 c помощью приложения Samsung Smart View, подключенные c телевизором к одной wi-fi сети. Плюс ко всему можно управлять телевизором мобильными устройствами приложением Samsung Remote App. Эти программы вы можете бесплатно скачать на странице магазина приложений для Android — Google Play .

Размещение телевизора в нише

При выборе телевизора для установки в специально подготовленную нишу необходимо учитывать, что между корпусом телевизора и стенками ниши обязательно должно оставаться свободное пространство не менее 10 см для обеспечения свободной циркуляции воздуха. Эта информация пригодится тем, кто в будущем или в настоящем делает ремонт.

Предназначение

Прежде чем вы решите, что ответили на вопрос «Какой выбрать телевизор? «, необходимо подумать о его предназначении: для кухни, для дачи, для спальни, для гостиной и т.д. В целом, 19-22» телевизоры идеально подходят для кухни, они маленькие, их легче разместить. Для спальни следует избегать телевизоров с подсветкой по периметру корпуса. Все модели обладают возможностью крепления на стену. В остальном, выбор определяется размерами и особенностями конкретных помещений — спальни, гостиной, дачи и т.д. Рекомендую продумать заранее вопросы размещения, выбрать наиболее удачный вариант как для размещения телевизора, так и для удобства зрителей. Например, ваш покорный слуга прокладывал акустические провода, до того как положить ламинат в квартире.

Преимущества плазменных и ЖК телевизоров

Преимущества плазменных телевизоров:

  • С диагональю свыше 42 дюйма конкурентные цены
  • Яркость, контрастность, а особенно отображение черного гораздо эффективнее
  • Отсутствуют артефакты на экране, которые связанные со временем отклика

Преимущества жидкокристаллических телевизоров:

  • Гораздо меньшая стоимость
  • Широкий ассортимент дисплеев малых габаритов
  • Отсутствие эффекта «выгорания»
  • Идеально совместимы с компьютером
  • Низкое энергопотребление

Все о LED подсветке. Преимущества LED-технологий над обычными ЖК-телевизорами

  • флуоресцентная ламповая ЖК-подсветка матрицы в плоскопанельных телевизорах нового поколения заменена тысячами отдельных светодиодов (LED), а следовательно, появилась возможность избирательно регулировать яркость отдельных фрагментов экрана.
  • обладает отличными показателями контрастности, более насыщенным и глубоким черным тоном, расширенным и более естественным цветовым охватом.
  • отсутствие характерной для ламповых технологий ртути и гораздо более длительный срок службы светодиодов.
  • LED-телевизоры потребляют на 40% меньше электроэнергии по сравнению с ЖК-моделями той же диагонали.

Особенности LED

В отличие от плазменных и OLED телевизоров, которые выполнены на основе излучающих технологий, где каждый пиксель является отдельным источником света, в жидкокристаллических моделях каждый пиксел LCD матрицы должен быть освещен сзади, или сбоку через систему линз.

Разновидности LED подсветки (боковая и полный массив)

  • Full Array (полный массив). Телевизоры с LED подсветкой используют для освещения ячеек LCD матрицы «полный массив» (full array) из светодиодов, по аналогии со стандартными ЖК телевизорами на основе подсветки с использование CCFL ламп.
  • EDGE LED (боковая подсветка). Распределение светового потока от LED источников по всей площади экрана выполняется с помощью светодиодов специальной формы. Такие LCD телевизоры обычно упоминают как модели с боковой или краевой LED подсветкой, они становятся наиболее массовыми моделями на сегодняшний день.
  • Direct LED (разновидность полного массива светодиодов) , или прямая светодиодная подсветка, отличается необычайно тонким корпусом и контрастным изображением, а также низким энергопотреблением. Это достигается за счет использования технологии «local dimming» - локального затемнения: расположенные за панелью по всей поверхности светодиоды могут затемняться отдельными группами в нужных участках. Direct LED наиболее современная разновидность LED подсветки, отличительной особенностью которой является отличная статическая и динамическая контрастность.

с локальным затемнением (Direct LED)

Светодиодная подсветка с системой локального затемнения позволяет по мере необходимости автоматически снижать яркость или полностью отключать отдельные группы источников подсветки.

Многие современные LCD телевизоры с задней LED подсветкой в виде размещаемого позади LCD панели массива LED источников (full array) оснащаются динамической технологией подсветки называемой еще локальным или местным затемнением. При локальном затемнении отдельные зоны общего массива источников подсветки могут быть темнее или светлее в зависимости от яркости соответствующей части изображения на экране.

Возможность затемнения части экрана помогает уменьшить количество света, который просачивается через закрытые пиксели панели, и в конечном результате черный цвет становится более реалистичным. Уровни черного имеют решающее значение для контрастности, восприятия глубины черных поверхностей, полноцветное изображение становится более выразительным. Кроме того, изображение в целом будет казаться и более четким.

Минус технологии локального затемнения - эффект помутнения в в этой зоне. Часть света из более ярких зон просачивается в соседние более темные и осветляет на границе темный цвет. Этот недостаток непосредственно связан с количеством зон локального затемнения позади экрана, но не все производители предоставляют такую информацию.

Неравномерности засветки экрана EDGE LED

Главная особенность телевизоров с боковой LED подсветкой - тонкий корпус. В связи с этим достаточно трудно обеспечить равномерность распределения светового потока по всей плоскости экрана. Если отобразить на экране дисплея с боковой LED подсветкой изображение белой поверхности, можно отметить по краям экрана более яркие области, а если экран заполнен черным полем, края выглядят более светлыми или серыми.

Светодиодная подсветка и углы обзора дисплея

LED подсветка никак не изменяет ситуацию с углами обзора, а в некоторых случаях еще и усугубляет ее при смещении в сторону от центра экрана. Проблема кроется в том, что имея прекрасную картинку, вы более склонны замечать разницу при смещении в сторону от центра экрана.

LED подсветка и экономия энергии . LED подсветка позволяет снизить энергопотребление. Наиболее энергоэффективными телевизорами сегодня являются именно жидкокристаллические с LED подсветкой. Более подробно о LED подсветке можно прочитать в .

Воспроизведение 3D контента

Большинство моделей телевизоров имеют поддержку воспроизведения фильмов в формате 3D. Технология формирования стереоизображения делится на 2 метода:

  • пассивный поляризационный
  • активный затворный.

источник http://mediapure.ru/

Данная статья посвящена актуальной на сегодняшний день проблеме – выбору ЖК-монитора . От информации об основных характеристиках современных мониторов мы переходим к конкретным рекомендациям с указанием наиболее интересных моделей в различных ценовых категориях.

Disclaimer: Статья не преследует цели описания принципов работы современных ЖК-мониторов и является субъективной точкой зрения ее автора о критериях выбора ЖК-монитора.

Лирическое отступление. Пять лет назад я даже не предполагал, что к сегодняшнему моменту ЖК-мониторы практически полностью вытеснят с компьютерного рынка традиционные на то время мониторы, основанные на электронно-лучевой трубке. Но времена менялись, и теперь приличного нового ЭЛТ-монитора, с хорошей геометрией и большой диагональю, в продаже просто не найти. А между тем, производители за 250 американских рублей предлагают 19″ монитор, основанный на жидких кристаллах. Но почему один монитор с диагональю 19″ стоит 250 долларов, в то время как за другой просят 500 и более? И какой из них предпочесть?

Для начала поговорим о характеристиках монитора, на которые стоит обратить внимание при выборе.

Время отклика

Время отклика является характеристикой, показывающей (если не вдаваться в подробности), насколько быстро каждый пиксель, формирующий изображение на мониторе, может изменить свой цвет на заданный. Извечная проблема ЖК-мониторов в том, что изображение на них изменяется с гораздо меньшей скоростью, чем это происходит в случае мониторов, основанных на ЭЛТ. В результате, на ЖК-мониторах с большим временем отклика при динамичном изменении картинки можно увидеть «замыливание» картинки, когда границы движущегося объекта размываются и теряют свою четкость. К чести производителей ЖК-мониторов, ситуация с временем отклика за последние годы значительно улучшилась, и современные ЖК-мониторы практически избавились от данной проблемы, за редким исключением (о чем речь пойдет немного позже).

По общему правилу, чем меньше время отклика, тем лучше. Вместе с тем, стоит отметить, что методы измерения производителями времени отклика различны, и обычно указываемое производителями время отклика мало что может сказать о том, как тот или иной монитор поведет себя в реальных приложениях. Измерить время отклика без специального оборудования не представляется возможным, поэтому потребителям остается два пути – либо прочитать обзоры с объективными измерениями в специализированных изданиях, либо посмотреть данный монитор «вживую» в различных приложениях и сделать вывод «устраивает/не устраивает» самому, на основании увиденного. По моему мнению, отклика порядка 8 мс и менее для комфортного просмотра фильмов и динамичных игр более чем достаточно. «Хардкорным» геймерам в то же время, возможно, понадобится отклик в 2 мс на топовых ЖК-мониторах, построенных на матрице типа TN+film.

Компенсация времени отклика (RTC, overdrive)

Так как время отклика является одной из проблемных характеристик монитора и практически главной характеристикой, на которую делают упор маркетологи фирм производителей, инженерами была разработана технология, позволяющая уменьшить данную характеристику – компенсация времени отклика . Однако данная технология принесла с собой не только положительные стороны, но и артефакты «разгона» матриц. В последних моделях мониторов с такой технологией количество артефактов разгона значительно уменьшилось, но говорить об их отсутствии пока рано. Как и в случае с временем отклика, советую читать специализированные обзоры, а еще лучше – посмотреть на такие мониторы вживую, ибо скупые цифры в обзорах хоть и объективны, но дают мало представления неподготовленному читателю о реальной ситуации с артефактами овердрайва.

Контрастность, яркость и равномерность подсветки

Контрастность ЖК-монитора есть отношение уровня белого цвета (максимальная яркость которого в центре экрана и называется яркостью монитора) к уровню черного. Грубо говоря, от контрастности зависит, насколько черный цвет будет выглядеть черным, а не серым, на экране вашего монитора. Производители указывают контрастность от 500:1 до 3000:1 для своих ЖК-мониторов. Но чаще всего это паспортная контрастность матриц, используемых в данных мониторах, которая измеряется производителями на специальных стендах в специальных условиях и не учитывает влияние электроники конкретной модели монитора. Некоторые производители в качестве значения контрастности монитора указывают так называемую «динамическую» контрастность. Обладающие данной технологией мониторы оценивают отображаемое в данный момент изображение и, в зависимости от преобладания светлых или темных тонов, соответственно изменяют яркость подсветки матрицы. Уровень черного измеряется при минимальном значении яркости, а уровень белого – при максимальном, что не совсем честно, так как недостижимо в реальности в каждый отдельный момент времени. Следует также отметить, что при разных значениях яркости монитора контрастность будет также весьма различна, а яркость, необходимая для комфортной работы с текстом, к примеру, значительно ниже яркости, необходимой для просмотра видеофильмов и игр.

Углы обзора

Еще одной из важнейших характеристик ЖК-мониторов являются углы обзора. Ибо если изображение на мониторах с ЭЛТ практически не изменяется даже при взгляде на него сбоку, то в случае ЖК-мониторов все обстоит совершенно иным образом – изображение существенно меняется, а при взгляде сверху или снизу явно видно падение контрастности и искажение цветопередачи. Вместе с тем, производители указывают в качестве значений углов обзора 160? даже для самых недорогих панелей, и до сих пор на них ни кто не подал в суд за недобросовестную рекламу. Почему, спросите вы? Да потому, что измеряют они эти углы при условии падения контрастности до значений в 10:1 в центре экрана, а некоторые и 5:1, что совершенно неприемлемо с точки зрения возможности работы за монитором при таких значениях. Если кратко подытожить данный раздел, можно лишь посоветовать «вживую» посмотреть монитор и, попросив выставить на нем равномерную заливку каким-либо цветом, посмотреть с разных сторон и сделать самостоятельный вывод, устраивает ли вас такой вариант.

Цветопередача

Цветопередача ЖК-монитора – это характеристика, показывающая, насколько полно и точно монитор отображает видимый человеческому глазу цветовой спектр. Производители в качестве показателя цветопередачи указывают количество цветов, которое способен воспроизводить монитор. Для современных ЖК-мониторов это число традиционно указывается равным 16 миллионам, что совершенно ничего не говорит о качестве цветопередачи в принципе. Данный параметр важен в первую очередь тем, кто собирается использовать монитор для профессиональной работы с цветом либо редактирования цифровых изображений, и в силу сложности описания и его комплексности мы будем оперировать сравнительными определениями – «лучше» и «хуже».

Матрица

Теперь поговорим о типе матрицы, ибо именно от нее в подавляющем большинстве случаев зависят все остальные характеристики ЖК-монитора, в том числе и цена. В современных мониторах применяются 3 основных типа матриц – S-IPS, PVA (MVA, в силу небольших отличий от PVA, можно считать упрощенным аналогом PVA с чуть худшими характеристиками) и наиболее распространенный в мониторах – TN+film.

