sonyps4.ru

Изучение методов и средств регулирования напряжения. Принцип встречного регулирования напряжения

1) По времени суток.

Используется, если параметры суточного графика остаются стабильными изо дня в день. На рисунке 4.12.а) приведен пример графика напряжения на шинах ЦП при отсутствии регулирования напряжения. При этом отмечается значительное снижение напряжения в дневное время.

Рис. 4.12. Суточные графики: а) без регулирования, б) с одноступенчатым регулированием напряжения

На рисунке 4.12.б) приведен пример графика, полученного при одноступенчатом регулировании напряжения. Переключение отпаек производится дважды в сутки – утром и вечером, благодаря чему дневное напряжение повышается.

Для автоматизации регулирования можно использовать либо электрочасы с контактами, либо программное реле времени.

2) По напряжению (закон стабилизации напряжения).

При таком законе регулирования автоматический регулятор обеспечивает с определенной степенью точности поддержание напряжения на шинах 6-10 кВ ЦП на уровне, определяемом напряжением уставкиUзад (задающим напряжением).

Примерный график отклонений напряжения по цепи электропередачи для случая стабилизации напряжения в ЦП приведен на рис.4.13, где

Режим минимальных нагрузок (min режим);

Режим максимальных нагрузок (max режим);

БАУРПН - блок автоматического управления регулятором напряжения под нагрузкой;

ε - ширина зоны нечувствительности (Зона);

δ - допустимая ошибка регулирования, δ = ε / 2;

Е – ступень регулирования;

Δt- выдержка времени отстройки от кратковременных изменений напряжения.

ЭС – энергосистема;

Zлэп – сопротивление ЛЭП 110 кВ,

Zл – сопротивление ЛЭП 6-10 кВ;

D - добавка напряжения, зависящая от положения переключателя отпаек;

ТН - измерительный трансформатор напряжения;

ТТ – измерительный трансформатор тока;

АД – высоковольтный асинхронный двигатель;

ТП – трансформаторная подстанция.

Контролируемое напряжение Uчерез ТН поступает на вход БАУРПН, где вычисляется ошибка: ОШ = U - Uзад. В зависимости от соотношения величин фактической (ош) и допустимой (δ) ошибок с выхода блока поступают команды на переключатель отпаек:

OIII > δ → команда «Понизить напряжение».

- |OIII| < |δ| → нет команды.

OIII < -δ → команда «Повысить напряжение».

Рис.4.13. Автоматическое регулирование напряжения в ЦП по закону стабилизации

Величина ступени регулирования Е зависит от конструкции трансформатора (указывается в паспорте на трансформатор), обычно лежит в пределах E = (1,2 - 1,8) %.

Зоной нечувствительности (мёртвой зоной) ε называют некоторый диапазон изменения контролируемого напряжения, в котором не происходит срабатывание регулирующей аппаратуры. Величина зоны нечувствительности ε определяет точность регулирования, которая обозначается ±δ где δ% - величина, равная половине зоны нечувствительности. Зона нечувствительности регулятора должна быть больше ступени регулирования Е на величину, порядка 0,2-0,5%, т.к. иначе регулятор будет работать неустойчиво, т.е. будет иметь место колебательный режим работы регулятора и переключающего устройства.

Из графика рис.4.13 видно, что несмотря на стабильный уровень напряжения в ЦП, напряжение на зажимах ЭП изменяется в зависимости от изменения тока нагрузки. Диапазон этих отклонений тем выше, чем больше сопротивление линий электропередачи Zл и чем больше разница между токами нагрузки в максимальном и минимальном режимах.

Рис.4.14 Процесс регулирования с помощью переключения отпаек трансформатора

Выдержка времени в регуляторах служит для предотвращения их работы при кратковременных отклонениях напряжения от заданного значения. При увеличении выдержки времени уменьшается общее количествопереключений, однако одновременно снижается и качество регулирования. При уменьшении выдержки временикачество регулирования повышается, однако при этом увеличивается частота переключений и их общее число. Это ухудшает условия работы переключающих устройств. Практически выдержка времени выбирается в пределах 1-3 мин.

Для оценки влияния указанных величин на точность регулирования рассмотрим процесс регулирования, изображённый на рис.4.14.

В начальный момент времени 0 регулируемое напряжение находилось внутри зоны нечувствительности регулятора (ε). Далее в момент времени 1, понижающееся напряжение вызвало срабатывание чувствительного органа регулятора и начался отсчёт времени. По истечении выдержки времени t1 в момент 2 подаётся команда на переключение отпайки и через время t2 (время работы переключающего механизма) напряжение скачком возрастает на величину, определяемую ступенью регулирования (E) и вновь оказывается внутри зоны ε. В промежуток времени 4, 5, 6 происходит аналогичный процесс переключения с той лишь разницей, что переключатель возвращается в прежнее положение. В промежуток времени 7, 8 произошло кратковременное понижение напряжения, на которое регулятор не среагировал, т.к. его выдержка времени t1 оказалась больше, чем длительность этого понижения напряжения t3.

Встречное регулирование напряжения

При встречном регулировании стабильный уровень напряжения обеспечивается не на шинах ЦП, а в некоторой удаленной от ЦП точке электрической сети. Она называется “контрольной” или “фиктивной” точкой.

При этом автоматический регулятор обеспечивает с определенной степенью точности уровень напряжения на шинах ЦП, равный сумме напряжения уставки Uзад и потери напряжения от ЦП до фиктивной точки ΔU:

Uцп =Uзад +ΔU =Uзад +IZл.

Иначе говоря, напряжение в ЦП зависит от тока нагрузки, оно растет с увеличением тока нагрузки.

