sonyps4.ru

Гитарный юсб миди контроллер на ардуино. Как сделать дешевый MIDI контроллер на базе Arduino своими руками

В этой достаточно длинной даже для блога статье описаны первые шаги уже немолодого "айтишника" на пути освоения новейшего подхода к информационному образованию в школах и ВУЗах развитых стран - физического компьютинга на devboard Raspberry Pi, чтобы сделать его доступным своему любимому ребенку и родной школе.

По ходу дела, мне впервые в жизни пришлось познакомиться с альтернативной "Wintel" аппаратной платформой (Raspberry Pi 3 на базе ARM-процессора), освоить работу в незнакомой операционной системе (Rasbian OS на базе Debian Linux), подружиться с новым языком программирования (Python), вспомнить азы радиоэлектроники .

В итоге, всего за 3,5 т.р. и месяц ожидания у моего ребенка появился достаточно мощный, уникальный по своим образовательным возможностям инструмент, сочетающий в себе бесшумный 4-ядерный компьютер размером с кредитную карту, вебсервер, медиацентр, центр управления датчиками "умного дома", лабораторию для освоения основ программирования, робототехники и радиоэлектроники - почти идеальное решение для школьного кружка информатики.
При этом, все программы на нем изначально бесплатны и в широком разнообразии доступны из онлайн-репозиториев, а вирусов не бывает в принципе.

Экскурс в историю обучения информатике в школе и ВУЗе

С конца 90-х тем или иным образом принимаю участие в развитии процесса информатизации образования в школах и ВУЗах.
В конце 80-х будучи старшеклассником "зацепил" начало внедрения компьютеров в школьное образование. Тогда это были компьютерные классы на основе микроЭВМ БК 0010 и учительского компьютера ДВК-2. С увлеченим осваивал программирование Basic. Книг тогда по нему практически не было. Вместе с преподавателем приходилось все изучать по брошюркам и "методом научного тыка". Перед окончанием школы в Чувашию приехал проект IBM "Пилотные школы". К счастью, в одну из школ Новочебоксарска (№14) был поставлен компьютерный класса на основе IBM PS/2. Тогда это было подобно чуду - настоящий компьютер "IBM PS" с "мышкой", флоппи-дисководом и шикарным 256-цветным экраном! Учительский компьютер имел 286-й процессор, 1 мегабайт оперативной памяти и 40Мб жесткий диск (который казался настолько большым по сравнению с флоппи-диском, что мы не знали, можно ли его вообще чем-то заполнить "под завязку"). Ко всему прилагался матричный принтер - "чудо враждебной техники".
Затем были 5 "перестроечных" лет учебы в университете, где в ходе учебного процесса я познакомился с кубинскими СМ ЭВМ (те самые, с катушками для записи данных и с тяжелыми металлическими клавиатурами). Но как раз в те самые годы ВУЗы по западным гратнам стали получать современные компьютеры IBM PC-XT 286 и IBM PC/AT 386. Снова я испытал потрясение, изучая Pascal, работая в Norton Commander и осваивая среду гипертекстовой верстки документов LaTex.
Работая несколько лет в школе после окончания ВУЗа имел счастье наблюдать, как в кабинетах информатики БК 0010 постепенно сменяются новыми, на порядки более мощными комьютерами Pentium с графической ОС Windows и офисными программами "на борту". Но дети продолжают изучать на них Basic и Pascal...
По роду деятельности одним из первых в родном городе зашел в Internet и тут же понял, что за ним будущее. Стал заниматься созданием вебсайтов разработкой интернет-проектов, познакомился с Linux- основной ОС Интернета и Perl - тогда самым популярным языком программирования интернет-приложений.
На какой то период времени отошел от школьного образования. Примерно через 10 лет нашел время и желание организовать кружок по компьютерной астрономии в родной школе (ныне гимназии). Практически на моих глазах старые Pentium-ы и Celesron-ы в компьютерном классе благодаря президентскому гранту сменились на мощные двухядерные ноутбуки. В учебной программе уже присутствовали офисные пакеты и графичекские редакторы, основы работы в интернет и знакомство с HTML. Но старые Basic и Pascal также остались...
И вот на дворе уже второе десятилетие нового тысячилетия. Дочка доросла до уроков информатики. От нее я узнал, что в школах все-так же изучают основы работы в Windows и... программирование на Borland Pascal...
А тем временем, во всем мире дети младшего школьного возраста уже пишут программы под Андроид, создают интернет-сервисы на сверхпопулярном языке Python и управляют со смартфонов умными домами на базе Linux-devboard"s с SoC-процессорами...
Задавал вопросы представителям системы образования, в чем проблема застоя с внедрением обучения современным технологиям в школе? Односложного ответа на этот вопрос не услышал. Понял лишь одно, что из-за непопулярности среди продвинутой молодежи профессии учителя информатики, длительности процесса написания учебных программ и пособий, переобучения учительсого состава и переоборудования компьютерных классов, в ближайшем времени моему ребенку в школе ничего не светит, если... Если внедрением новых технологий хотя бы в качестве внеурочной, или олимпиадной работы не займутся энтузиасты. К моему счастью, я сам энтузиаст, и мой первый учитель информатики тоже из их числа. Только нужно помочь с чего-то начать...