Итак, насколько мы видим из таблицы, мониторы на TN+film проигрывают остальным по характеристикам, но являются, тем не менее, наиболее распространенными из всех в силу одного существенного фактора – цены. Сравнивая мониторы на матрицах S-IPS и PVA, мы видим, что однозначного преимущества не имеет ни один из них, и выбор следует делать, исходя из личных предпочтений и требований. MVA все же проигрывает по совокупности характеристик PVA, но и стоит заметно дешевле моделей на PVA и S-IPS.

Размер диагонали и соотношение сторон монитора, способ подключения

В заключительной части нашей статьи мы попытаемся дать практические советы по выбору ЖК-монитора. Но для этого постараемся дать краткую характеристику существующему рынку ЖК-мониторов.

В настоящее время производители предлагают нам модели 15″, 17″, 19″, 20″, 21″, 22″, 23″, 24″, 26″, 27″ и 30″. И если модели 15″ и 17″ давно стали low-end и выпускаются только на TN+film матрице, то в секторе 19″ выбор уже гораздо шире, включая модели на S-IPS-, MVA- и PVA-матрицах. Но для начала остановимся на одной немаловажной детали, непосредственно влияющей на выборе ЖК-монитора – разрешении . В силу особенностей технологии ЖК-мониторов последние предназначены для показа изображения только в одном, так называемом «родном» разрешении, совпадающем с физическим количеством пикселей по горизонтали и вертикали. Выставление разрешения ниже, чем физическое, приводит к видимым искажениям и артефактам. Причем, учитывая богатство размеров диагоналей предлагаемых ЖК-мониторов, размер пикселя у них тоже разный, что значительно усложняет выбор между ними.

Размер диагонали Разрешение матрицы Размер пикселя
15″ 1024х768 0,297
17″ 1280х1024 0,264
19″ 1280х1024 0,294
19″ wide 16:10 1440х900 0,284
20″ 1600х1200 0,255
20″ wide 16:10 1680х1050 0,258
21″ 1600х1200 0,270
21″ wide 16:10 1680х1050 0,270
22″ wide 16:10 1680х1050 0,282
23″ wide 16:10 1920х1200 0,258
24″ wide 16:10 1920х1200 0,269
26″ wide 16:10 1920х1200 0,287
27″ wide 16:10 1920х1200 0,303
30″ wide 16:10 2560х1600 0,251

Как мы видим, размеры пикселей современных ЖК-мониторов в ряде случаев отличаются на 17%, что более чем заметно глазу человека. И если в случае слишком крупных пикселей мы получаем «зернистость» и «рассыпание» изображения на пиксели, то в случае слишком мелких мы будем излишне напрягать зрение, рискуя его испортить. К сожалению, средства масштабирования изображения операционных систем, и тем более прикладного программного обеспечения, весьма далеки от совершенства в настоящий момент, посему данная мера слабо поможет в случае слишком мелкой точки.

И еще немного о соотношении сторон экрана мониторов. Их в настоящее насчитывается три:

традиционное 4:3, как ни странно, встречающееся не так часто – только моделях с диагональю 15″, 20″ и 21″; нестандартное соотношение сторон 5:4 – оно более приближено к квадрату, что несет определенные преимущества при работе с текстом – и неудобство при просмотре фильмов, подавляющее большинство которых выпускаются в широкоэкранном варианте; стремительно набирающее популярность соотношение 16:10, или так называемые широкоэкранные мониторы – в силу особенностей физиологии, человеческий глаз более приспособлен к восприятию широкоэкранного изображения, нежели приближенного к квадратному. Однако старые программы и игры разрабатывались для соотношения сторон 4:3, без поддержки широкоэкранных мониторов.

Вместе с тем, в настройках драйверов видеокарт возможно установить, как монитору следует себя вести при «неродном» разрешении программы:

    он может отобразить реальный размер изображения, и тогда по краям, сверху и снизу будут черные полосы; он может масштабировать картинку с соблюдением пропорций оригинального изображения, и в таком случае мы получим две полосы – по бокам или сверху/снизу, в зависимости от соотношения сторон; без соблюдения пропорций, для заполнения всего экрана, и в данном случае мы получим искажение пропорций изображения.

Размер точки, комфортный для вас лично, традиционно предлагаю выбирать путем непосредственного сравнения мониторов. Что касается соотношения сторон, то личное мнение автора заключается в том, что за широкоэкранными мониторами будущее, особенно это касается диагоналей от 20″ и выше.

Современные ЖК-мониторы подключаются к видеокарте двумя способами – с помощью традиционного аналогового подключения с использованием разъема D-Sub и цифрового, с использованием подключения по DVI. Последний обеспечивает минимальное количество преобразований сигнала на пути от видеокарты к монитору и избавляет от зависимости качества изображения от качества аналогового выхода вашей видеокарты.

По материалам gigamark.com.

ДИАГОНАЛЬ
Итак, первое, что Вас заинтересует - это размер телевизора, точнее егодиагональ. Не забывайте, что в магазине диагональ сложно определить на глаз из-за большого пространства вокруг. А между тем, правильно подобранная диагональ экрана во многом определяет комфорт и впечатления, получаемые от просмотра. Традиционно размер диагонали экрана измеряется в дюймах и обозначается, например, так: 32”. Его несложно пересчитать в сантиметры: 1 дюйм = 2,54 см. Диагональ экрана телевизора обязательно должна соответствовать размерам помещения, в которое планируется его поставить. Компания LG предлагает различные модели на любой вкус и бюджет. К примеру, для большой гостиной отлично подойдет с изогнутым экраном или же телевизор с диагональю 84 дюйма. Важно, чтобы и Вы, и Ваши гости остались довольны изображением, не зависимо от того с какого угла комнаты Вы будете его смотреть. Для меньших помещений, для спальни или детской будет оптимален телевизор с диагональю экрана от 32”. Оптимальная диагональ экрана телевизора, по мнению специалистов, должна быть примерно в 3 раза меньше расстояния, на котором предполагается его смотреть. При просмотре на слишком близком расстоянии на некоторых телевизорах становятся заметны отдельные пиксели и искажаются цвета. В телевизорах LG установлена IPS матрица, позволяющая передавать изображения без искажения оригинальных оттенков, с максимальной четкостью и широким углом обзора.

РАЗРЕШЕНИЕ ЭКРАНА
Вторая важная характеристика любого телевизора — эторазрешение экрана. От него зависит качество изображения. Экран любого жидкокристаллического, светодиодного или плазменного телевизора состоит из ячеек, называемых пикселями, общее количество которых и называется разрешением экрана. Оно выражается в виде двух чисел, первое из которых обозначает количество пикселей по горизонтали, а второе — по вертикали, например, 1920х1080. Телевизоры LG отличает невероятно четкое изображение. Высокое разрешение экрана позволяет телевизору выводить четкое изображение с большим количеством деталей даже во время динамичных сцен.
Если большинство моделей ранее предлагали в качестве максимального разрешения HDTV (англ. «High-Definition Television»), то на сегодняшний день телевизоры LG выпускаются уже с разрешением Ultra HD (4К) и недавно был представлен телевизор с разрешением 8К. Формат 4K Ultra HD обеспечивает невероятную глубину, четкость изображения и видимость деталей, в четыре раза большую, чем на экранах Full HD.

Компания LG делает инновационные технологии доступными для каждого потребителя, чтобы каждый мог насладиться безупречным качеством и уникальным дизайном. Для казахстанских потребителей компания LG представляет широкий модельный ряд 4K Ultra HD телевизоров, позволяющий сделать выбор в зависимости от потребностей.

Модели серий UB820, UB830 и UB850 ( , ) с диагоналями от 125 до 140 см являются наиболее доступными среди всех 4К телевизоров LG. Качественные телевизоры LG этих серий обладают всеми основными особенностями, включая функции Smart TV и новую платформу webOS, удостоенную престижной премии Red Dot Awards-2014 за самый понятный пользователю интерфейс.

Ультравысокое разрешение позволяет выводить на экран четкую картинку с сохранением всех мелких элементов и нюансов, а встроенная многоканальная система фронтально направленных динамиков, позволит ощутить поистине мощное звучание, наполняющее комнату для более захватывающего просмотра фильмов в сочетании с изображением в качестве ULTRA HD.

SMART TV
LG Smart TV позволяет легко подключаться к премиум-контенту от разных провайдеров. Простой и функциональный пульт Magic Remote экономит время и позволяет Вам указывать, кликать, прокручивать и даже говорить с пультом дистанционного управления, чтобы найти именно то, что Вы хотите, предлагая поиск фильмов, приложений, ТВ-шоу и веб контента. Навигация занимает минимальное количество времени. Кроме того, пользование Smart TV от LG становится более интуитивным, чем когда-либо. Новый пользовательский интерфейс webOS позволяет настроить Ваш домашний экран таким образом, чтобы получить доступ к приложениям, которые Вы используете чаще всего, а также легко переключаться между ними, запоминая на каком приложении Вы остановились в последний раз или подбирая последние новинки. Некоторые модели, к примеру, оснащены специальным преобразователем 2D в 3D от LG, который создает новое измерение в обычном видео. Более реалистичный, объемный звук вы услышите, если обратите внимание на модель , которая оснащена технологией Virtual Surround Plus (виртуальный звук вокруг). Этот эффект создает впечатление, что звук льется практически со всех сторон. Функция умного сбережения энергии в модели , поможет Вам помочь природе, уменьшив энергопотребление. Эта функция включает в себя управление подсветкой для регулирования яркости, функцию выключения видео для воспроизведения только аудио и Нулевой режим ожидания, функция, которая практически выключает телевизор, и он не потребляет энергии. Ассортимент моделей, диагоналей и уникальных функций в очень широк.

ВРЕМЯ ОТКЛИКА МАТРИЦЫ
Что же такое время отклика и как его показатели влияют на качество телевизора? Время отклика матрицы (англ. response time) — время, которое требуется пикселям дисплея монитора/телевизора/ноутбука для того, чтобы изменить свой цвет со сменой изображения на экране. Время отклика измеряется в миллисекундах, и чем меньше это время, тем более качественно устройство воспроизводит динамические изображения в сценах в фильмах и играх, и тем самым исключает видимость шлейфов за движущимися на экране объектами. Для комфортного просмотра новостей, к примеру, достаточно экрана со временем отклика до 8-10 мс, но если вы планируете смотреть фильмы или играть в современные игры, следует выбирать модели, обладающими минимальным показателем. Наилучшим на сегодняшний день, пожалуй, можно назвать время отклика в изогнутых телевизорах , которое составляет всего 0,002 мс — этот результат в сотни раз превышает показатели светодиодных телевизоров, что позволяет наслаждаться динамичными сценами без эффекта размытости.

КОНТРАСТНОСТЬ
Еще одна характеристика экрана телевизора, влияющая на комфорт при просмотре, — контрастность изображения, которая представляет собой отношение яркости самого светлого участка к самому темному. Высокая контрастность позволяет различить больше оттенков цветов и деталей картинки. Обычные телевизоры используют стандартную технологию с 3-мя суб-пикселями, поэтому цветопередача отличается от реальности. Компания LG Electronics разработала собственную уникальную технологию 4-цветного пикселя WRGB для OLED телевизоров, которая позволила воспроизводить реалистичные, чёткие и насыщенные цвета, обеспечив изображению безграничную контрастность. Благодаря уникальной идее по использованию дополнительного суб-пикселя белого цвета телевизор LG OLED c изогнутым экраном отображает более реалистичные цвета и точные оттенки. Первый в мире OLED-телевизор с изогнутым экраном, диагональю 140 см (модель), обладающий революционным дизайном, создаёт чувство полного погружения в изображение во время просмотра и позволяет насладиться многообразием оттенков и контрастов. Кроме того, все последние модели телевизоров LG оснащены IPS матрицей. Благодаря поддержанию постоянной цветовой температуры, обеспечивается естественность оттенков и точное соответствие цветов, без искажений. Эта разработка компании LG позволяет наслаждаться истинной красотой изображения и точностью оттенков по всему экрану, не важно, под каким углом обзора Вы на него смотрите!

УГОЛ ОБЗОРА
Качество изображения может резко измениться в зависимости от того, где Вы сидите по отношению к экрану. Угол обзора при просмотре телевизора — это угол, под которым можно смотреть телевизор без потери качества изображения. IPS матрица — уникальная особенность дисплеев LG. Изображение на экране телевизора не искажается даже при внешнем воздействии на него, например, при нажатии или постукивании. IPS - технология выполнения матрицы жидкокристаллического экрана, когда кристаллы расположены параллельно друг другу вдоль единой плоскости экрана, а не спирально. Изменение ориентации кристаллов помогло добиться одного из основных преимуществ IPS-матриц - рoстa угла обзора до 178° пo горизонтали и вертикали в отличие от TN матрицы. На практике самое важное отличие IPS-матрицы от TN-TFT-матрицы состоит в повышенном уровне контрастности за счет практически идеального отображения черного цвета. Картинка получается более четкой. Экраны, основанные на IPS не искажают и не инверсируют цвета, если взгляд падает под углом. Картинка будет всегда яркой и чёткой, обеспечивая лучшую работу в Интeрнeтe, просмотр видео. Это настоящий прорыв в качестве изображения, однако более значимое событие в техническом мире — это появление первого OLED телевизора с изогнутым экраном. буквально открыл новую эру в телевизионном дизайне. Плавно изогнутый экран новаторского телевизора LG создаёт чувство более полного погружения в изображение во время просмотра, т.к. поверхность экрана равноудалена от глаз зрителя. Это снимает проблему искажения изображения и ухудшения детализации по краям.