Рис.4.15. Зависимость напряжения в ЦП от тока нагрузки при встречном регулировании (I",Uцп",I"",Uцп"" – ток нагрузки и напряжение в ЦП вmin иmaxрежимах)

Для реализации такого закона в регуляторе должен быть смоделирован участок электрической сети от ЦП до фиктивной точки. Это моделирование осуществляется с помощью специального сопротивления токовой компенсации, через которое пропускается ток нагрузки. Величина этого сопротивления служит вторым (после Uзад) параметром встречного закона и приближенно определяется по формуле

Для реализации встречного закона измеряются и подаются на вход регулятора напряжение U (с трансформатора ТН) и ток нагрузки I (с трансформатора ТТ). В результате напряжение на шинах ЦП в максимальном режиме (днем) будет выше, чем в минимальном (ночью) (см. рис. 4.15 и 4.16).

Рис.4.16. Автоматическое регулирование напряжения в ЦП по встречному закону

Примерный график отклонений напряжения в эл. сети при встречном регулировании напряжения в ЦП приведён на рис.4.16. Фиктивная точка в данном примере выбрана на шинах РП 6-10 кВ.

Лекция № 17

Методы регулирования напряжения.

Устройства регулирования напряжения

1. Общие положения.

2. Регулирование напряжения в центрах питания.

3. Метод встречного регулирования.

4. Регулирование напряжения на электростанциях.

5. Регулирование напряжения на понижающих подстанциях.

5.1 Устройство РПН двухобмоточного трансформатора.

5.2 Устройство РПН автотрансформатора.

Общие положения

Напряжение в узлах сети постоянно меняется из-за изменения нагрузки, режима работы источников питания, схемы сети.

Режим напряжений в электрической сети должен быть таким, чтобы были выполнены требования ГОСТ в отношении допустимых отклонений напряжения для электроприемников, которые питаются от этой сети. Значения отклонений напряжения часто превышают допустимые по следующим причинам:

· большие потери напряжения в сети;

· неправильный выбор сечений токоведущих элементов и мощности силовых трансформаторов;

· неправильное построение схемы сети.

Очень часто эти причины возникают при развитии сети, при ее реконструкции. Поэтому чтобы обеспечить необходимые отклонения напряжения на шинах электроприемником следует применять регулирование напряжения.

Регулированием напряжения называется процесс изменения напряжения в характерных точках сети с помощью специальных технических средств.

Способы регулирования напряжения возникли с возникновением электрических сетей. Их развитие происходило от низших уровней управления к высшим. Сначала использовалось регулирование напряжения в центрах питания распределительных сетей и непосредственно у потребителей и на энергоблоках электростанций. Сейчас эти методы регулирования напряжения называются локальными. По мере развития сетей и объединения их в крупные энергосистемы возникла необходимость координировать работу локальных методов. Координирование относится к высшим уровням регулирования напряжения.

Локальное регулирование может быть централизованным и местным. Централизованное управление выполняется в центрах питания. Местное регулирование проводится непосредственно у потребителей. Регулирование напряжения в центрах питания приводит к изменению режима напряжения во всей сети, которая питается от него. Местное регулирование приводит к изменению режима напряжения в ограниченной части сети.

Регулирование напряжения в центрах питания

Центрами питания (ЦП) могут быть шины генераторного напряжения электрических станций, низшего напряжения районных подстанций или подстанций глубокого ввода.

Регулирование напряжения на генераторах электростанций выполняется за счет изменения тока возбуждения с помощью устройства автоматического регулирования возбуждения (АРВ).

Регулирование напряжения на шинах низшего напряжения понижающих подстанций производится с помощью:

· трансформаторов со встроенными устройствами для регулирования напряжения под нагрузкой (РПН);

· синхронных компенсаторов (СК);

· линейных регуляторов (ЛР).

При этом регулирование напряжения производится автоматически в пределах располагаемого диапазона регулирования. Регулирование напряжния происходит одновременно для всех линий электропередач сети, которые питаются от шин центра питания.

Качество напряжения обеспечивается только в том случае, когда к шинам центра питания присоединены однородные потребители. Для них график изменения нагрузки является однотипным.

Если электроприемники имеют разные графики нагрузки, то в центре питания применяют схемы группового централизованного регулирования. В этом случае электроприемники делят на группы в соответствии с характером их нагрузки. Линии электропередач, которые питают такие группы электро-приемников, стараются присоединить к разным секциям шин центра питания и регулировать напряжение на каждой секции отдельно.

Если такой возможности нет, то в центре питание выполняется регули-рование как для группы однородных потребителей. У тех потребителей, которым этого регулирования напряжения оказалось недостаточно, выполняется и местное регулирование напряжения.

В зависимости от характера электроприемников можно выделить три подтипа регулирования напряжения:

· стабилизация напряжения;

· двухступенчатое регулирование напряжения;

· встречное регулирование.

Стабилизация напряжения применяется для потребителей с практически неизменной нагрузкой в течение суток (трехсменные предприятия).

Двухступенчатое регулирование выполняется для электроприемников с ярко выраженным двухступенчатым характером изменения нагрузки. (односменные предприятия). В этом случае поддерживается два уровня напряжения в сутки в соответствии с графиком нагрузки.

В случае переменной суточной нагрузки выполняется встречное регули-рование . Этот подтип регулирования напряжения самый распространенный.

Метод встречного регулирования

Суть метода встречного регулирования заключается в изменении напряжения в зависимости от изменения графика нагрузки электроприемника.

Согласно метода встречного регулирование напряжение на шинах низшего напряжения районных подстанций в период максимальной нагрузки должно поддерживаться на 5 % выше номинального напряжения питаемой сети. Эта цифра приведена в ПУЭ (Правила устройства электроустановок). Опыт эксплуатации показывает, что следует повышать напряжение на 10 %, если при этом отклонение напряжения у ближайших потребителей не превосходит допустимого значения. В период минимальной нагрузки (Р мин ≤ Р макс) напряжение на шинах 6-10 кВ ПС понижается до номинального напряжения.

Рассмотрим этот метод на примере следующей сети (рис. 18.1).