Arduino vs Raspberry Pi


Погуглив немного, выяснил, что самым современным в последние пару лет направлением информационного образования во всем мире становитя физический компьютинг - основа технологии IoT (Интернет вещей). Эта тема стала бурно развиваться благодаря появлению недорогой, но достаточно мощной аппаратной платформы Raspberry Pi и связанной с ней инфраструктуры - огромного сообщества преподавателей и этнузиастов, бесчисленнного множества стартовых руководств и учебников, тысяч разработчиков различных библиотек, широкого ассортимента готовых расширений и датчиков. До Raspberry Pi в школьном образовании за рубежом активно продвигалась тема освоения основ кибернетики и физического компьютинга на базе микроконтроллеров Arduino. Благодаря этому для Arduino в настоящее время существует богатый выбор различных датчиков, позволяющим детям под присмотром взрослых, к примеру, конструировать роботизированные платформы, чтобы устраивать примитивные "гонки роботов". В принципе, тема Arduino актуальна и по сей день, но как начальная часть процесса обучения физическому компьютингу, программированию и кибернетике. Raspberry Pi - следующий, существенно более продвинутый, фактически, не ограниченный по возможностям уровень...

Понять, чем отличаются, по своему хороши Raspberry Pi и Arduino можно, сравнив их возможности.

Arduino - это не являющийся полноценным компьютером однозадачный одноядерный микроконтроллер с малым объемом оперативной памяти, невысокой вычислительной мощностью, отсудствием мультимедийных и сетевых возможностей, но низким энергопотреблением и высокой скоростью реакции в критичных к времени проектах. Для управления Arduino требуется компьютер, или ноутбук с USB-портом, что существенно увеличивает стартовый бюджет одного учебного места. Для программирования Arduino необходимо будет изучать C-подобный язык. Arduino достаточно для быстрой реакции на сигнал с датчика, например, чтобы повернуть в другую сторону колесо робота. Но управлять роботом через интернет и обрабатывать маршрут Arduino уже не сможет.

Raspberry Pi (v3 Model B) - полноценный 4-ядерный одноплатный компьютер с 1Гб оперативной памяти и возможностью подключения через USB внешних накопителей, работающий под управлением современной Linux-системы, обладающий продвинутыми мультимедийными (Open GL, HD-Video) и коммуникационными (WiFi, Bluetooth, Ethernet) возможностями. За некоторыми оговорками, Raspberry Pi может с успехом использоваться в качестве полноценного ученического/студенческого компьютера, на котором можно, помимо основной задачи- физического компьютинга, слушать музыку, смотреть HD-видео, заниматься вебсерфингом, работать с документами в офисных редакторах, читать электронные книги и т.п... И при этом, не считая монитора (в качестве которого может выступать обычный ЖК-телевизор с VGA/HDMI-разьемом), USB-клавиатуры и мыши, стоимость одного учебного места на базе Raspberry Pi начинается с 2,5 т.р. На Raspberry Pi можно изучать основы программирования на любых языках. По умолчанию на него предустановлены Python, Scratch и Node-RED, но ничего не мешает через удобный интерфейс Debian-репозитория программ установить LAMP c PHP, Ruby, Java и другие популярные среды разработки. Также на Raspberry Pi, как полноценный Linux-компьютер, можно установить массу полезных бесплатных и полезных для освоения программ, в том числе, вебсервер Apache-основу современного Интернета, среду 3D-проектирования Blender, графический редактор The Gimp, векторные редакторы Xara-X и Inkscape, издательскую систему Scribus. И в добавок, Raspberry Pi располагает интерфейсом GPIO для управления датчиками, изначально предназначенными для Arduino. Более того, если требуется мгновенная реакция на события и АЦП-преобразования сигнала, к Raspberry Pi можно подключить Arduino и управлять датчиками через него!
В итоге, Raspberry Pi представляет собой самый доступный по цене персональный компьютер для учащихся и одновременено развитую аппаратно-программную платформу для «Интернета Вещей».