ЗВУК
Встроенная акустическая система присутствует практически в любом современном телевизоре. Недорогие модели телевизоров способны воспроизводить только монофонический звук и используют один или два динамика. Более продвинутые — оснащены встроенной стереосистемой, в которой количество динамиков может быть от двух до восьми. В телевизорах LG доступна лучшая аудио-технология. К примеру, телевизоры LG последнего поколения из серии оснащены аудио-технологией от настоящих «гуру» в области воспроизведения звука - компании harman/kardon®. Аудиосистема harman/kardon® обеспечивает высокоточное воспроизведение звука, насыщенного глубоким басом и имеющим широкий динамический диапазон. Проще говоря, этот звук из фронтальных динамиков моментально заполняет пространство, полностью погружая зрителя в происходящее на экране. Пока такой эффект присутствия можно ощутить только в кинотеатре. Динамики распределяют звук сразу по нескольким направлениям, создавая 3D-аудио.

Компания LG представляет огромный диапазон телевизоров: от самых маленьких до очень больших, от самых доступных до телевизоров премиум класса. Телевизоры LG можно приобрести в крупных магазинах Казахстана торговых сетей «Технодом» , «Sulpak» , «Мечта» , «Fora », а также в фирменном магазине LG в Алматы (ул. Толе би 216 Б, уг.ул. Розыбакиева).

Говоря о различных параметрах ЖК-мониторов - а эта тема регулярно поднимается не только в наших статьях , но и практически на любом «железячном» сайте, затрагивающем тематику мониторов - можно выделить три уровня обсуждения проблемы.

Уровень первый, базовый: не обманывает ли нас производитель? В общем, ответ на данный момент совершенно банален: серьёзные производители мониторов до банального обмана не опускаются.

Уровень второй, более интересный: что заявленные параметры означают на самом деле? Фактически, он сводится к обсуждению вопроса о том, при каких условиях эти параметры измеряются производителями и какие практические ограничения на применимость результатов измерений данные условия накладывают. Например, хорошим примером будет измерение времени отклика по стандарту ISO 13406-2, где оно определялось как сумма времён переключения матрицы с чёрного на белый и обратно. Исследования показывают, что для всех типов матриц именно этот переход занимает минимальное время, в то время как на переходах между оттенками серого время отклика может быть в разы выше, а значит, в реальности матрица будет выглядеть отнюдь не столь быстрой, как на бумаге. Тем не менее, этот пример нельзя отнести к первому уровню обсуждения, так как нельзя сказать, что производитель где-либо нас обманывает: если мы выставим на мониторе максимальную контрастность и измерим время переключения «чёрный-белый-чёрный», то оно совпадёт с заявленным.

Однако, есть и ещё более интересный уровень, третий: вопрос о том, как те или иные параметры воспринимают наши глаза. Не трогая пока мониторы (ими мы займёмся ниже), я приведу пример из акустики: с чисто технической точки зрения ламповые усилители звука обладают достаточно посредственными параметрами (высокий уровень гармоник, плохие импульсные характеристики и так далее), и говорить в связи с ними о верности воспроизведения звука попросту не приходится. Тем не менее, многим слушателям звук ламповой техники, напротив, нравится - но не потому, что она объективно лучше транзисторной (как я уже сказал, это не так), а потому что вносимые ею искажения приятны для слуха.

Разумеется, разговор о тонкостях восприятия заходит тогда, когда параметры обсуждаемых устройств достаточно хороши для того, чтобы такие тонкости оказывали заметное влияние. Можно взять компьютерные аудиоколонки за десять долларов - к какому усилителю их не подключай, лучше звучать они не станут, ибо их собственные искажения заведомо превосходят любые огрехи усилителя. Точно так же и с мониторами - пока время отклика матриц составляло десятки миллисекунд, обсуждать особенности восприятия изображения сетчаткой глаза просто не было смысла; теперь же, когда время отклика сократилось до единиц миллисекунд, внезапно оказалось, что быстродействие монитора - не паспортное быстродействие, а его субъективное восприятие человеком - определяется не только миллисекундами...

В предлагаемой вашему вниманию статье мне хотелось бы обсудить как некоторые паспортные параметры мониторов - особенности их измерения производителями, соответствие реальности и так далее - но и некоторые моменты, относящиеся именно к особенностям человеческого зрения. В первую очередь это касается времени отклика мониторов.

Время отклика монитора и время отклика глаза

Долгое время во многих обзорах мониторов - да что там говорить, и сам грешен - можно было встретить утверждение, что как только время отклика ЖК-панелей (реальное время отклика, а не паспортная величина, которая, как все мы знаем, при измерении согласно ISO13406-2, мягко говоря, не совсем точно отражает действительность) снизится до 2...4 мс, то про этот параметр можно будет просто забыть, дальнейшее его уменьшение не даст ничего нового, мы и так перестанем замечать смазывание.

И вот, такие мониторы появились - последние модели игровых мониторов на TN-матрицах с компенсацией времени отклика вполне обеспечивают среднее арифметическое (GtG) время порядка единиц миллисекунд. Не будем сейчас обсуждать такие вещи, как артефакты RTC или врождённые недостатки технологии TN - нам важно лишь то, что указанные выше цифры действительно достигнуты. Однако, если поставить их рядом с обычным ЭЛТ-монитором, то многие люди заметят, что ЭЛТ всё-таки быстрее.

Как ни странно, но из этого не следует, что надо ждать ЖК-мониторов с откликом 1 мс, 0,5 мс... То есть ждать-то их можно, но сами по себе такие панели проблему не решат - более того, субъективно они даже не будут сильно отличаться от современных 2...4 мс панелей. Потому что проблема здесь уже не в панели, а в особенностях человеческого зрения.

Все знают про такую вещь, как инерционность сетчатки глаза. Достаточно одну-две секунды посмотреть на яркий объект, потом закрыть глаза - и ещё несколько секунд вы будете видеть медленно гаснущий «отпечаток» изображения этого объекта. Разумеется, отпечаток будет довольно смутный, фактически контурный, но ведь мы говорим о таком длинном промежутке времени, как секунды. В течение же примерно 10...20 мс после исчезновения фактической картинки сетчатка нашего глаза продолжает хранить её образ целиком, и лишь затем он быстро гаснет, оставляя напоследок разве что контуры наиболее ярких объектов.

В случае с ЭЛТ-мониторами инерционность сетчатки играет положительную роль: благодаря ей мы не замечаем мерцания экрана. Длительность послесвечения люминофора современных трубок около 1 мс, время же прохождения луча по экрану - 10 мс (при кадровой развёртке 100 Гц), то есть, если бы наше зрение было безынерционным, мы бы видели бегающую сверху вниз светлую полосу шириной всего в 1/10 высоты экрана. Это можно легко продемонстрировать, сфотографировав ЭЛТ-монитор с разными выдержками:


При выдержке 1/50 сек (20 мс) мы видим обычное изображение, занимающее весь экран целиком.


При снижении выдержки до 1/200 сек (5 мс) на изображении появляется широкая тёмная полоса - за это время при развёртке 100 Гц луч успевает обойти лишь половину экрана, в то время как на другой половине экрана люминофор успевает погаснуть.


И, наконец, при выдержке 1/800 сек (1,25 мс) мы видим бегающую по экрану узкую светлую полосу, за которой тянется небольшой и быстро темнеющий след, основная же часть экрана попросту чёрная. Ширина светлой полосы как раз и определяется временем послесвечения люминофора.

С одной стороны, такое поведение люминофора заставляет нас использовать на ЭЛТ-мониторах высокие кадровые частоты, для современных трубок - как минимум 85 Гц. С другой стороны, именно относительно маленькое время послесвечения люминофора, и приводит к тому, что любой, даже самый быстрый, современный ЖК-монитор всё равно немного, но уступает по скорости старым добрым ЭЛТ.

Давайте представим простой случай - движущийся по чёрному экрану белый квадратик, скажем, как в одном из тестов популярной программы TFTTest. Рассмотрим два соседних кадра, между которыми квадратик сдвинулся на одну позицию слева направо:


На картинке я попробовал изобразить четыре последовательных «моментальных снимка», первый и последний из которых приходятся на моменты отображения монитором двух соседних кадров, а два средних демонстрируют, как ведёт себя монитор и наш глаз в промежутке между кадрами.

В случае с ЭЛТ-монитором искомый квадратик исправно отображается при приходе первого кадра, но уже через 1 мс (время послесвечения люминофора) он начинает быстро гаснуть, и исчезает с экрана задолго до прихода второго кадра. Однако, за счёт инерционности сетчатки глаза, мы продолжаем видеть этот квадратик ещё примерно 10 мс - к началу второго кадра он только начинает заметно тускнеть. В момент отрисовки монитором второго кадра наш мозг получает два изображения - белый квадратик на новом месте плюс быстро гаснущий на сетчатке глаза его отпечаток на старом месте.


Активноматричные ЖК-мониторы, в отличие от ЭЛТ, не мерцают - картинка на них сохраняется в течение всего периода между кадрами. С одной стороны, это позволяет не беспокоиться о частоте кадров (мерцания экрана нет в любом случае, при любой частоте), с другой... смотрим на картинку выше. Итак, в течение промежутка между кадрами изображение на ЭЛТ-мониторе быстро погасло, а вот на ЖК оно осталось неизменным. После прихода второго кадра на мониторе отображается наш белый квадратик в новой позиции, а старый кадр гаснет за 1...2 мс (фактически, время гашения пикселя у современных быстрых TN-матриц - такое же, как время послесвечения люминофора у ЭЛТ). Однако сетчатка нашего глаза хранит остаточное изображение, которое погаснет только через 10 мс после исчезновения изображения реального, а до той поры будет складываться с новой картинкой. В результате в течение примерно десятка миллисекунд после прихода второго кадра наш мозг получает сразу два изображения - реальную картинку второго кадра с экрана монитора плюс наложенный на неё отпечаток первого кадра. Ну чем не привычное смазывание?.. Только теперь старую картинку хранит не медленная матрица монитора, а медленная сетчатка нашего собственного глаза.

Говоря короче, когда собственное время отклика ЖК-монитора опускается ниже 10 мс, дальнейшее его снижение даёт меньший эффект, чем можно было бы ожидать - из-за того, что начинает играть заметную роль инерционность сетчатки глаза. Более того, даже если мы снизим время отклика монитора до совершенно незначительных величин, он всё равно субъективно будет казаться медленнее, чем ЭЛТ. Разница же заключается в том, с какого момента отсчитывается время хранения остаточного изображения на сетчатке глаза: в ЭЛТ это время прихода первого кадра плюс 1 мс, а в ЖК это время прихода второго кадра - что даёт нам разницу порядка десятка миллисекунд.

Способ решения этой проблемы вполне очевиден - раз ЭЛТ кажется быстрым из-за того, что большую часть времени между двумя последовательными кадрами его экран чёрен, что даёт возможность остаточному изображению на сетчатке глаза начать меркнуть как раз к приходу нового кадра, то в ЖК-мониторе для достижения того же эффекта надо искусственным путём вставлять между кадрами изображения дополнительные чёрные кадры.

Именно так и решила поступить компания BenQ, представив некоторое время тому назад технологию Black Frame Insertion (BFI). Предполагалось, что оснащённый ей монитор будет вставлять дополнительные чёрные кадры в выводимое изображение, тем самым эмулируя работу обычного ЭЛТ:


Интересно, что изначально предполагалось, что кадры будут вставляться именно изменением изображения на матрице, а не гашением подсветки. Такая технология вполне приемлема для быстрых TN-матриц, однако на MVA- и PVA-матрицах возникла бы проблема с их слишком большим временем переключения на чёрный и обратно: если для современных TN оно составляет единицы миллисекунд, то даже для лучших мониторов на *VA-матрицах колеблется в районе 10 мс - таким образом, для них время, необходимое для вставки чёрного кадра, попросту превышает период повторения кадров основного изображения, а технология BFI оказывается непригодной. К тому же, ограничение на максимальную длительность чёрного кадра накладывает даже не период повторения кадров изображения (16,7 мс при стандартной для ЖК кадровой развёртке 60 Гц), а скорее наши глаза - при слишком большой длительности чёрных вставок мерцание экрана монитора окажется ничуть не менее заметным, чем на ЭЛТ с развёрткой в те же 60 Гц. Вряд ли это кому-либо понравится.

