sonyps4.ru

Характеристики персонального компьютера с расшифровкой. Основные составляющие компьютера и их характеристики

Приложений.

Энциклопедичный YouTube

  • 1 / 5

    Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трём основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

    Данные требования не являются независимыми:

    • Обратимая функция нестойка к коллизиям первого и второго рода.
    • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

    Принципы построения

    Итеративная последовательная схема

    При проектировании хеш-функций на основе итеративной схемы возникает проблема с размером входного потока данных. Размер входного потока данных должен быть кратен (k − n ) . Как правило, перед началом алгоритма данные расширяются неким, заранее известным, способом.

    Помимо однопроходных алгоритмов, существуют многопроходные алгоритмы, в которых ещё больше усиливается лавинный эффект. В этом случае данные сначала повторяются, а потом расширяются до необходимых размеров.

    Сжимающая функция на основе симметричного блочного алгоритма

    В качестве сжимающей функции можно использовать симметричный блочный алгоритм шифрования. Для обеспечения большей безопасности можно использовать в качестве ключа блок данных, предназначенный к хешированию на данной итерации, а результат предыдущей сжимающей функции - в качестве входа. Тогда результатом последней итерации будет выход алгоритма. В таком случае безопасность хеш-функции базируется на безопасности используемого алгоритма.

    Обычно при построении хеш-функции используют более сложную систему. Обобщённая схема симметричного блочного алгоритма шифрования изображена на рис. 2.

    Таким образом, мы получаем 64 варианта построения сжимающей функции. Большинство из них являются либо тривиальными, либо небезопасными. Ниже изображены четыре наиболее безопасные схемы при всех видах атак.

    Применения

    Электронная подпись

    Пусть некий клиент, с именем name , производит аутентификацию по парольной фразе, pass , на некоем сервере. На сервере хранится значение хеш-функции H (pass , R 2) , где R 2 - псевдослучайное, заранее выбранное число. Клиент посылает запрос (name , R 1 ), где R 1 - псевдослучайное, каждый раз новое число. В ответ сервер посылает значение R 2 . Клиент вычисляет значение хеш-функции H (R 1 , H (pass , R 2)) и посылает его на сервер. Сервер также вычисляет значение H (R 1 , H (pass , R 2)) и сверяет его с полученным. Если значения совпадают - аутентификация верна.

    Нередко при скачивании торрентов или непосредственно самих файлов в описании стоит что-то наподобие «ad33e486d0578a892b8vbd8b19e28754» (например, в ex.ua), нередко с припиской «md5». Это хеш-код - результат, который выдает хэш-функция после обработки входящих данных. В переводе с английского хэш обозначает путаницу, марихуану, травку или блюдо из мелко нарезанного мяса и овощей. очень и очень сложно, можно сказать, что практически невозможно. Тогда возникает вопрос: «Зачем вообще нужны все эти они выдают непонятную абракадабру, которая еще и не поддается расшифровке?». Об этом и пойдет речь в данной статье.

    Что такое хэш-функция и как она действует?

    Данная функция предназначена для преобразования входящих данных сколь угодно большого размера в результат фиксированной длины. Сам процесс такого преобразования называется хешированием, а результат - хэшем или хэш-кодом. Порой еще используют слова «отпечаток» или «дайджест сообщения», но на практике они встречаются намного реже. Существует масса различных алгоритмов того, как можно превратить любой массив данных в некую последовательность символов определенной длины. Наибольшее распространение получил алгоритм под названием md5, который был разработан еще в 1991 году. Несмотря на то, что на сегодняшний день md5 является несколько устаревшим и к использованию не рекомендуется, он до сих пор все еще в ходу и часто вместо слова «хеш-код», на сайтах просто пишут md5 и указывают сам код.

    Зачем нужна хеш-функция?

    Зная результат, практически невозможно определить исходные данные, но одни и те же входящие данные дают одинаковый итог. Поэтому хэш-функция (ее еще называют функция свертки) часто используется для хранения очень важной информации, такой как пароль, логин, номер удостоверения и другая персональная информация. Вместо сравнивания сведений, вводимых пользователем, с теми, которые хранятся в базе данных, происходит сопоставление их хешей. Это дает гарантию, что при случайной утечке информации никто не сможет воспользоваться важными данными для своих целей. Путем сравнения хеш-кода также удобно проверять правильность загрузки файлов с интернета, особенно если во время скачивания происходили перебои связи.