1. Покупка стартового комплекта Raspberry Pi

Итак, разобравшись, что минуя этап Arduino стоит сразу начинать с Raspberry Pi, я пришел к решению о покупке стартового комплекта для первоначального знакомства, освоения основ работы и азов физического компьютинга на Python, чтобы затем продемонстрировать все это в школе и заинтересовать энтузастов-преподавателей, а также продвинутых учащихся. Таким образом и началась моя эпопея с Raspberry Pi.

К счастью для россиян, все модели Raspberry Pi, включая самую совершенную v3 Model B, а также необходимые компоненты к ней можно заказать с доставкой на aliexpress.com.

По минимуму можно заказать только саму плату Raspberry Pi 3 Модель B с доставкой по цене 2200р. Для начала работы вам понадобится блок питания (зарядник для сотового/планшета) с miniUSB-разъемом, дающим на выходе ток 1А-1,5А, ЖК-монитор или телевизор с HDMI-разъемом, USB-клавиатура и мышь.

Я решил добавить 1,2 т.р. и купить необходимый набор компонент, с которым Raspberry Pi станет более удобным, производительным, совместимым и эффективным. Прежде всего, стоит купить комплект радиаторов для отвода тепла от SoC-процессора и памяти, чтобы они не перегревались на сложных задачах и не снижали производительность системы последовательным отключением ядер процессора и снижением тактовой частоты.
Также очень рекомендуется купить какой либо недорогой корпус, чтобы избежать неудобств и защитить детей от неприятностей. Я взял оригинальный корпус Модель R1 бело-малинового цвета.
Для начала освоения основ физического компьютинга вместе с Raspberry Pi сразу стоит заказать стартовый комплект датчиков и монтажную плату с шлейфом для интерфейса GPIO, которые не купишь в местных магазинах. На aliexpress.com существую готовые комплекты, состоящие из датчиков, монтажной платы со шлейфом и переходником, соединительных проводов, светодиодов, кнопок и резисторов. Но они показались мне немного дороговатыми... Поэтому, я взял почти все по отдельности, а светодиоды, кнопки и резисторы решил купить в ближайшем радиоларьке.

Мой список покупок через интернет:
1. Raspberry Pi 3 Модель B с блоком питания на 2,5А и двумя радиаторами для процессора и памяти - 2412р.
2. bredaboard с 40-жильным кабелем и переходником - 282р.
3. HDMI2VGA переходник - 233р.
4. Корпус, модель R1 - 280р.
5. Стартовый комплект из 16 датчиков - 510р.
6. Комплект соединительных проводов - 186р.
Итого : 3900р. (по ценам на февраль 2017г. при курсе рубля 57,70)

После примерно месяца ожидания все заказанные компоненты прибыли в целости и сохранности.

2. Подготовка Raspberry Pi к работе


До первого включения Raspberry Pi необходимо сделать несколько обязательных процедур. Внимание! Перед тем, как достать плату из антистатического пакета, обязательно снимите статическое электричество с рук, прикоснувшись к водопроводному крану или оголенному участку батареи отопления, иначем можете сжечь чувствительную электронику.
Сперва нужно наклеить радиаторы на процессор и микросхему памяти. Это не сложно: сначала отклеиваем защитную пленку с радиатора, затем аккуратно располагаем его над микросхемой, соответствующей ему по размеру и без усилия опускаем на нее радиатор. Сильно прижимать радиатор к микросхеме не надо, он и так будет хорошо держаться.
Затем нужно собрать из частей корпус и поместить в него плату. При сборке корпуса верхнюю крышку и сторону с вырезами под USB-разъемы устанавливаем после вставки (с некоторым усилием) в пазы платы Raspberry Pi.