В режиме максимальной нагрузки в центре питания поддерживается напряжение U 1 НБ. На шинах высшего напряжения ПС напряжение ниже из-за потерь напряжения в ЛЭП1. Обозначим это напряжение U 2 В..gif" width="33" height="29">. Это и есть напряжение на шинах электроприемника А. Его величина удовлетворяет нормам ПУЭ. Напряжение на шинах электропри-емника Б (U Б без рег.) меньше напряжения на шинах электроприемника А на величину потери напряжения в ЛЭП2. Его величина не соответствует требованиям ПУЭ. При регулировании напряжения () напряжение на шинах низшего напряжения ПС поддерживается на 5 % выше номинального напряжения сети. Поднять напряжение на 10 % выше номинального значения напряжения сети нельзя, потому что в этом случае напряжение на шинах потребителя А не соответствовало бы нормам ПУЭ. При регулировании напряжения величина напряжения на шинах электроприемника Б входит в зону допустимых значений.



В режиме минимальных нагрузок напряжение в центре питания выше, потери напряжения в элементах сети меньше. Поэтому без регулирования напряжения и напряжение на потребителе А, и напряжение на потребителе Б выше рекомендованных ПУЭ. Изменением коэффициента трансформации обеспечивается допустимая величина отклонения напряжения на шинах обоих потребителей.

Наибольшее отклонение напряжения наблюдается в аварийных режимах работы системы. В этом случае поддерживать напряжение у всех потребителей в заданных пределах для нормального режима работы без значительных затрат на специальные устройства регулирования напряжения невозможно. Поэтому в аварийных режимах допускается большее отклонение напряжения.

Регулирование напряжения на электростанциях

На электростанциях регулирование напряжения производится на генераторах и повышающих трансформаторах.

Изменение напряжения генераторов возможно за счет регулирования тока возбуждения..gif" width="16 height=17" height="17">2 х 2,5 %. Повышающие трансформаторы большей мощности выпускаются без устройств ПБВ.

Регулирование напряжения на понижающих подстанциях

Для регулирования напряжения трансформаторами подстанций предусмотрена возможность изменять коэффициент трансформации в пределах 10 – 20 %. По конструктивному исполнению различают два типа переключающих устройств:

· с регулированием без возбуждения (ПБВ), то есть для изменения коэффициента трансформации трансформатор отключают от сети;

· с регулированием напряжения под нагрузкой (РПН).

Устройство РПН дороже устройства ПБВ. Стоимость устройства мало зависит от мощности трансформатора. Поэтому относительное удорожание трансформатора с РПН будет значительно большим для трансформаторов меньшей мощности. В связи с этим трансформаторы напряжением 6 – 20 кВ большей частью выполняются с ПБВ, а трансформаторы напряжением выше 35 кВ с РПН.

Устройство РПН, как правило, устанавливают на обмотке высшего напряжения по следующим причинам:

· на стороне высшего напряжения меньшие токи, поэтому устройство имеет меньшие габариты;

· обмотка высшего напряжения имеет большее количество витков, поэтому точность регулирования выше;

· по конструктивному исполнению обмотка высшего напряжения является наружной (магнитопровод – обмотка низшего напряжения – обмотка высшего напряжения). Поэтому ревизию устройства РПН выполнять проще;

· устройство РПН располагают в нейтрали высшей обмотки. Обмотки высшего напряжения соединяются в звезду, а обмотки низшего напряжения соединяются в треугольник. Трехфазное регулирование проще выполнить на обмотках, соединенных в звезду.

У трансформаторов напряжением 110 кВ мощностью 2,5 МВА и напряжением 150 кВ мощностью 4 МВА устройство РПН расположено на обмотке низшего напряжения.

Трансформаторы имеют разное количество ответвлений и разные ступени регулирования устройства РПН..gif" align="left" width="368" height="350 src=">Обмотка высшего напряже-ния трансформатора с РПН со-стоит из двух частей: нерегули-руемой или основной (а) и ре-гулируемой (б).

На регулируемой части об-мотки имеется ряд ответвлений к неподвижным контактам 1, 2, 0, -1, -2. Ответвления 1, 2 соотрые включены согласно виткам основной обмотки. При включении ответвлений 1, 2 коэффициент трансформации увеличивается. Ответвления –1, -2 соответствуют части витков, которые включены встречно по отношению к виткам основной обмотки. Их включение приводит к уменьшению коэффициента трансформации.

Основным выводом обмотки высшего напряжения является нулевой вывод. С него снимается номинальное напряжение.

На регулируемой части обмотки есть переключающее устройство. Оно состоит из подвижных контактов в и г , контакторов К 1 и К 2 и реактора Р. Середина обмотки реактора соединена с нерегулируемой частью обмотки высшего напряжения трансформатора. В нормальном режиме работы (без переключения) ток нагрузки обмотки высшего напряжения протекает через реактор и распределяется поровну между половинами обмотки реактора. Поэтому магнитный поток мал и потеря напряжения в реакторе тоже мала.

Переключения выполняются следующим образом. Предположим, что необходимо переключиться с ответвления 2 на ответвление 1. Для этого отключается контактор К 1, переводится подвижный контакт в на ответвление 1 и вновь включается контактор К 1. В результате этих действий секция 1 - 2 оказывается замкнутой на реактор. Значительная индуктивность реактора ограничивает уравнительный ток, который возникает из-за наличия напряжения на секции 1 – 2. Затем отключается контактор К 2, переводится подвижный контакт г на ответвление 1 и включается контактор К 2.

Реактор и все подвижные и неподвижные контакты переключающего устройства размещаются в баке трансформатора. Контакторы помещаются в отдельном кожухе. Он залит маслом и размещен снаружи бака трансформатора. Это облегчает ревизию контактов и смену масла.

Переключатели с реакторами рассчитаны на длительное протекание тока нагрузки. Но реактор является тяжелым и громоздким элементом. Поэтому переключающие устройства трансформаторов напряжение 220 кВ и выше выполняются на активных сопротивлениях. Чтобы снизить потери электроэнергии в таких устройствах, их рассчитывают на кратковременную работу. Устройство получается компактным, но требует применения мощных быстродействующих приводов. Принцип действия таких устройств рассмотрим на примере автотрансформаторов напряжением 220 – 330 кВ.