    Хэш-функции: какими они бываю т

    В зависимости от своего предназначения хэш-функция может быть одного из трех типов:

    1. Функция для проверки целостности информации

    Когда происходит по сети, происходит расчет хэша пакета, и этот результат также передается вместе с файлом. При приеме снова вычисляется хэш-код и сравнивается с полученным по сети значением. Если код не совпадает, то это говорит об ошибках, и испорченный пакет снова будет передан. У такой функции быстрая скорость расчета, но малое количество хэш значений и плохая стабильность. Пример такого типа: CRC32, у которой всего лишь 232 отличающихся между собой значения.

    2. Криптографическая функция

    Используется для защиты от (НД). Они позволяют проверить, не произошло ли искажение данных в результате НД во время передачи файлов по сети. Истинный хэш в этом случае общедоступен, а хэш полученного файла можно вычислить с помощью множества разных программ. У таких функций долгий и стабильный срок работы, а поиск коллизий (возможных совпадений результата от разных исходных данных) очень осложнен. Именно такие функции используют для хранения в БД паролей (SH1, SH2, MD5) и прочей ценной информации.

    3. Функция, предназначенная для создания эффективной структуры данных

    Ее целью является компактная и довольно упорядоченная организация сведений в специальной структуре, которая носит название хэш-таблицы. Такая таблица позволяет добавлять новую информацию, удалять сведения и выполнять поиск нужных данных с очень высокой скоростью.

    Алгоритмы хэширования строк помогают решить очень много задач. Но у них есть большой недостаток: что чаще всего они не 100%-ны, поскольку есть множество строк, хэши которых совпадают. Другое дело, что в большинстве задач на это можно не обращать внимания, поскольку вероятность совпадения хэшей всё-таки очень мала.

    Определение хэша и его вычисление

    Один из лучших способов определить хэш-функцию от строки S следующий:

    H(S) = S + S * P + S * P^2 + S * P^3 + ... + S[N] * P^N

    где P - некоторое число.

    Разумно выбирать для P простое число, примерно равное количеству символов во входном алфавите. Например, если строки предполаются состоящими только из маленьких латинских букв, то хорошим выбором будет P = 31. Если буквы могут быть и заглавными, и маленькими, то, например, можно P = 53.

    Во всех кусках кода в этой статье будет использоваться P = 31.

    Само значение хэша желательно хранить в самом большом числовом типе - int64, он же long long. Очевидно, что при длине строки порядка 20 символов уже будет происходить переполнение значение. Ключевой момент - что мы не обращаем внимание на эти переполнения, как бы беря хэш по модулю 2^64.

    Пример вычисления хэша, если допустимы только маленькие латинские буквы:

    Const int p = 31; long long hash = 0, p_pow = 1; for (size_t i=0; i

    В большинстве задач имеет смысл сначала вычислить все нужные степени P в каком-либо массиве.

    Пример задачи. Поиск одинаковых строк

    Уже теперь мы в состоянии эффективно решить такую задачу. Дан список строк S, каждая длиной не более M символов. Допустим, требуется найти все повторяющиеся строки и разделить их на группы, чтобы в каждой группе были только одинаковые строки.

    Обычной сортировкой строк мы бы получили алгоритм со сложностью O (N M log N), в то время как используя хэши, мы получим O (N M + N log N).

    Алгоритм. Посчитаем хэш от каждой строки, и отсортируем строки по этому хэшу.

    Vector s (n); // ... считывание строк... // считаем все степени p, допустим, до 10000 - максимальной длины строк const int p = 31; vector p_pow (10000); p_pow = 1; for (size_t i=1; i > hashes (n); for (int i=0; i

    Хэш подстроки и его быстрое вычисление

    Предположим, нам дана строка S, и даны индексы I и J. Требуется найти хэш от подстроки S.

    По определению имеем:

    H = S[I] + S * P + S * P^2 + ... + S[J] * P^(J-I)

    H * P[I] = S[I] * P[I] + ... + S[J] * P[J], H * P[I] = H - H

    Полученное свойство является очень важным.

    Действительно, получается, что, зная только хэши от всех префиксов строки S, мы можем за O (1) получить хэш любой подстроки .

    Единственная возникающая проблема - это то, что нужно уметь делить на P[I]. На самом деле, это не так просто. Поскольку мы вычисляем хэш по модулю 2^64, то для деления на P[I] мы должны найти к нему обратный элемент в поле (например, с помощью Расширенного алгоритма Евклида), и выполнить умножение на этот обратный элемент.