Отмечу между делом, что говорить об удвоении частоты кадров при применении BFI, как это делают некоторые обозреватели, всё же некорректно: собственная частота матрицы должна увеличиваться соответственно добавлению к видеопотоку чёрных кадров, но вот частота кадров изображения всё же остаётся прежней, с точки зрения видеокарты и вовсе ничего не меняется.

В результате, когда BenQ представила свой монитор FP241WZ на 24» PVA-матрице, в нём и правда оказалась не обещанная вставка чёрных кадров, а аналогичная по назначению, но совершенно иная по реализации технология, отличающаяся от изначальной тем, что чёрный кадр вставляется не за счёт матрицы, а за счёт управления лампами подсветки: в нужный момент они просто ненадолго гаснут.

Разумеется, для реализации BFI в таком виде время отклика матрицы не играет совершенно никакой роли, её можно с одинаковым успехом применять как на TN-матрицах, так и на любых других. В случае с FP241WZ в его панели позади матрицы размещены 16 горизонтальных ламп подсветки, управляемых независимо. В отличие от ЭЛТ, где (как мы видели на фотографиях с маленькой выдержкой) по экрану пробегает светлая полоса развёртки, в BFI, напротив, полоса тёмная - в каждый отдельный момент времени 15 ламп из 16 горят, а одна погашена. Таким образом, при работе BFI в течение длительности одного кадра по экрану FP241WZ пробегает узкая тёмная полоса:


Причины выбора такой схемы (гашение одной из ламп вместо казалось бы в точности эмулирующего ЭЛТ зажигания одной из ламп, или же гашения и зажигания всех ламп одновременно) вполне очевидны: современные ЖК-мониторы работают с кадровой развёрткой 60 Гц, поэтому попытка в точности эмулировать ЭЛТ привела бы к сильному мерцанию картинки. Узкая же тёмная полоска, движение которой синхронизировано с кадровой развёрткой монитора (то есть в момент до гашения каждой из ламп участок матрицы над ней показывал предыдущий кадр, а к моменту зажигания этой лампы в него уже будет записан новый кадр) с одной стороны, отчасти компенсирует описанный выше эффект инерционности сетчатки глаза, а с другой стороны, не приводит к заметному мерцанию изображения.

Разумеется, при такой модуляции ламп подсветки немного падает максимальная яркость монитора - но, в общем, это не является проблемой, современные ЖК-мониторы имеют очень хороший запас яркости (в некоторых моделях она может доходить до 400 кд/кв.м).

К сожалению, в нашей лаборатории FP241WZ побывать пока не успел, поэтому в вопросе практического применения новой технологии мне остаётся лишь сослаться на статью уважаемого сайта BeHardware «BenQ FP241WZ: 1rst LCD with screening » (на английском языке). Как отмечает в ней Вэнсан Алзю (Vincent Alzieu), новая технология действительно улучшает субъективную оценку скорости реакции монитора, однако, несмотря на то, что в каждый момент времени не горит всего лишь одна лампа подсветки из шестнадцати, в некоторых случаях заметить мерцание экрана всё же можно - в первую очередь, на больших одноцветных полях.

Скорее всего, это связано со всё же недостаточной частотой кадровой развёртки - как я писал выше, переключение ламп подсветки синхронизировано с ней, то есть полный цикл занимает 16,7 мс (60 Гц). Чувствительность человеческого глаза к мерцанию зависит от многих условий (для примера достаточно вспомнить, скажем, что 100 Гц мерцание обычной люминесцентной лампы с электромагнитным балластом трудно заметить, глядя прямо на неё, но легко - если она попадает в область периферического зрения), так что вполне разумным выглядит предположение, что монитору всё же недостаёт частоты вертикальной развёртки, хотя использование целых 16 ламп подсветки и даёт положительный эффект: как мы хорошо знаем по ЭЛТ-мониторам, если бы с той же частотой 60 Гц мерцал весь экран, специально приглядываться для обнаружения этого мерцания не требовалось бы, а вот работать за таким монитором было бы совсем проблематично.

Наиболее разумным выходом из данной ситуации выглядит переход в ЖК-мониторах на кадровую развёртку 75 или даже 85 Гц. Некоторые наши читатели могут возразить, что многие мониторы и так поддерживают развёртку 75 Гц - но, увы, я вынужден их разочаровать, поддержка эта сделана в абсолютном большинстве случае лишь на бумаге: монитор принимает от компьютера 75 кадров в секунду, потом попросту выбрасывает каждый пятый кадр и продолжает отображать на своей матрице всё те же 60 кадров в секунду. Документально зафиксировать такое поведение можно, сфотографировав быстро движущийся по экрану объект с достаточно большой выдержкой (порядка 1/5 секунды - чтобы фотоаппарат успел запечатлеть с десяток кадров монитора): на многих мониторах при развёртке 60 Гц на фотографии будет видно равномерное движение объекта по экрану, а при развёртке 75 Гц в нём появятся прорехи. Субъективно это будет ощущаться как потеря плавности движения.

Помимо этого препятствия - уверен, легко преодолимого при наличии такого желания со стороны производителей мониторов - есть и ещё одно: с увеличением частоты кадров увеличивается требуемая полоса пропускания интерфейса, по которому подключён монитор. Иначе говоря, для перехода на развёртку 75 Гц мониторам с рабочими разрешениями 1600x1200 и 1680x1050 потребуется использовать двухканальный Dual Link DVI, так как рабочей частоты одноканального Single Link DVI (165 МГц) хватать перестанет. Эта проблема не принципиальна, однако накладывает некоторые ограничения на совместимость мониторов с видеокартами, особенно не слишком новыми.

Что интересно, увеличение частоты кадров само по себе уменьшит смазывание изображения при том же самом паспортном времени отклика панели - и снова эффект связан с инерционностью сетчатки глаза. Допустим, картинка успевает за период одного кадра при развёртке 60 Гц (16,7 мс) сдвинуться на экране на сантиметр - тогда после смены кадра сетчатка нашего глаза запечатлеет новую картинку плюс наложенную на неё сдвинутую на сантиметр тень старой картинки. Если мы увеличим частоту кадров вдвое, то глаз будет фиксировать кадры с интервалом уже не 16,7 мс, а примерно 8,3 мс - соответственно, и сдвиг двух картинок, старой и новой, относительно друг друга станет вдвое меньше, то есть, с точки зрения глаза, вдвое сократится длина шлейфа, тянущегося за движущимся изображением. Очевидно, что в идеале, при очень большой частоте кадров, мы получим точно такую же картинку, какую видим в реальной жизни, без какого-либо дополнительного искусственного смазывания.

Здесь, однако, надо понимать, что недостаточно увеличить лишь частоту кадровой развёртки монитора, как это делалось в ЭЛТ для борьбы с мерцанием экрана - необходимо, чтобы все кадры изображения были уникальными, в противном случае ровным счётом никакого смысла в увеличении частоты не будет.

В играх это приведёт к занятному эффекту - так как в большинстве новинок даже для современных видеокарт скорость в 60 FPS считается уже вполне неплохим показателем, то само по себе поднятие частоты развёртки ЖК-монитора не скажется на смазывании до тех пор, пока вы не поставите достаточно мощную видеокарту (способную работать в данной игре со скоростью, соответствующей развёртке монитора) или же не опустите до достаточно низкого уровня качество графики игры. Иначе говоря, на ЖК-мониторах, имеющих реальную кадровую развёртку 85 или 100 Гц, смазывание изображения в играх будет пусть в небольшой степени, но всё же зависеть от скорости видеокарты - а ведь мы привыкли считать смазывание зависящим исключительно от монитора.

Ещё сложнее ситуация с фильмами - какую бы видеокарту вы себе ни поставили, частота кадров в фильме всё равно составляет 25, максимум 30 кадров/сек, то есть само по себе увеличение частоты кадровой развёртки монитора на уменьшение смазывания в фильмах никакого влияния не окажет. В принципе, выход из этой ситуации есть: можно при воспроизведении фильма программно рассчитывать дополнительные кадры, представляющее собой усреднение между двумя реальными кадрами, и вставлять их в видеопоток - кстати, такой подход уменьшит смазывание в фильмах даже на существующих мониторах, ведь их кадровая развёртка 60 Гц минимум вдвое превосходит частоту кадров в фильмах, то есть запас имеется.

Такая схема уже реализована в 100 Гц телевизоре Samsung LE4073BD - в нём установлен DSP, автоматически пытающийся рассчитать промежуточные кадры и вставляющий их в видеопоток между основными. С одной стороны, LE4073BD действительно демонстрирует заметно меньшее смазывание по сравнению с телевизорами, такой функции не имеющими, но, с другой стороны, новая технология даёт и неожиданный эффект - изображение начинает напоминать дешёвые «мыльные оперы» с их неестественно плавными движениями. Кому-то это может понравиться, но, как показывает опыт, большинство людей предпочитают небольшое смазывание обычного монитора, нежели новый «мыльный эффект» - тем более, что в фильмах смазывание современных ЖК-мониторов и так находится уже где-то на границе восприятия.

Разумеется, помимо этих проблем, возникнут и чисто технические препятствия - поднятие частоты кадровой развёртки выше 60 Гц будет означать необходимость использовать Dual Link DVI уже на мониторах с разрешением 1680x1050.

Если подводить краткий итог, то можно отметить три основных момента:

а) При реальном времени отклика ЖК-монитора менее 10 мс дальнейшее его снижение даёт эффект слабее ожидаемого из-за того, что начинает играть роль инерционность сетчатки глаза. В ЭЛТ-мониторах чёрный промежуток между кадрами даёт сетчатке время «высветиться», в то время как в классических ЖК-мониторах такого промежутка нет, кадры следуют непрерывно. Поэтому дальнейшие усилия производителей по увеличению скорости мониторов будут направлены не столько на снижение их паспортного времени отклика, сколько на борьбу с инерционностью сетчатки глаза. Причём, эта проблема затрагивает не только ЖК-мониторы, но и любые другие активноматричные технологии, в которых пиксель светится непрерывно.

б) Наиболее перспективной на данный момент представляется технологии кратковременного гашения ламп подсветки, как в BenQ FP241WZ - она относительно проста в реализации (минусом является только необходимость в большом количестве и определённой конфигурации ламп подсветки, но для мониторов больших диагоналей это вполне решаемая проблема), пригодна для всех типов матриц и не имеет каких-либо трудноустранимых недостатков. Возможно, потребуется разве что увеличение частоты развёртки новых мониторов до 75...85 Гц - но, возможно, производителям удастся решить отмеченную выше проблему с заметным на FP241WZ мерцанием и другими способами, так что для окончательного вывода стоит подождать появления на рынке и других моделей мониторов с гашением подсветки.

в) Вообще говоря, с точки зрения большинства пользователей современные мониторы (на любых типах матриц) вполне быстры даже без подобных технологий, так что серьёзно ждать появления различных моделей с гашением подсветки стоит разве что в том случае, если иное вас точно не устраивает.

Задержка отображения (Input Lag)

Тема задержки отображения кадров в некоторых моделях мониторов, в последнее время очень широко обсуждающаяся на различных форумах, лишь на первый взгляд схожа с темой времени отклика - на самом же деле это совершенно другой эффект. Если при обычном смазывании поступивший на монитор кадр начинает отображаться моментально, но его полная прорисовка занимает некоторое время, то при задержке между поступление кадра от видеокарты в монитор и началом его отображения проходит некоторое время, кратное периоду кадровой развёртки монитора. Иначе говоря, в мониторе установлен кадровый буфер - обычное ОЗУ - хранящий один или несколько кадров; при приходе нового кадра от видеокарты он сначала записывается в буфер, а лишь потом выводится на экран.

Объективно измерить эту задержку достаточно просто - необходимо подключить два монитора (ЭЛТ и ЖК или два разных ЖК) к двум выходам одной видеокарты в режиме клонирования, после чего запустить на них таймер, показывающий миллисекунды, и сделать серию фотографий экранов этих мониторов. Тогда, если один из них имеет задержку, значения таймеров на фотографиях будут отличаться на величину этой задержки - в то время, как один монитор показывает текущее значение таймера, второй будет показывать значение, бывшее несколькими кадрами ранее. Для получения достоверного результата желательно сделать не менее пары десятков фотографий, после чего отбросить те из них, что явно попали на момент смены кадров. Ниже на диаграмме приведены результаты таких измерений для монитора Samsung SyncMaster 215TW (по сравнению с ЖК-монитором, не имеющим никакой задержки), по горизонтальной оси отложена разница в показаниях таймеров на экранах двух мониторов, по вертикальной - количество кадров с такой разницей:


Всего было сделано 20 фотографий, из них 4 явно попали на момент смены кадров (на них на изображении таймеров накладывались друг на друга сразу два значения, одно от старого кадра, второе от нового), два кадра дали разницу 63 мс, три кадра - 33 мс, а 11 кадров - 47 мс. Очевидно, что правильным результатом для 215TW является значение задержки 47 мс, то есть примерно три кадра.