Устройство РПН автотрансформатора

Устройство РПН автотрансформатора расположено в линейном конце обмотки среднего напряжения (рис. 18.4). При таком расположении устройства РПН изменяется коэффициент трансформации между обмотками высшего и среднего напряжений. Коэффициент трансформации между обмотками высшего и низшего напряжения не изменяется. Сначала устройство РПН автотрансформаторов выполнялось встроенным в нейтраль, как у трансформаторов. При регулировании изменялся коэффициент трансформации между всеми обмотками. При таком выполнении трудно было согласовать требования по регулированию напряжения у потребителей на сторонах низкого и среднего напряжений. При расположении устройства РПН в линейном конце обмотки среднего напряжения обмотка низшего напряжения оказывается нерегулируемой. Если возникает необходимость регулирования обмотки низшего напряжения автотрансформатора, последовательно с обмоткой низшего напряжения включают линейный регулятор. С экономической точки зрения такое решение оказывается более целесообразным, чем выполнение автотрансформатора с двумя устройствами РПН.

Выполнение ответвлений со стороны нейтрали позволяет облегчить изоляцию устройства РПН и рассчитать его на разность токов обмоток высшего и среднего напряжений (I В – I С). Но регулирование будет связанным. Выполнение ответвлений в линейном конце обмотки среднего напряжения устройство должно рассчитываться на полный номинальный ток, а его изоляция на напряжение обмотки среднего напряжения U С. Но регулирование будет независимым.

Согласно рисунка, рабочий ток протекает через замкнутый контакт 1 и вспомогательный контакт 2. Переключение происходит в следующем порядке. При переходе со ступени а на степень в сначала размыкается рабочий контакт 1, затем вспомогательный контакт 2. Ток нагрузки протекает через сопротивление R . Замыкается дугогасительный контакт 3’. Образуется мост – уравнительный ток протекает через оба активных сопротивления R и R ’. Размыкается дугогасительный контакт 3 и переводит ток нагрузки на правое плечо. Замыкаются контакты 2’ и 1’. Создается новое рабочее положение.

Узловые и линейные регуляторы частоты в электроэнергетической системе. Что такое встречное регулирование напряжения.

ЭЭС включает в себя большое количество электростанций, работающих параллельно на общую электрическую сеть. При изменении потребляемой активной мощности частота в энергосистеме меняется. Если дежурный персонал каждой электростанции начнет регулировать частоту, то частота в ЭЭС не сможет быть восстановлена на уровне номинального значения из-за несогласованных действий персонала различных станций. Поэтому задача регулирования частоты в ЭЭС возлагается не на все, а на одну или несколько электростанций с суммарной мощностью, достаточной для покрытия всех возможных изменений потребляемой

мощности в ЭЭС. Такие станции называются балансирующими по частоте.

Рассмотрим сначала случай, когда в ЭЭС для регулирования частоты выделена одна балансирующая станция. Остальные электростанции ЭЭС работают с заданной постоянной мощностью.

Статические характеристики балансирующей станции и остальных станций ЭЭС приведены на рис. 6.2,а соответственно справа и слева от вертикальной оси. При суммарной потребляемой мощности ΣР п значения мощностей балансирующей станции и остальных станций характеризуются величинами Р б и Р с соответственно. В ЭЭС имеет место баланс активной мощности

Р б с = ΣР п , (6.4)

а частота в ЭЭС имеет номинальное значение f ном.

При увеличении суммарной потребляемой мощности до значения ΣР п " в результате первичного регулирования частота в ЭЭС уменьшится до значения f , а мощности балансирующей станции и остальных станций ЭЭС увеличатся до значений Р б " и Р с " соответственно. В ЭЭС вновь будет баланс мощности

Р б " с "= ΣР п ", (6.5)

но при частоте f , отличающейся от номинальной f ном.

На балансирующей станции вступает в действие вторичное регулирование частоты, увеличивается впуск энергоносителя в турбину и характеристика станции перемещается параллельно самой себе до положения, при котором весь прирост суммарной потребляемой мощности

ΔР п = ΣР п –ΣР п " (6.6)

ляжет на генераторы балансирующей станции. Мощность этой станции увеличится до значения Р б ”. Мощность остальных станций в ЭЭС восстановится до исходного значения Р с, а частота в ЭЭС – до номинального значения f ном.

В мощных ЭЭС, как правило, недостаточно одной станции для покрытия возможных колебаний потребляемой активной мощности. В этом случае для регулирования частоты выделяются две или более балансирующих станций. Рассмотрим случай, когда в ЭЭС для регулирования частоты выделены две балансирующие станции.

Статические характеристики двух балансирующих станций 1 и 2 показаны на рис. 6.2,б . При суммарной потребляемой в ЭЭС мощности ΣР п частота равна номинальной f ном, станция 1 имеет нагрузку Р б1 , а станция 2 – нагрузку Р б2 . Нагрузка остальных станций составляет Р с.

Суммарная потребляемая активная мощность в ЭЭС увеличивается до значения ΣР п ". В результате первичного регулирования частота в ЭЭС уменьшится до значения f , а мощности балансирующих станций увеличатся до значений Р " б1 и Р " б2 соответственно. Нагрузка остальных станций ЭЭС увеличится до значения Р " с.

В результате вторичного регулирования частоты характеристики балансирующих станций будут смещаться параллельно самим себе до достижения частотой номинального значения f ном. При этом мощность электростанций, кроме балансирующих, уменьшится до исходной мощности Р с, а балансирующие станции примут на себя все увеличение потребляемой в ЭЭС мощности

ΣР п –ΣР " п = ΔР б1 + ΔР б2 . (6.7)

Из рис. 6.2,б видно, что приращения мощностей балансирующих станций обратно пропорциональны коэффициентам статизма их регуляторов

ΔР б1 / ΔР б2 =k ст2 /k ст1 =tgα 2 /tgα 1 . (6.8)

Чем меньше статизм регуляторов турбин балансирующей станции, тем большую мощность возьмет на себя эта станция при увеличении суммарной потребляемой мощности. И наоборот, чем больше статизм регуляторов турбин балансирующей станции, тем меньшую мощность возьмет на себя станция при увеличении суммарной потребляемой мощности.