    Впрочем, есть и более простой путь. В большинстве случаев, вместо того чтобы делить хэши на степени P, можно, наоборот, умножать их на эти степени .

    Допустим, даны два хэша: один умноженный на P[I], а другой - на P[J]. Если I < J, то умножим перый хэш на P, иначе же умножим второй хэш на P. Теперь мы привели хэши к одной степени, и можем их спокойно сравнивать.

    Например, код, который вычисляет хэши всех префиксов, а затем за O (1) сравнивает две подстроки:

    String s; int i1, i2, len; // входные данные // считаем все степени p const int p = 31; vector i2 && h1 == h2 * p_pow) cout << "equal"; else cout << "different";

    Применение хэширования

    Вот некоторые типичные применения хэширования:

    • Определение количества различных подстрок за O (N^2 log N) (см. ниже)
    • Определение количества палиндромов внутри строки

    Определение количества различных подстрок

    Пусть дана строка S длиной N, состоящая только из маленьких латинских букв. Требуется найти количество различных подстрок в этой строке.

    Для решения переберём по очереди длину подстроки: L = 1 .. N.

    Для каждого L мы построим массив хэшей подстрок длины L, причём приведём хэши к одной степени, и отсортируем этот массив. Количество различных элементов в этом массиве прибавляем к ответу.

    Реализация:

    String s; // входная строка int n = (int) s.length(); // считаем все степени p const int p = 31; vector p_pow (s.length()); p_pow = 1; for (size_t i=1; iH (s.length()); for (size_t i=0; i hs (n-l+1); for (int i=0; i

    Для решения задачи поиска необходимого элемента среди данных большого объема был предложен алгоритм хеширования (hashing – перемешивание), при котором создаются ключи, определяющие данные массива и на их основании данные записываются в таблицу, названную хеш-таблицей . Ключи для записи определяются при помощи функции i = h (key ) , называемой хеш-функцией . Алгоритм хеширования определяет положение искомого элемента в хеш-таблице по значению его ключа, полученного хеш-функцией.

    Понятие хеширования– это разбиение общего (базового) набора уникальных ключей элементов данных на непересекающиеся наборы с определенным свойством.

    Возьмем, например, словарь или энциклопедию. В этом случае буквы алфавита могут быть приняты за ключи поиска, т.е. основным элементом алгоритма хеширования является ключ (key ). В большинстве приложений ключ обеспечивает косвенную ссылку на данные.

    Фактически хеширование – это специальный метод адресации данных для быстрого поиска нужной информации по ключам .

    Если базовый набор содержит N элементов, то его можно разбить на 2 N различных подмножеств.

    Хеш-таблица и хеш-функции

    Функция, отображающая ключи элементов данных во множество целых чисел (индексы в таблице – хеш-таблица ), называется функцией хеширования , или хеш-функцией :

    i = h (key );

    где key – преобразуемый ключ, i – получаемый индекс таблицы, т.е. ключ отображается во множество целых чисел (хеш-адреса ), которые впоследствии используются для доступа к данным.

    Однако хеш-функция для нескольких значений ключа может давать одинаковое значение позиции i в таблице. Ситуация, при которой два или более ключа получают один и тот же индекс (хеш-адрес), называется коллизией при хешировании.

    Хорошей хеш-функцией считается такая функция, которая минимизирует коллизии и распределяет данные равномерно по всей таблице, а совершенной хеш-функцией – функция, которая не порождает коллизий:

    Разрешить коллизии при хешировании можно двумя методами:

    – методом открытой адресации с линейным опробыванием;

    – методом цепочек.

    Хеш-таблица

    Хеш-таблица представляет собой обычный массив с необычной адресацией, задаваемой хеш-функцией.

    Хеш-структуру считают обобщением массива, который обеспечивает быстрый прямой доступ к данным по индексу.

    Имеется множество схем хеширования, различающихся как выбором удачной функции h (key ), так и алгоритма разрешения конфликтов. Эффективность решения реальной практической задачи будет существенно зависеть от выбираемой стратегии.

    Примеры хеш-функций

    Выбираемая хеш-функция должна легко вычисляться и создавать как можно меньше коллизий, т.е. должна равномерно распределять ключи на имеющиеся индексы в таблице. Конечно, нельзя определить, будет ли некоторая конкретная хеш-функция распределять ключи правильно, если эти ключи заранее не известны. Однако, хотя до выбора хеш-функции редко известны сами ключи, некоторые свойства этих ключей, которые влияют на их распределение, обычно известны. Рассмотрим наиболее распространенные методы задания хеш-функции.