Делая небольшое отступление, замечу, что стоит с некоторым скепсисом относиться к публикациям на форумах, авторы которых утверждают об аномально маленькой или аномально высокой задержке конкретно на их экземплярах мониторов. Как правило, они не набирают достаточной статистики, а делают один кадр - как вы видели выше, на отдельных кадрах можно случайно «поймать» значение как выше, так и ниже реального, причём, чем больше установленная на фотоаппарате выдержка, тем больше вероятность такой ошибки. Для получения же реальных чисел надо сделать десятка два кадров и выбрать наиболее часто встречающееся значение задержки.

Однако, это всё лирика, нам, покупателям, малоинтересная - ну не будешь же перед покупкой монитора в магазине на нём таймеры фотографировать?.. С практической точки зрения куда более интересен вопрос, имеет ли вообще смысл обращать внимание на данную задержку. Для примера будем рассматривать вышеупомянутый SyncMaster 215TW с задержкой 47 мс - мониторы с большими значениями мне неизвестны, так что такой выбор вполне разумен.

Если рассматривать время 47 мс с точки зрения скорости человеческой реакции, то это достаточно маленький промежуток - он сравним с временем, которое требуется сигналу для путешествия от мозга к мышцам по нервным волокнам. В медицине принят такой термин, как «время простой сенсомоторной реакции» - промежуток между появлением какого-либо достаточно простого для обработки мозгом сигнала (например, зажигания лампочки) и реакции мышц (например, нажатия на кнопку). В среднем для человека время ПСМР составляет около 200...250 мс, это включает в себя время регистрации события глазом и передачи информации о нём в мозг, время распознавания события мозгом и время передачи команды от мозга к мышцам. В принципе, уже по сравнению с этой цифрой задержка 47 мс выглядит не слишком большой.

При обычной офисной работе такую задержку заметить попросту невозможно. Можно сколь угодно долго пытаться заметить разницу между движением мышки и перемещением курсора по экрану - но само время обработки мозгом этих событий и увязки их друг с другом (заметьте, отслеживание перемещения курсора - задача куда более сложная, нежели отслеживание зажигания лампочки в тесте ПСМР, так что речи о простой реакции уже не идёт, а значит, и время реакции будет больше, чем для ПСМР) столь велико, что 47 мс оказываются совершенно незначительной величиной.

Однако, на форумах многие пользователи говорят о том, что на новом мониторе движения курсора ощущаются как «ватные», они с трудом попадают по маленьким кнопкам и иконкам с первого раза, и так далее - и виновата во всём задержка, отсутствовавшая на старом мониторе и присутствующая на новом.

Тем временем, большинство людей пересаживаются на новые большие мониторы либо с 19» моделей с разрешением 1280x1024, либо вообще с ЭЛТ-мониторов. Возьмём для примера переход с 19» ЖК на вышеупомянутый 215TW: разрешение по горизонтали увеличивается примерно на треть (с 1280 до 1680 пикселей), а это означает, что для передвижения курсора мышки от левого края экрана к правому саму мышку придётся сдвигать на большее расстояние - при условии, что её рабочее разрешение и настройки остались прежними. Вот тут-то и появляется ощущение «ватности», замедленности движений - попробуйте на своём текущем мониторе в настройках драйвера мыши уменьшить скорость курсора на треть, получите ровно те же ощущения.

Ровно то же самое и с промахами по кнопкам после смены монитора - наша нервная система, как ни прискорбно это признавать, слишком медленна для того, чтобы зафиксировать глазами момент «курсор достиг кнопки» и передать нервный импульс в нажимающий на левую кнопку мыши палец до того, как курсор с кнопки уйдёт. Поэтому на самом деле точность попадания по кнопкам - это не более чем выверенность движений, когда мозг заранее знает, какому перемещению руки соответствует какое перемещение курсора, а также с какой задержкой после начала этого перемещения надо послать команду пальцу, чтобы, когда он нажмёт на кнопку мыши, курсор оказался как раз на нужной кнопке. Разумеется, при смене и разрешения, и физического размера экрана вся эта выверенность оказывается совершенно бесполезна - мозгу приходится привыкать к новым условиям, но первое время, пока он действует по старой привычке, вы действительно будете иногда промахиваться мимо кнопок. Только задержка, обусловленная монитором, тут совершенно не при чём. Как и в прошлом опыте, того же эффекта можно достичь, просто изменив чувствительность мыши - если вы её увеличите, первое время вы будете «проскакивать» нужные кнопки, если уменьшите, будете наоборот останавливать курсор не доходя до них. Разумеется, через некоторое время мозг адаптируется к новым условиям, и вы снова начнёте попадать по кнопкам.

Поэтому, поменяв монитор на новый, с существенно отличающимся разрешением или размером экрана, не поленитесь зайти в настройки мыши и немного поэкспериментировать с ей чувствительностью. Если же у вас старая мышь с низким оптическим разрешением, то не лишним будет и задуматься о покупке новой, более чувствительной - она будет более плавно двигаться при установке в настройках высоких скоростей. Право слово, на фоне стоимости нового монитора трата лишних 20 долларов на хорошую мышь не столь уж разорительна.

Итак, с работой разобрались, следующий пункт - фильмы. Теоретически, проблема здесь может возникнуть из-за рассинхронизации звука (который идёт без задержек) и изображения (которое задерживается монитором на 47 мс). Однако, немного поэкспериментировав в любом видеоредакторе, можно легко установить, что человек замечает рассинхронизацию в фильмах при разнице порядка 200...300 мс, то есть во много раз больше, чем даёт рассматриваемый монитор. Тогда как, 47 мс - это всего лишь чуть больше периода одного кадра фильма (при 25 кадрах в секунду период составляет, соответственно, 40 мс), заметить столь маленькую разницу между звуком и изображением невозможно.

И, наконец, самое интересное - игры, единственная область, в которой хотя бы в некоторых случаях вносимая монитором задержка может иметь значение. Впрочем, надо заметить, многие из обсуждающих проблему на форумах и здесь склонны чрезмерно её преувеличивать - для большинства людей и в большинстве игр пресловутые 47 мс не играют никакой роли. Пожалуй, за исключением ситуации, когда в многопользовательской «стрелялке» вы и ваш противник одновременно видите друг друга - в таком случае быстрота реакции действительно будет играть роль, и дополнительная задержка в 47 мс может стать существенной. Если же вы противника и так замечаете на полсекунды позже, чем он вас, то какие-то миллисекунды ситуацию уже не спасут.

При этом надо отметить, что задержка монитора не влияет ни на точность прицеливания в играх жанра FPS, ни на на точность прохождения поворотов в автогонках... Во всех этих случаях работает всё та же выверенность движений - не успевает наша нервная система срабатывать с такой скоростью, чтобы нажимать кнопку «огонь» ровно в тот момент, когда прицел оказывается нацелен на противника, зато она отлично адаптируется под самые разные условия и, в частности, под необходимость отдать пальцу команду «жми!» в тот момент, когда прицел до противника ещё не дошёл. Поэтому какие-либо дополнительные задержки небольшой длительности всего-навсего вынуждают мозг немного перестроиться под новые условия - более того, если человека, привыкшего к монитору с задержкой, пересадить на модель без задержки, ему придётся привыкать точно так же, и первые четверть часа новый монитор ему будет казаться подозрительно неудобным.

И, наконец, я уже несколько раз встречал на форумах рассказы о том, что на новом мониторе вообще невозможно играть в игры из-за пресловутой задержки, сводившиеся в итоге к тому, что человек, пересев с разрешения 1280x1024 старого монитора на 1680x1050 нового, попросту не подумал о том, что его старая видеокарта в таком разрешении будет работать не слишком быстро. Так что, читая форумы, будьте осторожны - как правило, вы не знаете ничего об уровне технической грамотности пишущих туда, и не можете заранее сказать, являются ли очевидные для вас вещи столь же очевидными для них.

Усугубляют ситуацию с обсуждением задержек мониторов и ещё два момента, в той или иной степени присущие большинству людей. Во-первых, многие люди склонны к чрезмерно сложным попыткам объяснения простых явлений - они предпочитают считать, что светлая точка в небе является НЛО, а не обычным метеозондом, что странные тени на лунных фотографиях NASA свидетельствуют не о неровности лунного ландшафта, а о том, что люди никогда не летали на Луну, и так далее. Собственно, любой человек, интересовавшейся деятельностью уфологов и подобных организаций, скажет вам, что большая часть их так называемых открытий - следствие не столько отсутствия простых «земных» объяснений многих явление, сколько нежелания простые объяснения вообще искать, априорно переходя к чрезмерно сложным теориям. Как ни странна аналогия между уфологами и покупателями мониторов, но последние, попав на форум, зачастую ведут себя так же - в большинстве своём они даже не пытаются рассматривать тот факт, что при существенной смене разрешения и диагонали монитора ощущения от работы за ним изменятся совершенно вне зависимости от каких-либо задержек, они сразу переходят к обсуждению того, как ничтожная в общем-то задержка в 47 мс влияет на движение курсора мыши.

Во-вторых, люди склонны к самовнушению. Попробуйте взять две бутылки из-под пива разных сортов, заведомо дешёвого и заведомо дорогого, разлейте в них одно и то же пиво - абсолютное большинство людей, попробовав его, скажут, что в бутылке с этикеткой дорогого сорта пиво вкуснее. Заклейте этикетки непрозрачным скотчем - мнения разделятся поровну. Проблема здесь заключается в том, что наш мозг не может полностью абстрагироваться от всевозможных внешних факторов - когда мы видим дорогую упаковку, мы уже начинаем подсознательно ожидать более высокого качества содержимого этой упаковки, и наоборот. Для борьбы с этим все сколь-нибудь серьёзные субъективные сравнения проводятся по методике слепого теста - когда все изучаемые образцы идут под условными номерами, и ни один из принимающих участие в тестировании экспертов до его окончания не знает, как эти номера соотносятся с реальными марками.

Примерно то же происходит и с обсуждаемой темой задержки отображения. Человек, только купивший или лишь собирающийся купить новый монитор, идёт на форум по мониторам, где тут же обнаруживает многостраничные треды про задержку, в которых ему рассказывают и про «ватные движения мыши», и про то, что играть на таком мониторе невозможно, и многие другие ужасы. И, разумеется, там присутствует некоторое количество людей, утверждающих, что они данную задержку видят глазом. Начитавшись всего этого, человек идёт в магазин и начинает рассматривать интересующий его монитор с мыслью «тут должна быть задержка, люди её видят!». Разумеется, через некоторое время он и сам начинает её видеть - точнее, считает, что видит - после чего возвращается из магазина домой и пишет в форум «Да, я смотрел этот монитор, действительно есть задержка!». Встречаются и более забавные случаи - когда люди прямо пишут что-то вроде «две недели уже сижу за обсуждаемым монитором, но только сейчас, почитав форум, явственно увидел на нём задержку».

Некоторое время тому назад популярность получили выложенные на YouTube видеоролики, в которых на двух стоящих рядом мониторах (работающих в режиме расширения десктопа) мышкой таскают вверх-вниз окно - и отчётливо видно, насколько сильно это окно запаздывает на мониторе с задержкой. Ролики, конечно, красивые, но... представьте себе: монитор с развёрткой 60 Гц снимают на камеру с собственной развёрткой матрицы 50 Гц, потом сохраняют в видеофайл с частотой кадров 25 Гц, заливают на YouTube, который вполне может перекодировать его внутри себя ещё раз, не сказав нам об этом... Как вы думаете, после всех этих преобразований от оригинала осталось много? По-моему, не очень. Попытка рассмотреть один из таких роликов покадрово (сохранив его с YouTube и открыв в видеоредакторе) продемонстрировала это особенно отчётливо - в какие-то моменты разница между двумя запечатлёнными мониторами составляет заметно больше вышеупомянутых 47 мс, в другие моменты окна на них двигаются синхронно, как будто никакой задержки нет... В общем, полный сумбур, бессмысленный и беспощадный.

Итак, сделаем краткий вывод:

а) В некоторых мониторах задержка отображения объективно присутствует, максимальное достоверно зафиксированное значение - 47 мс.

б) Задержку такой величины невозможно заметить ни при обычной работе, ни в фильмах. В играх она может быть в некоторые моменты существенна для хорошо натренированных игроков, но в большинстве случае и для большинства людей она незаметна и в играх.

в) Как правило, дискомфорт при смене монитора на модель с большей диагональю и разрешением возникает из-за недостаточной скорости или чувствительности мыши, недостаточной скорости видеокарты, а также самого по себе изменения размеров экрана. Однако многие люди, излишне начитавшись форумов, априори относят любой дискомфорт на новом мониторе к проблемам с задержкой отображения.