Регулирование напряжения осуществляется на шинах генераторов электростанций, шинах высшего и среднего напряжения крупных узловых подстанций в системообразующих сетях, шинах центров питания распределительных районных и местных электрических сетей.

Регулирование напряжения осуществляется с помощью специальных технических средств, называемых регулирующими устройствами. Все эти регулирующие устройства условно можно разделить на два типа: узловые и линейные. Узловые устройства изменяют режимные параметры сети – напряжение и реактивную мощность в точке подключения к сети. Это генераторы электростанций, синхронные компенсаторы, батареи конденсаторов, нерегулируемые и регулируемые реакторы и статические регулируемые источники реактивной мощности.

Линейные устройства изменяют схемные параметры сети – реактивное сопротивление, коэффициенты трансформации. Это конденсаторные установки продольной компенсации, трансформаторы, автотрансформаторы с устройствами регулирования напряжения под нагрузкой РПН, специальные регулировочные трансформаторы.

Регулирование, при котором напряжение на шинах центров питания в период наибольших нагрузок повышается, а в период наименьших нагрузок уменьшается, называется встречным регулированием напряжения.

Рассмотрим подробнее принцип встречного регулирования напряжения в ЦП сетевого района. На рис. 7.7 показана упрощенная схема сетевого района. От шин ЦП через распределительный трансформатор с сопротивлением ZРТ получают питание ближние потребители электроэнергии БП. От шин ЦП отходит линия сопротивлением Zл, в конце которой через распределительный трансформатор с сопротивлением ZРТ подключены дальние потребители электроэнергии ДП.

Напряжение у ближнего потребителя БП составляет

Uб=Uцп–ΔUрт, (7.9)

где Uцп – напряжение в ЦП;

ΔUрт – потеря напряжения в распределительном трансформаторе.

Напряжение у дальнего потребителя ДП составляет

Uд=Uцп–ΔUл–ΔUрт, (7.10)

где ΔUл – потеря напряжения в сопротивлении линии Zл.

Согласно ГОСТ 13109-97 нормально допустимые значения отклонений напряжения у потребителей находятся в диапазоне +5% Uном. При поддержании в ЦП напряжения, равного номинальному напряжению сети Uцп=Uном, изменения напряжения от ЦП до ближнего и дальнего потребителей, вычисленные по (7.10) и (7.11), характеризуются эпюрами 1 для режима максимальной нагрузки и эпюрами 2 для режима минимальной нагрузки. Из этих эпюр видно, что напряжение у ближнего потребителя в режимах минимальной и максимальной нагрузки находится в допустимых пределах. В режиме минимальной нагрузки напряжение у дальнего потребителя находится в допустимых пределах. В режиме максимальной нагрузки напряжение у дальнего потребителя ниже допустимого значения.



Рис. 7.7. Схема сети и эпюры напряжений, поясняющие принцип встречного регулирования напряжения

Для поддержания допустимого уровня напряжения у дальних потребителей в режиме максимальной нагрузки необходимо повысить напряжение в ЦП. При увеличении напряжения в ЦП до значения Uцп=1,05Uном изменения напряжений в сети до ближнего и дальнего потребителей характеризуются эпюрами 3. В этом случае напряжения у дальнего и ближнего потребителей находятся в допустимых пределах.

Таким образом, напряжение на шинах ЦП в режиме максимальной нагрузки необходимо поддерживать не ниже 1,05Uном, а в режиме минимальной нагрузки – на уровне Uном.

В ряде случаев централизованное встречное регулирование не может обеспечить требуемый уровень напряжения. Это обусловлено различными параметрами линий, отходящих от ЦП, и неоднородностью графиков нагрузки различных потребителей. В таких случаях необходимо использовать местное регулирование напряжения у потребителей, для которых не обеспечивается требуемый уровень напряжения.

В настоящее время сельские потребители снабжаются электроэнергией главным образом по радиальным электрическим сетям от районных трансформаторных подстанций, питаемых от мощных энергосистем. При этом линии высокого, а также низкого напряжения, как правило, оказываются протяженными и разветвленными.

Чтобы обеспечить качество напряжения, значение которого для сельских электроустановок не должно отличаться от номинального значения более чем на ±7,5 %, рекомендуется проводить мероприятия по улучшению напряжения. В качестве основного средства применяют встречное регулирование напряжения на районной распределительной подстанции в сочетании с подбором соответствующих ответвлений на потребительских трансформаторных подстанциях .

Под встречным регулированием напряжения понимают принудительное повышение напряжения в сетях в период наибольших нагрузок и его снижение в период наименьших нагрузок. В тех случаях, когда при помощи встречного регулирования напряжения на районных подстанциях и подбора ответвлений на трансформаторах потребительских подстанций все же не удается получить допустимые уровни напряжения, используют групповое или местное регулирование напряжения другими способами .

В качестве средств группового регулирования напряжения применяют вольтодобавочные трансформаторы или устройства продольной емкостной компенсации. В качестве средств местного регулирования используют трансформаторы с изменением коэффициента трансформации под нагрузкой (с РПН). Для этого переключают выводы витков первичной обмотки трансформатора под нагрузкой без разрыва цепи.

В настоящее время наиболее распространены трансформаторы 10/0,4 кВ с ручным переключением выводов ответвлений при снятой нагрузке и выключенном напряжении (с ПБВ). При этом на обмотке высшего напряжения трансформаторов предусмотрены ответвления, обеспечивающие следующие ступени регулирования: -5; -2,5; 0; + 2,5 и +5 %.

При холостом ходе понижающих трансформаторов номинальной ступени регулирования (0 %) соответствует постоянная надбавка напряжения на вторичной стороне, равная +5 % Суммарно на каждой из пяти ступеней регулирования будут соответственно следующие надбавки напряжения: 0; +2,5; +5; +7,5; +10 %.