    Метод деления . Исходными данными являются – некоторый целый ключ key и размер таблицы m . Результатом данной функции является остаток от деления этого ключа на размер таблицы. Общий вид функции:

    int h(int key, int m) {

    return key % m; // Значения

    Для m = 10 хеш-функция возвращает младшую цифру ключа.

    Для m = 100 хеш-функция возвращает две младшие цифры ключа.

    Аддитивный метод , в котором ключом является символьная строка. В хеш-функции строка преобразуется в целое суммированием всех символов и возвращается остаток от деления на m (обычно размер таблицы m = 256).

    int h(char *key, int m) {

    Коллизии возникают в строках, состоящих из одинакового набора символов, например, abc и cab .

    Данный метод можно несколько модифицировать, получая результат, суммируя только первый и последний символы строки-ключа.

    int h(char *key, int m) {

    int len = strlen(key), s = 0;

    if(len < 2) // Если длина ключа равна 0 или 1,

    s = key; // возвратить key

    s = key + key;

    В этом случае коллизии будут возникать только в строках, например, abc и amc .

    Метод середины квадрата , в котором ключ возводится в квадрат (умножается сам на себя) и в качестве индекса используются несколько средних цифр полученного значения.

    Например, ключом является целое 32-битное число, а хеш-функция возвращает средние 10 бит его квадрата:

    int h(int key) {

    key >>= 11; // Отбрасываем 11 младших бит

    return key % 1024; // Возвращаем 10 младших бит

    Метод исключающего ИЛИ для ключей-строк (обычно размер таблицы m =256). Этот метод аналогичен аддитивному, но в нем различаются схожие слова. Метод заключается в том, что к элементам строки последовательно применяется операция «исключающее ИЛИ».

    В мультипликативном методе дополнительно используется случайное действительное число r из интервала . Если это произведение умножить на размер таблицы m , то целая часть полученного произведения даст значение в диапазоне от 0 до m –1.

    int h(int key, int m) {

    double r = key * rnd();

    r = r – (int)r; // Выделили дробную часть

    В общем случае при больших значениях m индексы, формируемые хеш-функцией, имеют большой разброс. Более того, математическая теория утверждает, что распределение получается более равномерным, если m является простым числом.

    В рассмотренных примерах хеш-функция i = h (key ) только определяет позицию, начиная с которой нужно искать (или первоначально – поместить в таблицу) запись с ключом key . Поэтому схема хеширования должна включать алгоритм решения конфликтов , определяющий порядок действий, если позиция i = h (key ) оказывается уже занятой записью с другим ключом.

    Как я полагаю, многим известно о том, что с 2007 года Национальный институт стандартов и технологий США (NIST) проводит конкурс на разработку хэш-алгоритма для замены SHA-1, и семейства алгоритмов SHA-2. Однако данная тема, почему-то обделена вниманием на сайте. Собственно это и привело меня к вам. Предлагаю вашему вниманию цикл статей, посвященных хэш-алгоритмам. В этом цикле мы вместе изучим основы хэш-функций, рассмотрим самые именитые хэш-алгоритмы, окунемся в атмосферу конкурса SHA-3 и рассмотрим алгоритмы, претендующие на победу в нем, обязательно их потестируем. Так же по возможности будут рассмотрены российские стандарты хеширования.

    О себе

    Студент кафедры информационной безопасности.

    О хэшировании

    В настоящее время практически ни одно приложение криптографии не обходится без использования хэширования.
    Хэш-функции – это функции, предназначенные для «сжатия» произвольного сообщения или набора данных, записанных, как правило, в двоичном алфавите, в некоторую битовую комбинацию фиксированной длины, называемую сверткой. Хэш-функции имеют разнообразные применения при проведении статистических экспериментов, при тестировании логических устройств, при построении алгоритмов быстрого поиска и проверки целостности записей в базах данных. Основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента.
    Криптографической хеш-функцией называется всякая хеш-функция, являющаяся криптостойкой, то есть удовлетворяющая ряду требований специфичных для криптографических приложений. В криптографии хэш-функции применяются для решения следующих задач:
    - построения систем контроля целостности данных при их передаче или хранении,
    - аутентификация источника данных.