Если говорить совсем в двух словах: теоретически проблема существует, но её практическое значение сильно преувеличено. Абсолютное большинство людей задержку в 47 мс не заметят никогда и нигде, не говоря уж о меньших значениях задержек.

Контрастность: паспортная, реальная и динамическая

Пожалуй, утверждение «контрастность хорошего ЭЛТ-монитора выше, чем контрастность ЖК-монитора» многими людьми давно уже воспринимается как априорная истина, не требующая дополнительных доказательств - все же мы видим, как заметно светится в темноте чёрный фон на экране ЖК-мониторов. Нет, я не собираюсь полностью опровергать это утверждение, трудно опровергнуть то, что прекрасно видишь своими глазами, даже сидя за новейшей S-PVA матрицей с паспортной контрастностью 1000:1.

Паспортная контрастность, как правило, измеряется производителями не самих мониторов, а ЖК-матриц, на специальном стенде, при подаче определённого сигнала и определённом уровне яркости подсветки. Равна она отношению уровня белого цвета к уровню чёрного цвета.

В готовых мониторах картина в первую очередь усложняется тем, что уровень чёрного определяется не только характеристиками матрицы, но и - иногда - настройками самого монитора, в первую очередь в моделях, где яркость регулируется матрицей, а не лампами подсветки. В этом случае контрастность монитора может оказаться и куда ниже, чем была паспортная контрастность матрицы - если он настроен не слишком аккуратно. Хорошо рассмотреть этот эффект позволяют мониторы Sony, имеющие сразу две регулировки яркости - и матрицей, и лампами - в них при увеличении яркости матрицы выше 50% чёрный цвет быстро превращается в серый.

Здесь мне хотелось бы ещё раз отметить, что мнение, будто паспортную контрастность можно увеличить за счёт яркости подсветки - и якобы поэтому многие производители мониторов ставят в них такие мощные лампы - полностью ошибочно. При увеличении яркости подсветки как уровень белого, так и уровень чёрного растут с одинаковой скоростью, а значит, их соотношение, которое и есть контрастность, не меняется. Невозможно за счёт одной только подсветки увеличить уровень яркости белого цвета, не увеличив уровень яркости чёрного.

Однако, всё это уже неоднократно говорилось и ранее, так что давайте перейдём к рассмотрению других вопросов.

Несомненно, паспортная контрастность современных ЖК-мониторов всё ещё недостаточно высока, чтобы успешно конкурировать с хорошими ЭЛТ-мониторами по этому параметру - в темноте их экраны всё ещё заметно светятся, даже если картинка целиком чёрная. Но ведь мы-то чаще всего используем мониторы как раз не в темноте, а вовсе даже при дневном освещении, иногда достаточно ярком. Очевидно, что в этом случае наблюдаемая нами реальная контрастность будет отличаться от паспортной, измеренной в полутьме лаборатории - к собственному свечению экрана монитора добавится отражённый им внешний свет.


Выше представлена фотография двух стоящих рядом мониторов - ЭЛТ-монитор Samsung SyncMaster 950p+ и ЖК-монитор SyncMaster 215TW. Оба выключены, внешнее освещение - обычное дневное, в пасмурный день. Хорошо видно, что экран ЭЛТ-монитора при внешнем освещении оказывается не просто светлее, а намного светлее экрана ЖК-монитора - ситуация, ровно противоположная тому, что мы наблюдаем в темноте и при включённых мониторах.

Объясняется это очень просто - используемый в электронно-лучевых трубках люминофор сам по себе имеет светло-серый цвет. Для затемнения экрана на его стекло наносится тонировочная плёнка - так как собственное свечение люминофора проходит через эту плёнку один раз, а внешний свет два раза (первый раз по пути к люминофору, второй раз, отразившись от люминофора, по пути наружу, к нашему глазу), то последний ослабляется плёнкой существенно больше, чем первый.

Тем не менее, сделать на ЭЛТ совсем чёрный экран не удаётся - по мере снижения прозрачности плёнки приходится увеличивать яркость свечению люминофора, ведь плёнкой ослабляется и оно. А эта яркость в ЭЛТ ограничена на достаточно скромном уровне, так как при слишком большом увеличении тока электронного пучка сильно ухудшается его фокусировка, изображение становится нечётким, замыленным. По этой причине максимальная разумная яркость ЭЛТ-мониторов не превышает 150 кд/кв.м.

В ЖК-матрице же внешнему свету практически не от чего отражаться, в ней нет никакого люминофора, только слои стекла, поляризаторов и жидких кристаллов. Конечно, какая-то небольшая часть света отражается от внешней поверхности экрана, но большая часть свободно проходит внутрь и там теряется навсегда. Поэтому на дневном свету экран выключенного ЖК-монитора выглядит почти чёрным.

Итак, при дневном освещении и выключенных мониторах экран ЭЛТ значительно светлее, чем экран ЖК. Если мы включим оба монитора, то ЖК за счёт меньшей паспортной контрастности получит большую прибавку к уровню чёрного, нежели ЭЛТ - но даже при этом он всё равно останется темнее ЭЛТ. Если же мы теперь задёрнем шторы, «выключив» дневной свет, то ситуация изменится на противоположную, и более глубокий чёрный цвет будет у ЭЛТ.

Таким образом, реальная контрастность мониторов зависит от внешней освещённости: чем она выше, тем в более выигрышном положении оказываются ЖК-мониторы, даже на ярком свету картинка на них остаётся контрастной, в то время как на ЭЛТ она заметно выцветает. В темноте же, наоборот, преимущество на стороне ЭЛТ.

Кстати говоря, отчасти на этом основан хороший внешний вид - по крайней мере, на витрине - мониторов с глянцевой поверхностью экрана. Обычное матовое покрытие рассеивает падающий на него свет во все стороны, глянцевое же отражает его целенаправленно, как обычное зеркало - поэтому, если источник освещения не расположен непосредственно у вас за спиной, то матрица с глянцевым покрытием будет выглядеть более контрастной, чем с матовым. Увы, если источник освещения вдруг оказался у вас за спиной, картина в корне меняет - матовый экран по-прежнему рассеивает свет более-менее равномерно, а вот глянцевый будет отражать его точно вам в глаза.

Надо заметить, что все эти рассуждения касаются не только ЖК и ЭЛТ-мониторов, а также и прочих дисплейных технологий - скажем, обещанные нам компаниями Toshiba и Canon в ближайшем будущем SED-панели, имея фантастическую паспортную контрастность 100000:1 (иначе говоря, чёрный цвет на них в темноте - совершенно чёрный), в реальной жизни при дневном свете будут выцветать точно так же, как и ЭЛТ. В них используется всё тот же люминофор, светящийся при бомбардировке его электронным пучком, перед ним также установлена чёрная тонировочная плёнка, но если в ЭЛТ уменьшать прозрачность тонировки (тем самым увеличивая контрастность) мешала расфокусировка луча, то в SED этому будет мешать заметно уменьшающийся при увеличении тока луча срок жизни катодов-эмиттеров.

Однако, в последнее время на рынке появились модели ЖК-мониторов с необычайно высокими значениями заявленной паспортной контрастности - вплоть до 3000:1 - и при этом использующие те же самые матрицы, что и мониторы с более привычными цифрами в спецификациях. Объяснение этого кроется в том, что столь большие по меркам ЖК значения соответствуют не «обычной» контрастности, а так называемой динамической.

Идея, в общем-то, проста: в любом фильме есть как светлые сцены, так и тёмные. В обоих случаях наш глаз воспринимает яркость всей картинки в целом, то есть, если большая часть экрана светлая, то уровень чёрного в немногочисленных тёмных областях большого значения не имеет, и наоборот. Поэтому вполне разумной выглядит автоматическая регулировка яркости подсветки в зависимости от изображения на экране - на тёмных сценах подсветку можно пригасить, тем самым сделав их ещё более тёмными, на светлых же, наоборот, вывести её на максимальную яркость. Именно такая автоматическая регулировка и называется «динамическая контрастность».

Официальные же цифры динамической контрастности получаются очень просто: уровень белого измеряется при максимальной яркости подсветки, уровень чёрного - при минимальной. В результате, если матрица имеет паспортную контрастность 1000:1, а электроника монитора позволяет автоматически менять яркость подсветки в три раза, то итоговая динамическая контрастность окажется равной 3000:1.

При этом надо понимать, что режим динамической контрастности пригоден только для фильмов, да может ещё для игр - и то, в последних игроки скорее предпочитают поднимать яркость в тёмных сценах, чтобы легче ориентироваться в происходящем, а не опускать её. Для обычной работы автоматическая регулировка яркости в зависимости от выводимого на экран изображения не просто бесполезна, а попросту крайне раздражает.

Разумеется, в каждый отдельный момент времени контрастность экрана - отношение уровня белого к уровню чёрного - не превышает паспортную статическую контрастность монитора, однако, как было сказано выше, в светлых сценах для глаза не слишком важен уровень чёрного, а в тёмных, наоборот, уровень белого, поэтому автоматическая регулировка яркости в фильмах вполне полезна и действительно создаёт впечатление монитора с заметно увеличенным динамическим диапазоном.

Минусом технологии является лишь то, что яркость управляется в целом для всего экрана, поэтому в сценах, сочетающих светлые и тёмные объекты в равных пропорциях монитор просто выставит некоторую среднюю яркость. Ничего не даст динамическая контрастность и на тёмных сценах с отдельными небольшими очень яркими объектами (например, ночная улица с фонарями) - так как общий фон будет тёмным, монитор снизит яркость до минимума, соответственно пригасив и яркие объекты. Впрочем, как было сказано выше, из-за особенностей нашего восприятия эти недостатки малозаметны и в любом случае менее существенны, чем недостаточная контрастность обычных мониторов. Так что в целом новая технология должна понравиться многим пользователям.

Цветопередача: цветовой охват и светодиодная подсветка

Чуть более двух лет тому назад в статье «Параметры современных ЖК-мониторов» я писал о том, что такой параметр, как цветовой охват, в общем-то для мониторов несущественен - просто потому, что у всех мониторов он одинаков. К счастью, с тех пор ситуация изменилась в лучшую сторону - в продаже начали появляться модели мониторов с увеличенным цветовым охватом.

Итак, что же такое цветовой охват?

Как известно, человек видит свет в диапазоне длин волн примерно от 380 до 700 нм, от фиолетового до красного цветов. В качестве чувствительных к свету элементов в нашем глазу выступают четыре вида детекторов - один вид палочек и три вида колбочек. Палочки обладают отличной чувствительностью, но совершенно не различают различные длины волн, они воспринимают весь диапазон в целом, что даёт нам чёрно-белое зрение. Колбочки, напротив, имеют существенно меньшую чувствительность (и поэтому перестают работать в сумерках), зато при достаточной освещённости наделяют нас цветным зрением - каждый из трёх видов колбочек чувствителен к своему диапазону волн. Если в наш глаз попадёт луч монохроматического света с длиной волны, скажем, 400 нм, то на него среагирует только один тип колбочек, ответственный за синий цвет. Таким образом, разные виды колбочек выполняют примерно ту же функцию, что и стоящие перед сенсором цифрового фотоаппарата RGB-фильтры.

Хотя из этого на первый взгляд кажется, что наше цветное зрение можно легко описать тремя числами, каждое из которых будет соответствовать уровню красного, зелёного или синего цвета, это не так. Как показали эксперименты, проведённые ещё в начале прошлого века, обработка информации нашим глазом и нашим мозгом менее однозначна, и если пытаться описывать цветовое восприятие в трёх координатах (красный, зелёный, синий), то оказывается, что глаз может без каких-либо проблем воспринимать цвета, для которых в такой системе значение красного оказывается... отрицательным. Иначе говоря, полностью описать человеческое зрение в RGB-системе невозможно - на самом деле кривые спектральной чувствительности разных типов колбочек несколько сложнее.


В результате экспериментов была создана система, описывающая весь диапазон цветов, воспринимаемых нашим глазом. Её графическое отображение получило название CIE-диаграммы и показано на рисунке выше. Внутри закрашенной области находятся все цвета, воспринимаемые нашим глазом; контур этой области соответствует чистым, монохроматическим цветам, а внутренняя область - соответственно, немонохроматическим, вплоть до белого цвета (он отмечен белой точкой; на самом деле, «белый цвет» с точки зрения глаза является относительным понятием, в зависимости от условий мы можем считать белыми цвета, на самом деле отличающиеся друг от друга; на CIE-диаграмме в качестве точки белого обычно отмечают так называемую «точку плоского спектра», имеющую координаты x=y=1/3; в обычных условиях соответствующий ей цвет будет казаться очень холодным, синеватым).

С помощью CIE-диаграммы любой цвет, воспринимаемый человеческим глазом, может быть указан с помощью двух чисел, координат по горизонтальной и вертикальной осям диаграммы: x и y. Но удивительно не это, а то, что любой цвет мы можем воссоздать с помощью набора из нескольких монохроматических цветов, смешав их в определённой пропорции - наш глаз совершенно безразличен к тому, какой спектр на самом деле имел попавший в него свет, значение имеет лишь то, как возбудился каждый тип рецепторов, палочек и колбочек.