3. Установка ОС Rasbian

Поскольку Raspberry Pi по умолчанию поставляется без предустановленной операционной системы и собственного носителя информации, его нужно будет купить, а систему скачать и самостоятельно установить.
В качестве системного диска Raspberry Pi на используется microSD-карта минимум 6 класса (скорость записи 6Мб/сек) объемом не менее 8Мб. В интернете советовали сразу покупать карту 10 класса, чтобы избежать возможных проблем с установкой ОС и работой Raspberry Pi.
В ближайшем компьютерном ларьке я купил microSD-карту 10 класса марки Sundisk объемом 8Гб.
Затем я скачал операционную систему Raspbian (на основе Debian Jessie) по адресу https://www.raspberrypi.org/downloads/raspbian/ . Выбирайте Raspbian Jessie with PIXEL - это дистрибутив с графическим интерфейсом и комплектом программ для начала продуктивной работы.
Как выяснилось, скачанный образ при распаковке из архива разворачивается до 4Гб и на диске с файловой системой FAT32 из-за ограничений на максимальный размер одиночных файлов записан быть не может.
Пришлось подключить внешний USB-диск с ФС NTFS и распаковать образ Raspbian ОС на него.
Для записи образа на SD-карту, потребовалось скачать программу Win32DiskImager по адресу и подключить microSD-карту к компьютеру через USB-кардридер.
Интерфейс программы до безобразия прост: в строке "Image File" надо указать на диске образ Raspbian ОС, в выпадающем списке "Device" выбрать microSD-карту и нажать кнопку "Write". Кстати, этой же программой время от времени стоит делать резервное копирование microSD-карты, вставив ее в кардридер, выбрав путь сохранения образа в поле "Image File", задав в выпадающем списке Device имя диска, под которым определиась microSD-картаи выбрав команду "Read".

4. Первый запуск


После успешного завершения процесса записи, вставляем microSD-карту в соответствующий разъем кардридера на Raspberry Pi, подключаем через HDMI-кабель, или HDMI2VGA переходник монитор, подключаем к нижним USB-разъемам клавиатуру и мышь, и только после этого подсоединяем блок питания. Поскольку Raspberry Pi не имее кнопки включения питания, подсоединение/отсоединение блока питания включает и выключает устройство. На всякий случай заранее напишу, что перед обесточиванием на Raspberry Pi желательно корректно завершить работу ОС, чтобы не возникали ошибки при последующем запуске.
К моему глубокому сожалению и ужасу, после подключения питания к Raspberry Pi на мониторе не загорелась заставка графической оболочки Pixel, а выскочила тирада из текстовых "ругательств", завершившаяся строкой "kernel panic" с номером ошибки.
Погуглив на смартфоне, я тут же выяснил, что, повидимому, Raspberry Pi не нравится моя microSD-карта (как позже выяснилось, скорости чтения/записи не достаточно для нормальной работы ОС Raspbian). Во время повторной записи образа ОС Raspbian на SD-карту я заметил, что скорость записи не привышает 4Мб/сек (соответствует 4-му классу SD-карты).
При повторном включении Raspberry Pi со злополучной картой я снова увидел "kernel panic". Пришлось сходить в ларек и поменять ее после некоторых объяснений на менее "брендовую" Prestigio microSDHC 8Гб 10 класса (U1). На "свежекупленную" microSD-карту образ ОС записался в два раза быстрее со скоростью примерно 9,5Мб/сек. При включении с ней Raspberry Pi тут же отобразила приветственное окно и через несколько секунд загрузки я с радостью увидел на дисплее интерфейс X-Windows с красивой заставкой в виде пустынной дороги, уходящей в сторону восходящего солнца.
По-видимому, карта Sundisk оказалась поддельной...

5. Знакомство с Debian Linux, первичная настройка Raspbian ОС, установка полезных программ


Вооружившись парочкой руководств на русском и английском языке, скачанных с различных гик-ресурсов, решил посвятить вечер выходного дня на первичную настройку удобной рабочей среды на Raspbian ОС.

Прежде всего, стоит сказать несколько слов о консоли Debian Linux. Она доступна по кнопке LXTerminal на верхней панели интерфейса Raspbian ОС.
В Linux-консоли вводятся команды для управления ОС, установки, запуска и удаления программ, внесения ручных правок в настройки самой ОС и ее отдельных компонентов. Для успешного запуска большинства команд требуется уровень доступа администратора (root-доступ). Для этого нужно перед командой вводить "sudo ".
Некоторые операции в Raspbian ОС доступны только из консоли.
Прежде всего, это доступ к программе настройки системы raspi_config. Именно в ней производится первичная настройка Raspbian ОС.
Для запуска программы настройки системы надо открыть LXTerminal и ввести в консоли команду:
sudo raspi-config

Первым делом, надо выбрать команду "Expand Filesystem", чтобы расширить файловую систему ОС на все доступное пространство microSD-карты.
Затем обязательно стоит поменять пароль root по умолчанию на доступ к системе через консоль и по SSH командой "Change User Password". Из косоли это далается командой "sudo passwd root".
Затем стоит запустить SSH-сервер для того, чтобы иметь возможность заходить на Raspberry Pi по терминальному протоколу SSH с другого ПК командой "SSH" в окне "Advanced Options".