В качестве повышающих трансформаторов, как правило, используют обычные понижающие трансформаторы, но включаемые наоборот, то есть вторичная обмотка понижающего трансформатора для повышающего становится первичной, а переключающие ответвления находятся на вторичной стороне повышающего трансформатора. В результате этого для повышающего трансформатора номинальная ступень 0 % соответствует надбавке -5 %. остальные же ступени напряжения получают противоположные знаки. Суммарно на каждой из пяти ступеней регулирования будут соответственно следующие надбавки напряжения: 0; -2,5; -5; -7,5 и 10 %.

Выбор соответствующих ответвлений на трансформаторах осуществляют как в процессе проектирования, так и при эксплуатации сельских электрических сетей. Нужное ответвление, а значит, и соответствующую надбавку выбирают, исходя из уровня напряжения на шинах высшего напряжения подстанции в режиме минимальных и максимальных нагрузок.

При проектировании сельских распределительных сетей, когда действительные графики нагрузки установить трудно, для выбора ответвлений задаются двумя условными расчетными режимами: максимальным - 100 % нагрузки и минимальным - 25 % нагрузки. Для каждого из режимов находят уровни напряжения на шинах трансформатора и подбирают соответствующую надбавку (ступень регулирования), удовлетворяющую условию допустимых отклонений напряжения (+ 7,5 ... -7,5 %).

В процессе эксплуатации ответвления трансформаторов нужно выбирать с учетом того, что уровень напряжения у потребителей не должен отличаться от номинального значения более чем на ±7,5 %.

Отклонения напряжения у потребителей от номинального значения определяют по формуле

ΔU п = ((U потр - U ном) / U ном) х 100

Iдоп=1.11*530=588,3

Полученное меньшее значение делится на ток проходящий в данной ЛЭП.

Рис. 5.11.– Ток, проходящий в данной ЛЭП.

Критичность отношения фактичекского тока к току отношения отображается интенсивностью цвета, Чем ярче цвет, тем критичнее отношение. Если Цвет не отображается, например, как в ветви 4-6 то отношение является нормальным.

Аналогичным образом осуществляется расчёт токовой загрузки трансформаторов, отличием является то, что в ветви протекают 2 тока (ток высшего и низшего напряжения).

Какой ток будет рассчитан, задается при помощи графы «место» (ВН или НН).

Рабочая область выглядит следующим образом:

Для выполнения расчётов в данном рабочем поле необходимо добавить несколько колонок:

Рис.5.13– Выбор колонок

Рис.5.14.– Показать колонку

Конечная рабочая область выглядит следующим образом:

Рис. 5.15.– Расчёт

При помощи ПВК RastrWin3 были посчитаны токовые загрузки трансформаторов и ЛЭП, при помощи задания токов оборудования, а так же допустимого тока от температуры с использованием задания функции.


ЛАБОРАТОРНАЯ РАБОТА № 6

РАСЧЕТ РЕЖИМОВ ПРИ ВСТРЕЧНОМ РЕГУЛИРОВАНИИ НАПРЯЖЕНИЯ

Цель работы: получение практических навыков по расчету режимов электрических сетей при встречном регулировании напряжения в программном комплексе RastrWin.

Для схемы электрической сети, приведённой на рисунке 1.1 сделать следующее (для двух значений нагрузки max, min):

1. Составить схему замещения.

3. Составить модель для расчётов установившихся режимов в ПВК RastrWin (с заданием параметров узлов и ветвей).

4. Выполнить расчёт нормального режима.

5. Оформить графическую схему потокораспределения расчёта установившегося режима в ПВК RastrWin.

7. Построить график потерь напряжения.

8. Сделать вывод о целесообразности применение метода встречного регулирования.

ИСХОДНЫЕ ДАННЫЕ

Исходные данные для составления схемы замещения схемы указанной на рисунке 1.1:

Таблица 1


Таблица 2

Номинальные параметры трансформаторов п/ст

Силовой трансформатор ТМН-6300/35
Ном.мощн. кВ*А Пределы регулирования U ВН ном кВ U НН ном кВ u КЛ% Р КЛ, кВт Р ХХ, кВт I ХХ, % R T Ом X T Ом кВАР
7,7 7,4 0,35 1,2 14,9

Рисунок 6.1 – Расчётная схема сети

Метод встречного регулирования напряжения

Регулирование напряжения – это изменение уровня напряжения в характерных точках сети с помощью специальных технических средств.

Задача регулирования напряжения - обеспечение нормальных технических условий и экономичности совместной работы электросетей и производственных механизмов. В сети каждой ступени трансформации напряжения, оно должно быть в соответствующих пределах.

Существует несколько методов регулирования напряжения:

Централизованное

· Стабилизация напряжения

· Двухступенчатое регулирование

· Встречное регулирование

Местное у потребителя

· групповое

· индивидуальное

В данной работе рассматривается метод встречного регулирования напряжения. Суть метода заключается в изменении напряжения в зависимости от изменения графика нагрузки электроприемника.

Согласно метода встречного регулирование напряжение на шинах низшего напряжения районных подстанций в период максимальной нагрузки должно поддерживаться на 5 % выше

номинального напряжения питаемой сети. Эта цифра приведена в ПУЭ (Правила устройства электроустановок). Опыт эксплуатации

показывает, что следует повышать напряжение на 10 %, если при этом отклонение напряжения у ближайших потребителей не

превосходит допустимого значения. В период минимальной нагрузки (Р мин ≤ Р макс) напряжение на шинах 6-10 кВ ПС понижается

до номинального напряжения.


Рассмотрим этот метод на примере следующей схемы участка электрической сети (рис. A).
1,05 U НОМ
U НОМ
0,95 U НОМ

В режиме максимальной нагрузки в центре питания поддерживается напряжение U 1 НБ. На шинах высшего напряжения ПС напряжение ниже из-за потерь напряжения в ЛЭП 1 . Обозначим это напряжение U 2 В. Напряжение на шинах низшего напряжения этой подстанции приведенное к напряжению высшей обмотки ниже напряжения U 2 В на величину потери напряжения в трансформаторе.