Если бы человеческое зрение успешно описывалось бы RGB-моделью, то для эмуляции любого из цветов, которые только смог бы увидеть глаз, достаточно было бы взять три источника, красный, зелёный и синий, и смешивать их в нужных пропорциях. Однако, как было сказано выше, на самом деле мы видим больше цветов, чем можно описать в RGB, поэтому на практике задача стоит обратная: имея три источника разных цветов, какие ещё цвета мы можем получить их смешиванием?


Ответ очень прост и нагляден: если проставить точки с координатами этих цветов на CIE-диаграмме, то всё, что можно получить их смешиванием, будет лежать внутри треугольника с вершинами в данных точках. Именно этот треугольник и называется «цветовой охват».

Максимально возможный цветовой охват для системы с тремя базовыми цветами даёт так называемый лазерный дисплей (см. выше на рисунке), базовые цвета в котором формируются тремя лазерами, красного, зелёного и синего цветов. Лазер имеет очень узкий спектр излучения, у него отличная монохроматичность, поэтому и координаты соответствующих базовых цветов будут лежать аккурат на границе диаграммы. Вынести их наружу, за границу, нельзя - это нефизическая область, координаты точек в ней не соответствуют никакому свету, ну а любой сдвиг точек внутрь диаграммы приведёт к уменьшению площади соответствующего треугольника и, соответственно, уменьшению цветового охвата.

Как хорошо видно из рисунка, даже лазерный дисплей не способен воспроизвести все цвета, какие видит человеческий глаз, хотя и достаточно близок к этому. Увеличить цветовой охват можно лишь использованием большего количества базовых цветов (четырёх, пяти и так далее), либо же созданием некоей гипотетической системы, которая может «на лету» менять координаты своих базовых цветов - впрочем, если первое на данный момент просто технически сложно, то второе вообще нереализуемо.

Впрочем, горевать по недостаткам лазерных дисплеев нам в любом случае пока что рано: у нас и их-то пока нет, а то, что есть - демонстрирует цветовой охват, очень сильно лазерным дисплеям уступающий. Иначе говоря, в реальных мониторах, как в ЭЛТ, так и в ЖК (за исключением некоторых моделей, о которых речь пойдёт ниже) спектр каждого из базовых цветов достаточно далёк от монохроматического - в терминах CIE-диаграммы это означает, что вершины треугольника сдвинутся от границ диаграммы ближе к её центру, а площадь треугольника заметно уменьшится.

Выше на картинке нарисованы два треугольника - для лазерного дисплея и так называемый sRGB. Если говорить вкратце, то второй как раз и соответствует типичному цветовому охвату современных ЖК- и ЭЛТ-мониторов. Печальная картина, не правда ли? Чистого зелёного цвета, боюсь, нам пока увидеть не удастся...

Причина этого - в случае с ЖК-мониторами - в крайне неудачном спектре ламп подсветки ЖК-панелей. В качестве таковых используются флюоресцентные лампы с холодным катодом (CCFL) - горящий в них разряд даёт излучение в ультрафиолетовом спектре, которое преобразуется в обычный белый свет нанесённым на стенки колбы лампы люминофором.

В природе источником света для нас обычно являются различные раскалённые тела, в первую очередь наше Солнце. Спектр излучения такого тела описывается законом Планка, но главное - он непрерывный, сплошной, в нём присутствуют все длины волны, причём интенсивности излучения на близких длинах волн отличаются слабо.

Флюоресцентная лампа же, как и другие газоразрядные источники света, даёт спектр линейчатый, в котором излучения на части длин волн нет вообще, а интенсивности участков спектра, отстоящих друг от друга всего на несколько нанометров, могут отличаться в десятки и сотни раз. Так как наш глаз к конкретному виду спектра совершенно нечувствителен, то с его точки зрения что Солнце, что флюоресцентная лампа дают совершенно одинаковый свет. Однако в мониторе всё оказывается несколько сложнее...

Итак, несколько флюоресцентных ламп, стоящих позади ЖК-матрицы, просвечивают её насквозь. По обратную сторону матрицы стоит решёточка разноцветных фильтров - красных, зелёных и синих - образующих триады субпикселов. Каждый фильтр вырезает из света лампы кусочек спектра, соответствующий своей полосе пропускания - и как мы помним, для получения максимального цветового охвата этот кусочек должен быть как можно более узким. Однако, представим себе, что на длине волны 620 нм в спектре лампы подсветки имеет пик интенсивностью... ну, пусть будет 100 условных единиц. Тогда для красного субпикселя мы ставим фильтр с максимумом пропускания на тех же 620 нм и, казалось бы, получаем первую вершину треугольника цветового охвата, лежащую аккуратно на границе диаграммы. Казалось бы.

Люминофор даже современных флюоресцентных ламп - штука достаточно своенравная, управлять его спектром по своему желанию мы не можем, мы можем лишь выбрать из известного химии набора люминофоров тот, что более-менее соответствует нашим запросам. И самый лучший из того, что мы можем выбрать, имеет в своём спектре ещё один пик вышиной в те же 100 условных единиц на длине волны 575 нм (это будет жёлтый цвет). Наш красный фильтр с максимум на волне 620 нм в этой точке имеет коэффициент пропускания, ну, скажем, в 1/10 от максимального.

Что это означает? Что на выходе фильтра мы получим не одну длину волны, а сразу две: 620 нм с интенсивностью 100 условных единиц и 575 нм с интенсивностью 100*1/10 (интенсивность в линии спектра лампы умножаем на коэффициент пропускания фильтра на данной длине волны), то есть 10 условных единиц. В общем-то, не так уж мало.

Таким образом, из-за «лишнего» пика в спектре лампы, частично прорывающегося через фильтр, мы получили вместо монохроматического красного цвета полихроматический - красный с примесью жёлтого. На CIE-диаграмме это значит, что соответствующая вершина треугольника цветового охвата сдвинулась от нижнего края диаграммы вверх, ближе к жёлтым оттенкам, уменьшив площадь треугольника цветового охвата.

Впрочем, как известно, лучше один раз увидеть, чем пять раз услышать. Чтобы увидеть описанное выше, я обратился за помощью в отдел физики плазмы НИИ Ядерной Физики им. Скобельцына, и вскоре в моём распоряжении оказалась автоматизированная спектрографическая система. Проектировалась она для изучения и контроля процессов роста искусственных алмазных плёнок в СВЧ-плазме по эмиссионным спектрам плазмы, так что с каким-то там банальным ЖК-монитором наверняка справится без труда.


Включаем систему (большой и угловатый чёрный ящик - это монохроматор Solar TII MS3504i, слева виден его входной порт, напротив которого закреплён световод с оптической системой, справа виден оранжевый цилиндр фотодатчика, закреплённого на выходном порту монохроматора; сверху стоит источник питания системы)...


Устанавливаем на нужную высоту входную оптическую систему и подключаем к ней второй конец световода...


И, наконец, располагаем её перед монитором. Управляется вся система компьютером, так что процесс снятия спектра во всём интересующем нас диапазоне (от 380 до 700 нм) завершается буквально через пару минут:


По горизонтальной оси графика отложена длина волны в ангстремах (10 А = 1 нм), по вертикали - интенсивность в неких условных единицах. Для большей наглядности график выкрашен в цвета согласно длинам волн - как их воспринимает наш глаз.

В качестве подопытного монитора в данном случае выступал Samsung SyncMaster 913N, достаточно старая бюджетная модель на TN-матрице, но это в общем-то не имеет никакого значения - те же самые лампы с тем же самым спектром, что стоят в нём, используются и в абсолютном большинстве других современных ЖК-мониторов.

Итак, что мы видим на спектре? А именно то, что было описано словами выше: помимо трёх отчётливых высоких пиков, соответствующих синему, красному и зелёному субпикселям, мы видим ещё какой-то совершенно лишний мусор в районе 570...600 нм и 480...500 нм. Именно вот эти лишние пики и сдвигают вершины треугольника цветового охвата далеко вглубь CIE-диаграммы.

Разумеется, лучшим способом борьбы с этим может быть отказ от CCFL вообще - и некоторые производители так и поступили, например, компания Samsung со своим монитором SynsMaster XL20. В нём вместо флюоресцентных ламп в качестве подсветки используются блок из светодиодов трёх цветов - красных, синих и зелёных (именно так, потому что использование белых светодиодов не имеет смысла, ведь всё равно из спектра подсветки фильтром мы будем вырезать красный, зелёный и синий цвета). Каждый из светодиодов имеет аккуратный, ровный спектр, точно совпадающий с полосой пропускания соответствующего фильтра и не имеющий каких-либо лишних побочных полос:


Любо-дорого посмотреть, не так ли?

Конечно, полоса каждого из светодиодов достаточно широка, их излучение нельзя назвать строго монохроматическим, так что с лазерным дисплеем соревноваться не получится, но если сравнивать со спектром CCFL - весьма приятная картина, в которой особенно стоит отметить аккуратные гладкие минимумы на тех двух участках, где у CCFL были совершенно лишние пики. Также интересно, что положение максимумов всех трёх пиков немного сдвинулось - причём красный теперь заметно ближе к краю видимого спектра, что тоже положительно скажется на цветовом охвате.


А вот, собственно, и цветовой охват. Мы видим, что треугольник охвата SyncMaster 913N практически не отличается от скромного sRGB, а по сравнению с охватом человеческого глаза сильнее всего в нём страдает зелёный цвет. Зато цветовой охват XL20 трудно спутать с sRGB - он легко захватывает значительно большую часть оттенков зелёного и сине-зелёного цветов, а также глубокий красный цвет. Это, конечно, не лазерный дисплей, но - впечатляет.

Впрочем, домашних мониторов со светодиодной подсветкой мы не увидим ещё долго. Даже SyncMaster XL20, начало продаж которого намечено на эту весну, будет стоить около $2000 при диагонали экрана 20», а 21» NEC SpectraView Reference 21 LED так и вовсе тянет на втрое большую сумму - к таким ценам на мониторы привычны разве что полиграфисты (для которых обе эти модели в первую очередь и предназначены), но явно не домашние пользователи.

Однако, не стоит отчаиваться - и для нас с вами тоже есть надежда. Заключается она в появлении на рынке мониторов с подсветкой на всё тех же флюоресцентных лампах, но с новым люминофором, в котором отчасти подавлены лишние пики в спектре. Эти лампы не столь хороши, как светодиоды, но всё же уже заметно превосходят лампы старые - обеспечиваемый ими цветовой охват находится примерно посередине между охватом моделей на старых лампах и моделей со светодиодной подсветкой.

Для численного же сравнения величины цветового охвата принято указывать процент охвата данного монитора от одного из стандартных охватов; sRGB весьма мал, поэтому в качестве стандартного цветового охвата для сравнения часто используют NTSC. Обычные sRGB-мониторы имеют цветовой охват 72% NTSC, мониторы с улучшенными лампами подсветки - 97% NTSC, а мониторы со светодиодной подсветкой - 114% NTSC.

Что же нам даёт увеличенный цветовой охват? Производители мониторов со светодиодной подсветкой в своих пресс-релизах обычно размещают фотографии новых мониторов рядом со старыми, попросту увеличивая на новых насыщенность цветов - это не совсем верно, потому что на самом деле на новых мониторах улучшается насыщенность только тех цветов, которые выходят за пределы цветового охвата мониторов старых. Но, разумеется, рассматривая вышеуказанные пресс-релизы на своём старом мониторе, вы никогда не увидите этой разницы, потому что ваш-то монитор эти цвета всё равно воспроизводить не умеет. Это всё равно что пытаться смотреть репортаж с выставки цветных телевизоров на чёрно-белом. Хотя, производителей тоже можно понять - надо же им как-то отражать в пресс-релизах достоинства новых моделей?..

На практике, однако, разница есть - не могу сказать, что принципиальная, но однозначно говорящая в пользу моделей с увеличенным цветовым охватом. Выражается она в очень чистом и глубоком красном и зелёном цвете - если пересесть после долгой работы на мониторе со светодиодной подсветкой обратно на старый добрый CCFL, первое время так и хочется добавить ему насыщенности цвета, пока не понимаешь, что ему это ровным счётом никак не поможет, красный и зелёный так и останутся какими-то тускловатыми и грязноватыми по сравнению со «светодиодным» монитором.

К сожалению, пока что распространение моделей с улучшенными лампами подсветки идёт не совсем так, как хотелось бы - например, у Samsung оно началось с модели SyncMaster 931C на TN-матрице. Конечно, бюджетным мониторам на TN тоже не помешает увеличенный цветовой охват, однако вряд ли кто-то берёт такие модели для работы с цветом из-за откровенно плохих углов обзора. Впрочем, у всех основных производителей панелей для ЖК-мониторов - LG.Philips LCD, AU Optronics и Samsung - уже готовы S-IPS, MVA и S-PVA панели с диагональю 26-27» и новыми лампами подсветки.