Очень важно сразу поменять локаль (язык интерфейса) на русский и добавить русскую раскладку клавиатуры.
Это осуществляется в окне "Internationalisation Options". Смена локали осуществляется по команде "Change locale".
Надо выбрать локаль ru_RU.UTF-8 UTF-8. Смена раскладки клавиатуры производится по команде "Change keyboard layout". Далее придется в новом окне выбрать нужную раскладку (ru_RU.UTF-8), в следующем окне задать горячие клавиши смены раскладки, каждый раз подтверждая выбранные действия переходом кнопкой "Tab" клавиатуры на кнопку "Enter" окна программ и нажатием "Enter" на клавиатуре.
Стоит также в окне "Advanced options" перейти на пункт меню "Audio" и выбрать в новом окне варинат вывода звука по умолчанию на внутренний разъем 3.5mm jack, чтобы слушать звук в наушниках, подключенных к стандартному звуковому разъему Raspberry Pi.
После завершения настроек выбираем кнопку "Finish" и соглашаемся на перезагрузку системы.

Следующим этапом настройки Raspbian ОС рекомендуется выполнить обновление ее базы программ и установленных компонент.
Для этого последовательно введем в консоли следующие команды, дожидаясь окончания выполнения каждой из них до появления зеленого приглашения ввода консоли.
Обновление базы программ:
apt-get update
Обновление установленных программ
sudo apt-get upgrade
Удаления оставшихся после удаления программ библиотек, сопутствующих программ и др.
sudo apt-get autoremove
Выполнение второй команды обычно занимает 10-15 минут.
Вспоминая прежний опыт работы в Linux, поспешил установить файловый менеджер Midnight Commander.
sudo apt-get install mc
Без него перемещаться по структуре папок системы командой "cd" получается медленно и не удобно.

На всякий случай, у новичка всегда должна быть под рукой шаргалка по базовым командам Unix...