Если бы на ПС не было регулирования напряжения (К т =1), то фактическое напряжение на шинах низшего напряжения ПС в относительных единицах было бы равно напряжению . Это и есть, напряжение на шинах электроприемника А.

Его величина удовлетворяет нормам ПУЭ. Напряжение на шинах электроприемника Б (U Б без рег.) меньше напряжения на шинах электроприемника. А на величину потери напряжения в ЛЭП 2 . Его величина не соответствует требованиям ПУЭ. При регулировании напряжения () напряжение на шинах низшего напряжения ПС поддерживается на 5 % выше номинального напряжения сети.

Поднять напряжение на 10 % выше номинального значения напряжения сети нельзя, потому что в этом случае напряжение на шинах потребителя А не соответствовало бы нормам ПУЭ. При регулировании напряжения величина напряжения на шинах электроприемника Б входит в зону допустимых значений.

В режиме минимальных нагрузок напряжение в центре питания выше, потери напряжения в элементах сети меньше. Поэтому без регулирования напряжения и напряжение на потребителе А, и напряжение на потребителе Б выше рекомендованных ПУЭ. Изменением коэффициента трансформации обеспечивается допустимая величина отклонения напряжения на шинах обоих потребителей.

Для регулирования напряжения трансформаторами подстанций предусмотрена возможность изменять коэффициент трансформации в пределах 10 – 20 %. В данной работе используется регулирование напряжения под нагрузкой (РПН).Устройство РПН, как правило, устанавливают на обмотке высшего напряжения.

ХОД РАБОТЫ

«Создание установившегося режима»

1. Для приведенной схемы электрической сети составить схему замещения (учитывая активные и индуктивные сопротивления элементов).

3. Составить модель расчётов установившихся режимов для максимальных и минимальных нагрузок в ПВК RastrWin (с заданием параметров узлов и ветвей).

Запустить Rastrwin и создать новый файл (Файлы Новый Режим Ок).

Затем заполним данные для узлов (Открыть Узлы). Зададим номера узлов, номинальные напряжения (в кВ) и наименования.

Рисунок 6.2. – Параметры узлов для максимальных нагрузок

Рисунок 6.3. – Параметры узлов для минимальных нагрузок

Зададим данные для ветвей (Открыть Ветви).

Для этого укажем номера начала и конца ветви (удобно использовать выпадающий список с узлами). Задаем сопротивления и коэффициенты трансформации (данные из пункта 2).

Рисунок 6.4. – Параметры ветвей для максимальных нагрузок

Рисунок 6.5. – Параметры ветвей для минимальных нагрузок

4. Выполнить расчёт установившегося режима.

Параметры схемы для текущей задачи заданы. Приступаем к расчету установившегося режима. Для этого требуется нажать клавишу F5.

При правильно заданных параметрах режим сходится и в таблице протокола выводятся следующие данные:

Рисунок 6.6. – Расчет установившегося режима для максимальныхнагрузок

Рисунок 6.7. – Расчет установившегося режима для минимальных нагрузок

Ит – номер итерации;

Мах.неб. – значение и номер узла для максимального небаланса мощности (P или Q);

>V – максимальная величина и номер узла для превышения напряжения по от-ношению к номинальному – (𝑉𝑉ном⁄)max;

Угол – значение и номер линии для максимального разворота угла (в градусах).

5. Оформить графическую схему потокораспределения расчёта установившегося режима.

В ПВК RastrWin 3 создадим графическую схему. Создадим новый файл графика (Файлы Новый Графика Ок).

Воспроизведем графическую схему для разных значений нагрузки с помощью «Ввод».

Падение напряжения на сборных шинах находится в недопустимых пределах, значит нужно использовать один из методов регулирования.

Расчет режима при встречном регулировании

6. Напряжения на шинах низкого напряжения отрегулировать согласно закону встречного регулирования.

Использование РПН позволяет контролировать напряжение в заданных пределах. Для введения его в схему воспользуемся функцией анцапфы. Для этого выполним действия (Открыть Оптимизация Анцапфы).

В таблице «Анцапфы» необходимо задать следующие параметры:

· Nbd – номер типа регулирования трансформатора в базе данных;

· Названия– его название (необязательно);

· ЕИ – единицы измерения шага отпаек (% или кВ). Если это поле не заполнено, предполагаются %, если в это поле занести любой символ, отличный от % и пробела, будут предполагаться кВ;

· +/– – порядок нумерации анцапф:

· «+» – анцапфы нумеруются, начиная от максимальной положительной добавки, «–» – от максимальной отрицательной (по умолчанию задается «+»);

· Тип– тип регулирования. В растре при моделировании трехобмоточных и авто трансформаторов можно установить 3 устройства регулирования РПН, ПБВ, ВДТ.

· Место-Регулирующие устройства могут устанавливаться на стороны ВН и СН, а так же в нейтраль АТ. От него зависит по каким формулам будет рассчитываться коэффициент трансформации и допустимые токи обмоток.

· Кнейтр – число анцапф в нейтральном положении (с нулевой добавкой), по умолчанию 1;

· V(нр) – напряжение нерегулируемой ступени;

· V(рег) – напряжение регулируемой ступени;

· Nanc – число анцапф с шагом, заданным в следующей колонке;

· Шаг – величина шага (% или кВ в зависимости от поля ЕИ).Порядок следования пар Nанц – Шаг – от наибольшего минуса к наибольшему плюсу.

Пример заполнения таблицы Анцапфы для устройства РПН установленных в трансформаторах T2-T7 на стороне ВН и РПН на трансформаторе Т1. Для РПН2 использовались каталожные данные. РПН на стороне ВН (35/6кВ): +/- 12, 1,2%. (Рисунок 6.5).

Рисунок 6.8. –таблицаАнцапфы

Для того что бы связать РПН с трансформатором перейдем на вкладку ветви (Столбец БД_анц Выпадающая меню Выбор нужного РПН).Для максимальных нагрузок (Рисунок 6.9).