    Хэш-функцией называется всякая функция h:X -> Y , легко вычислимая и такая, что для любого сообщения M значение h(M) = H (свертка) имеет фиксированную битовую длину. X - множество всех сообщений, Y - множество двоичных векторов фиксированной длины.

    Как правило хэш-функции строят на основе так называемых одношаговых сжимающих функций y = f(x 1 , x 2) двух переменных, где x 1 , x 2 и y - двоичные векторы длины m , n и n соответственно, причем n - длина свертки, а m - длина блока сообщения.
    Для получения значения h(M) сообщение сначала разбивается на блоки длины m (при этом, если длина сообщения не кратна m то последний блок неким специальным образом дополняется до полного), а затем к полученным блокам M 1 , M 2 ,.., M N применяют следующую последовательную процедуру вычисления свертки:

    H o = v,
    H i = f(M i ,H i-1), i = 1,.., N,
    h(M) = H N

    Здесь v - некоторая константа, часто ее называют инициализирующим вектором. Она выбирается
    из различных соображений и может представлять собой секретную константу или набор случайных данных (выборку даты и времени, например).
    При таком подходе свойства хэш-функции полностью определяются свойствами одношаговой сжимающей функции.

    Выделяют два важных вида криптографических хэш-функций - ключевые и бесключевые. Ключевые хэш-функции называют кодами аутентификации сообщений. Они дают возможность без дополнительных средств гарантировать как правильность источника данных, так и целостность данных в системах с доверяющими друг другу пользователями.
    Бесключевые хэш-функции называются кодами обнаружения ошибок. Они дают возможность с помощью дополнительных средств (шифрования, например) гарантировать целостность данных. Эти хэш-функции могут применяться в системах как с доверяющими, так и не доверяющими друг другу пользователями.

    О статистических свойствах и требованиях

    Как я уже говорил основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента. Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось. Это называется лавинным эффектом.

    К ключевым функциям хэширования предъявляются следующие требования:
    - невозможность фабрикации,
    - невозможность модификации.

    Первое требование означает высокую сложность подбора сообщения с правильным значением свертки. Второе - высокую сложность подбора для заданного сообщения с известным значением свертки другого сообщения с правильным значением свертки.

    К бесключевым функциям предъявляют требования:
    - однонаправленность,
    - устойчивость к коллизиям,
    - устойчивость к нахождению второго прообраза.

    Под однонаправленностью понимают высокую сложность нахождения сообщения по заданному значению свертки. Следует заметить что на данный момент нет используемых хэш-функций с доказанной однонаправленностью.
    Под устойчивостью к коллизиям понимают сложность нахождения пары сообщений с одинаковыми значениями свертки. Обычно именно нахождение способа построения коллизий криптоаналитиками служит первым сигналом устаревания алгоритма и необходимости его скорой замены.
    Под устойчивостью к нахождению второго прообраза понимают сложность нахождения второго сообщения с тем же значением свертки для заданного сообщения с известным значением свертки.

    Это была теоретическая часть, которая пригодится нам в дальнейшем…

    О популярных хэш-алгоритмах

    Алгоритмы CRC16/32 - контрольная сумма (не криптографическое преобразование).

    Алгоритмы MD2/4/5/6 . Являются творением Рона Райвеста, одного из авторов алгоритма RSA.
    Алгоритм MD5 имел некогда большую популярность, но первые предпосылки взлома появились еще в конце девяностых, и сейчас его популярность стремительно падает.
    Алгоритм MD6 - очень интересный с конструктивной точки зрения алгоритм. Он выдвигался на конкурс SHA-3, но, к сожалению, авторы не успели довести его до кондиции, и в списке кандидатов, прошедших во второй раунд этот алгоритм отсутствует.

    Алгоритмы линейки SHA Широко распространенные сейчас алгоритмы. Идет активный переход от SHA-1 к стандартам версии SHA-2. SHA-2 - собирательное название алгоритмов SHA224, SHA256, SHA384 и SHA512. SHA224 и SHA384 являются по сути аналогами SHA256 и SHA512 соответственно, только после расчета свертки часть информации в ней отбрасывается. Использовать их стоит лишь для обеспечения совместимости с оборудованием старых моделей.

    Российский стандарт - ГОСТ 34.11-94 .

    В следующей статье

    Обзор алгоритмов MD (MD4, MD5, MD6).

    Литература

    А. П. Алферов, Основы криптографии.

    Брюс Шнайер, Прикладная криптография.



Загрузка...