В перспективе же, несомненно, лампы с новыми люминофорами полностью вытеснят старые - и мы наконец-то выйдем за пределы скромного охвата sRGB, впервые за всё время существования цветных компьютерных мониторов.

Цветопередача: цветовая температура

В предыдущем разделе я вскользь упоминал, что понятие «белый цвет» субъективно и зависит от внешних условий, сейчас бы мне хотелось раскрыть эту тему чуть-чуть подробнее.

Итак, какого-либо эталонного белого цвета на самом деле не существует. Можно было бы принять за эталон плоский спектр (то есть такой, для которого в оптическом диапазоне интенсивности на все длинах волн одинаковы), но есть одна проблема - в большинстве случае для человеческого глаза он будет выглядеть не белым, а очень холодным, с голубоватым оттенком.

Дело в том, что, так же как в фотоаппарате можно регулировать баланс белого, так и наш мозг регулирует этот баланс для себя в зависимости от внешнего освещения. Свет лампочки накаливания вечером дома кажется нам лишь немного желтоватым, хотя та же лампа, зажжённая в лёгкой тени погожим солнечным днём, выглядит уже совсем жёлтой - потому что в обоих случаях наш мозг подстраивает свой баланс белого под преобладающее освещение, а оно в этих случаях разное.

Нужный белый цвет принято обозначать через понятие «цветовая температура» - это температура, до которой надо нагреть абсолютно чёрное тело, чтобы испускаемый им свет выглядел нужным образом. Скажем, поверхность Солнца имеет температуру около 6000 К - и действительно, цветовая температура солнечного света ясным днём определяется как 6000 К. Спираль лампы накаливания имеет температуру около 2700 К - и цветовая температура её света также равна 2700 К. Забавно, что чем выше температура тела, тем более холодным кажется нам его свет, потому что в нём начинают преобладать голубые тона.

Для источников с линейчатым спектром - например, упоминавшихся выше CCFL - понятие цветовой температуры становится несколько более условным, потому что сравнивать их излучение со сплошным спектром абсолютно чёрного тела, конечно, невозможно. Так что в их случае приходится основываться на восприятии спектра нашим глазом, а от приборов для измерения цветовой температуры источников света добиваться такой же хитрой характеристики восприятия цвета, как и у глаза.

В случае с мониторами цветовую температуру мы можем настраивать из меню: как правило, там есть три-четыре предустановленных значения (у некоторых моделей - существенно больше) и возможность по отдельности настроить уровни базовых цветов RGB. Последнее неудобно по сравнению с ЭЛТ-мониторами, где настраивалась именно температура, а не уровни RGB, но, к сожалению, для ЖК-мониторов, кроме некоторых дорогих моделей, это является стандартом де-факто. Цель подстройки цветовой температуры на мониторе очевидна - так как в качестве образца для подстройки баланса белого выбирает окружающее освещение, то монитор надо подстроить под него так, чтобы белый цвет выглядел на нём белым, а не синеватым или красноватым.

Ещё большее сожаление вызывает то, что у очень многих мониторов цветовая температура сильно варьируется между разными уровнями серого - очевидно, что серый цвет от белого отличается весьма условно, лишь яркостью, так что ничто не мешает говорить не о балансе белого, а о балансе серого, и это будет даже более правильно. И у многих мониторов для разных уровней серого баланс также оказывается разным.


Выше приведена фотография экрана монитора ASUS PG191, на который выведены четыре серых квадрата разной яркости - точнее говоря, приведены три версии этой фотографии, сложенные вместе. В первой из них баланс серого выбран по крайнему правому (четвёртому) квадрату, во второй - по третьему, в последней - по второму. Ни про одну из них нельзя сказать, что она правильная, а остальные нет - на самом деле они все неправильные, потому что цветовая температура монитора не должна никак зависеть от того, по какому уровню серого цвета мы её вычисляем, а здесь же это явно не так. Исправляется эта ситуация только аппаратным калибратором - но не настройками монитора.

По этой причине в каждой из статей для каждого из мониторов я привожу таблицу с результатами замеров цветовой температуры для четырёх разных уровней серого - и если они сильно отличаются друг от друга, изображение монитора будет подкрашиваться в разные тона, как на рисунке выше.

Эргономика рабочего пространства и настройка монитора

Несмотря на то, что прямого отношения к параметрам мониторов эта тема не имеет - в заключение статьи мне хотелось бы рассмотреть и её, ибо, как показывает практика, у многих людей, особенно привыкших к ЭЛТ-мониторам, процесс первоначальной настройки ЖК-монитора может вызывать трудности.

Во-первых, расположение в пространстве. Монитор должен располагаться на расстоянии вытянутой руки от работающего за ним человека, возможно, несколько большем - в случае, если у монитора большой размер экрана. Ставить монитор слишком близко не стоит - поэтому, если вы собираетесь купить модель с маленьким размером пиксела (17» мониторы с разрешением 1280x1024, 20» 1600x1200 и 1680x1050, 23» с разрешением 1920x1200...), подумайте, не будет ли для вас изображение на нём слишком мелким и неразборчивым. Если у вас есть такие опасения - лучше присмотреться к мониторам с тем же разрешением, но большей диагональю, так как из прочих мер борьбы остаётся разве что масштабирование шрифтов и элементов интерфейса Windows (или той ОС, которой вы пользуетесь), которое не во всех прикладных программах даёт красивый результат.

Высота монитора в идеале должна быть отрегулирована так, чтобы верхний край экрана находился на уровне глаз - в этом случае при работе взгляд будет направлен чуть вниз, а глаза полуприкрыты веками, что убережёт их от пересыхания (как известно, при работе мы моргаем слишком редко). Во многих бюджетных мониторах, даже в 20» и 22» моделях, используются подставки без регулировки высоты - если у вас есть возможность выбора, лучше избегать таких моделей, а в мониторах с регулировкой высоты подставки обращать внимание на диапазон этой регулировки. Впрочем, почти все современные мониторы позволяют снять с них родную подставку и установить стандартный VESA-кронштейн - и иногда этой возможностью стоит воспользоваться, потому как хороший кронштейн даёт не только свободу перемещения экрана, но и возможность установить его на такую высоту, какая нужна именно вам, начиная от нулевой относительно верха стола.

Важным моментом является освещение рабочего места. Категорически противопоказано работать за монитором в полной темноте - резкий переход между ярким экраном и тёмным фоном будет сильно утомлять глаза. Для просмотра фильмов и игр достаточно небольшой фоновой подсветки, например, одной настольной или настенной лампочки; для работы лучше организовать полноценное освещение рабочего места. Для освещения можно использовать лампы накаливания или флюоресцентные лампы с электронным балластом (как компактные, под патрон E14 или E27, так и обычные «трубки»), а вот ламп дневного света с электромагнитным балластом надо избегать - эти лампы сильно мерцают на удвоенной частоте сетевого напряжения, т.е. 100 Гц, это мерцание может интерферировать с развёрткой или собственным мерцанием ламп подсветки монитора, что иногда создаёт крайне неприятные эффекты. В больших офисных помещениях используются блоки ламп дневного света, лампы в которых мерцают в разной фазе (либо за счёт подключения разных ламп к разным фазам питающей сети, либо за счёт установки фазосдвигающих цепочек), что значительно снижает заметность мерцания. В домашних условиях, где лампа обычно одна, способ борьбы с мерцанием тоже есть только один - использование современных ламп с электронным балластом.

Установив монитор в пространстве реальном, можно подключать его к компьютеру и продолжать установку в виртуальном.

ЖК-монитор, в отличие от ЭЛТ, имеет ровно одно разрешение, в котором он работает хорошо. Во всех остальных разрешениях ЖК-монитор работает плохо - поэтому лучше сразу же поставить в настройках видеокарты его родное разрешение. Здесь, конечно, надо ещё раз отметить необходимость задуматься до покупки монитора, не будет ли вам родное разрешение выбранной модели казаться слишком большим или слишком маленьким - и в случае необходимости скорректировать свои планы, выбрав модель с другой диагональю экрана или с другим разрешением.

Частота кадровой развёртки у современных мониторов, по большому счёту, одна на всех - 60 Гц. Несмотря на формально заявленные для многих моделей частоты 75 Гц и даже 85 Гц, при их установке матрица монитора обычно продолжает работать всё на тех же 60 Гц, а «лишние» кадры электроника монитора просто отбрасывает. Поэтому гнаться за высокими частотами нет смысла: в отличие от ЭЛТ, на ЖК-мониторах нет никакого мерцания.

Если ваш монитор имеет два входа, цифровой DVI-D и аналоговый D-Sub, то для работы лучше воспользоваться первым - он не только даёт более качественную картинку на больших разрешениях, но и упрощает процесс настройки. Если же в наличии имеется только аналоговый вход, то после подключения и установки родного разрешения стоит открыть какое-либо чёткое контрастное изображение - например, страницу текста - и проверить, нет ли неприятных артефактов в виде мерцания, волн, помех, каёмок вокруг символов и тому подобного. Если что-либо похожее наблюдается - стоит нажать на мониторе кнопку автоподстройки под сигнал; во многих моделях она включается автоматически при смене разрешения, но гладкой неконтрастной картинки рабочего стола Windows для успешной автонастройки хватает не всегда, так что приходится запускать её вручную ещё раз. При подключении по цифровому входу DVI-D подобных проблем не возникает, поэтому при покупке монитора лучше обращать внимание на набор имеющихся у него входов и отдавать предпочтение моделям с DVI-D.

Практически все современные мониторы имеют настройки по умолчанию, дающие очень высокую яркость - порядка 200 кд/кв.м. Такая яркость подходит для работы солнечным днём, или для просмотра фильмов - но не для работы: для сравнения, типичная яркость ЭЛТ-монитора составляет около 80...100 кд/кв.м. Поэтому первое, что надо сделать после включения нового монитора - установить желаемую яркость. Главное - делать это без спешки, не пытаясь получить идеальный результат в одно движение и тем более не стараясь сделать «как на старом мониторе»; проблема заключается в том, что приятность для глаз старого монитора означает вовсе не тонкую его настройку и высокое качество изображения - а лишь то, что ваши глаза к нему привыкли. Человек, пересевший на новый монитор со старого ЭЛТ с севшей трубкой и тусклым изображением, первое время может жаловаться на излишнюю яркость и чёткость - но если через месяц перед ним опять поставить старый ЭЛТ, окажется, что теперь он не может сидеть уже перед ним, потому что картинка слишком тусклая и тёмная.

По этой причине, если ваши глаза чувствуют дискомфорт при работе с монитором, стоит попробовать изменять его настройки постепенно и в связи друг с другом - немного убавить яркость и контрастность, поработать ещё, если дискомфорт остался, убавить их ещё немного... Давайте после каждого такого изменения глазам время на то, чтобы привыкнуть к картинке.

В принципе, есть хороший приём, позволяющий быстро настроить яркость ЖК-монитора на приемлемый уровень: надо поставить рядом с экраном лист белой бумаги и настроить яркость и контрастность монитора так, чтобы яркость белого цвета на нём была близка к яркости листа бумаги. Разумеется, этот приём подразумевает, что ваше рабочее место хорошо освещено.

Также стоит немного поэкспериментировать с цветовой температурой - в идеале она должна быть такой, чтобы белый цвет на экране монитора воспринимался глазом именно как белый, а не синеватый или красноватый. Однако это восприятие зависит от вида внешнего освещения, в то время как мониторы изначально настраиваются под некоторые усреднённые условия, а многие модели к тому же ещё и настроены весьма неаккуратно. Попробуйте поменять цветовую температуру на более тёплую или более холодную, подвигать ползунки регулировки уровней RGB в меню монитора - это также может дать положительный эффект, особенно если по умолчанию цветовая температура монитора завышена: на холодные оттенки глаза реагируют хуже, чем на тёплые.

К сожалению, многие пользователи не следуют этим в общем-то простым рекомендациям - а в результате в форумах рождаются многостраничные темы в духе «Помогите выбрать монитор, от которого не устают глаза», где доходит аж до создания списков мониторов, от которых глаза устают. Господа, я работал с десятками мониторов, и глаза у меня не уставали ни от одного, за исключением пары моделей сверхбюджетного уровня, у которых попросту были проблемы с чёткостью изображения или совсем уж кривая настройка цветопередачи. Потому что глаза устают не от монитора - а от его неправильной настройки.

В форумах же в подобных темах иногда доходит до смешного - обсуждается влияние мерцания ламп подсветки (частота его в современных мониторах обычно 200...250 Гц, что глазом, конечно, не воспринимается вообще) на зрение, влияние поляризованного света, влияние слишком низкой или слишком высокой (по вкусу) контрастности современных ЖК-мониторов, была как-то даже одна тема, в которой обсуждалось влияние на зрение линейчатого спектра ламп подсветки. Впрочем, это, кажется, уже тема для другой статьи, первоапрельской...


Загрузка...