Рисунок 6.9. – Введение регулирования в режиме максимальных нагрузок

Рисунок 6.10. – Введение регулирования в режиме минимальных нагрузок

После введения встречного регулирования делаем пересчет режима (Режим F5), параметры схемы так же изменились. Встречное регулирование в данной работе осуществляем изменением номера отпайки РПН таким образом что бы напряжения на узле находилось в допустимых пределах (Столбец N_анц Ввод нужной отпайки РПН). На практике команда на задание отпайки выдается автоматом логики, а исполняется приводом РПН.

7. Построение графика напряжения.

По полученным данным в узлах строим график напряжения. Для этого напряжение в узле сравнивается с номинальным и в процентном соотношении откладывается отдельно для каждой ступени.

Ниже приведен пример для участка цепи:

ВН «Свободный» НН «Южная» (узлы 1-2-3-8).

Процентное отклонение напряжения в узле считается по формуле приведенной ниже, и откладываются на графике:

,

где - напряжение ступени в процентах;

U ном - номинальное значение напряжение берётся из стандартного ряда напряжений;

U ф - фактическое напряжение в узле.

∆Е считается, как разница между без регулирования и с регулированием. ∆Е на второй ступени считается, как сумма отрегулированного напряжения на первом и второмтрансформаторе. Последняя величина и откладывается на графике.

Рисунок 6.11. – График потерь напряжения в режиме максимальных нагрузок

Из данного графика видно, что регулирование в режиме минимальных нагрузок не требуется, однако для улучшения качества поставляемой электроэнергии было применено.

В режиме максимальных нагрузок, потребление энергии значительно увеличилось, а значит, увеличились и потери, что видно из графика, приведенного ниже. Регулирование для данного случая необходимо.

Рисунок 6.12. – График потерь напряжения в режиме минимальных нагрузок

8. Сделать вывод о целесообразности применения метода встречного регулирования.


Рисунок 6.13. – Графическая схема (max нагрузка)

Рисунок 6.14.– Графическая схема (min нагрузка)


Рисунок 6.15.– Графическая схема с регулированием (max нагрузка)

Рисунок 6.16.– Графическая схема с регулированием (min нагрузка)


ЛАБОРАТОРНАЯ РАБОТА № 6

ВЛИЯНИЕ УШР НА УСТАНОВИВШИЙСЯ РЕЖИМ СЕТИ

Цель работы: выявить влияния УШР на установившийся режим сети в ПВК RastrWin3.

1. Составить схему замещения заданной сети.

2. Произвести выбор элементов сети.

4. Смоделировать заданную сеть в RastrWin 3 для расчёта установившегося режима.

5. В ПВК RastrWin 3 создать графическую схему с результатами расчёта.

8. Смоделировать заданную сеть в RastrWin 3 для расчёта установившегося режима.

9. В ПВК RastrWin 3 создать графическую схему с результатами расчёта.

Применение управляемых шунтирующих реакторов позволяет управлять режимами работы сетей таким образом, чтобы снизить потери, повысить пропускную способность линий электропередачи. За счет этого повышается надежность работы системы, значительно экономится электроэнергия при ее передаче.

Управляемые шунтирующие реакторы (УШР) – электромагнитные реакторы, индуктивность которых может плавно регулироваться с помощью системы автоматического управления, что позволяет осуществлять стабилизацию напряжения на воздушных линиях с большой зарядной мощностью. В комбинации с батареями конденсаторов, включаемых параллельно, УШР являются аналогами статических тиристорных компенсаторов (СТК), позволяя поддерживать напряжение на линиях как в режиме малых, так и больших нагрузок.

Применяются три вида УШР:

· УШР, управляемые подмагничиванием постоянным током с помощью специальной обмотки управления. Являются разработкой ОАО «ЭЛУР» (Россия). Электромагнитная часть выпускается ОАО «ЗТЗ» (Украина).

· УШР, управляемые подмагничиванием постоянным током через расщепленнуюнейтраль сетевой обмотки.Разработаны ОАО «ХК Электрозавод». Он предназначен для компенсации избыточной зарядной мощности и стабилизации напряжения в сети. Потери в новом реакторе за счет инновационных решений более чем на 30% ниже, чем у УШР, которые до сих пор поставлялись на энергообъекты ПАО «ФСК ЕЭС».

· УШР трансформаторного типа, состоящие их двухобмоточного трансформатора, с напряжением короткого замыкания равным 100%, и тиристорной группы, включенной во вторичную обмотку. По принципу действия этот вид УШР является быстродействующим и наиболее подходит для объектов требующих быстрой реакции на сетевые возмущения.

На рисунке 1 показаны схемы построения реакторов с подмагничиванием постоянным током.

Рис. 7.1. - Схемы построения реакторов с подмагничиванием постоянным током

Рассмотрим сеть. На рисунке 7.2. представлена схема электрической сети.

Рис.7.2. – Схема электрической сети

Составим схему замещения заданной сети. Наиболее часто встречающиеся расчетные схемы элементовэлектроэнергетической системы и выражения для расчетов сопротивлений их схем замещений приведены в приложении 1.На рисунке 3 представлена схема замещения электрической сети.

Рис.7.3 – Схема замещения электрической сети

Паспортные данные оборудования из справочников (таблицы 2 - 4):

Таблица 2

Данные для трансформатора типа АТДЦТН-250000/500/220

Таблица 4

Данные для трансформатора типа ТДЦ-125000/220-У1

Тип трансформатора S ном, МВ А U ном, кВ Схема и группа соединения обмоток U к, %
ВН НН
ТДЦ-125000/220-У1 10,5 Yh/D-11

Рассчитаем параметры трансформатора АТДЦТН-250000/500/220 У1:

Рассчитаем параметры трансформатора ТДЦ-125000/220-У1:

Рассчитаем параметры линии AС-500/64:

Рассчитаем параметры линии AС-240/32:

Смоделируем заданную сеть в RastrWin 3.




Загрузка...