Ctrl+C - выход из открытой консольной программы (если не предусмотрено других клавиш)
Shift+Ins - вставить текст в консоль
Ctrl+Ins - копировать выделенный текст из консоли
sudo - ставится перед командой и выполняет ее с правами пользователя root
- выключение
sudo shutdown -h now - немедленная остановка системы и запуск процесса выключения
sudo shutdown -h 21:55 - остановка системы и выключение в 21:55
sudo shutdown -h now — выключение Raspberry Pi
sudo su - открыть командную строку с правами root
sudo -i - открыть командную строку с правами root
sudo cp - копирование файла (с ключом -r рекурсивное копирование)
sudo mv - перемещение файла
cat - вывод содержимого файла/файлов
cd — Переход в нужную папку. Например cd /home/pi
chmod - изменения прав на использование файла; u (означает пользователя, который владеет этим файлом), g (группа файлов) и o (другие пользователи), а также r (считывание), w (запись) и x (выполнение)
chmod u+x - устанавливает разрешение владельцу файла на его исполнение
sudo chown pi:root - смена пользователя и/или группы пользователей, которые владеют этим файлом, например пользователя на pi, а группу на root.
dir - покажет содержимое текущей папки
pwd - покажет ваше текущее расположении
date - покажет время и дату
cal - покажет календарь на текущий месяц
cal -y - покажет календарь на текущий год
wget - скачать файл в текущую директорию. Например wget http://mysite.com/myfile.deb
sudo apt-get update - обновит список пакетов с репозитария
sudo apt-get upgrade - обновит установленные пакеты
sudo apt-get install <название> - установка программы <название> из Debian-репозитория
sudo apt-get remove <название> - удаление программы <название>
info <название> -вывод информации о программе
apt-cache search <запрос> - поиск по базе Debian-репозитория программы или утилиты с описанием <запрос>
apt-cache search screen capture - поиск программ для создания скриншотов
sudo apt-get install mc - установка файлменеджера Midnight Commander (Mc)
sudo apt-get install links - установка текстового браузера Links
udo apt-get install scrot - установка утилиты для скриншотов
scrot -d5 - создание скриншота черех 5 секунд
sudo apt-get install synaptic - установка менежера пакетов Synaptic
sudo apt-get install x11vnc - установка VNC-сервера
x11vnc -desktop:0 - запуск VNC-сервера для удаленного управления через VNC-клиент, например realVNC (http://www.realvnc.com/download/viewer/)
top - запуск диспетчера задач
sudo nano - редактирование файла
sudo nano /boot/config.txt - редактирование файла настроек запуска Raspberry Pi
ifconfig — утилита конфигурирования сетевых интерфейсов
iwconfig - просмотр информации о беспроводных устройствах
sudo iwlist wlan0 scan — сканирование Wi-Fi
cat /proc/cpuinfo — смотрим инфо о процессоре
cat /proc/meminfo — отображает подробную информацию о памяти Raspberry Pi
cat /proc/partitions — показывает размер и количество разделов на Вашей карте SD или HDD
cat /sys/devices/system/cpu/cpu0/cpufreq/sca ling_cur_freq — информация о частоте процессора
<имя_программы> --help — отбражение помощи по программе
vcgencmd measure_temp - покажет температуру процессора
free -o -h - покажет, сколько свободной системной памяти доступно
vcgencmd get_mem arm && vcgencmd get_mem gpu — покажет распределение памяти между процессором и GPU
lsusb - список подключенных устройствах
mkdir newDir - создание директории newDir
rmdir oldDir - удаление пустой директории oldDir
rm <имя_файла> - удаление файла/папки (с ключем -r рекурсивное удаление содержимого папки)
& - запускает команду в фоновом режиме
curl - загружает файл либо с сервера, либо на него
grep "паттерн" *.txt - поиск в файлах по маске и заданному паттерну
ping <имя_сервера> - провера доступности сервера
df -h - свободное и занятое дисковое пространство на подключенных устройствах
scp myfile.txt [email protected]: - копирование файла myfile.txt на устройство [email protected] по SSH в папку /home/pi/
scp [email protected]:myfile.txt . - копирование файла myfile.txt с устройства [email protected] в текущую папку по SSH
scp *.txt [email protected]: - копирование всех текстовых файлов с устройства [email protected] в текущую папку по SSH
dd if=/dev/sdd of=backup.img - создание бэкап-образа SD-карты или USB-носителя (/dev/sdd)
dd if=/dev/sda of=/dev/sdb bs=4096 - побайтное копирование данных с устройства на устройство (dd if=/dev/zero of=/dev/sda bs=4k - очистка диска sda)
dd if=myfile of=myfile conv=ucase - прообразование файла в верхний регистр
dd if=myfile of=myfile conv=lcase - прообразование файла в нижний регистр
ls -l | dd conv=ucase - преобразует вывод команды в верхний регистр
apt-mark showauto > autopackagelist.txt - создание списка предустановленных приложений
apt-mark showmanual > manualpackagelist.txt - создание списка установленных вручную приложений

6. Тестирование Raspberry Pi в качестве десктопа

Итак, через полчаса настроек и обновлений Raspberry Pi готов к работе. Что мы имеем "на борту" по умолчанию?
Помимо средств разработки программ, на Raspberry ОС установлен базовый комплект необходимых приложений.
Для работы с документами предустановлены пакет Libre Office и средство просмотра PDF. Для продуктивной работы в интернет с Raspberry ОС поставляется броузер Chromium и почтовый клиент Claws Mail. Для удаленного управления с десктопа и мобильных устройств на Raspberry Pi установлен VNC Connect.
К сожалению, по умолчанию система не содержит медиаплеера с графическим интерфейсом для воспроизведения видео и аудио, но с консоли воспроизведение мультимедийных файлов можно запустить через программу omxplayer, поддерживающую аппаратное ускорение видео в полноэкранном режиме.
В системе имеется графический файловый менеджер Xfce, позволяющий перемещаться по папкам при помощи мышки, осуществлять файловые операции, открывать документы двойным кликом мышки. Как показала практика, по удобству и принципам работы он практически ничем не отличается от привычного нам Проводника.
Открытие меню и переход по папкам в интерфейсе Raspbian ОС осуществляется на удивление быстро, поживее, чем на моем стареньком двухядерном Celeron-е.
После инвентаризации установленного ПО любопытство подтолкнуло проверить скорость работы на Raspberry Pi в Интернет. Открыл в Chromium и первым делом зашел на родной портал cheboksary.ru: страницы открываются быстро и без тормозов. Во второй вкладке открыл соцсеть ВК. Стал прокручивать свою ленту при помощи колесика мышки - неприятных задержек подгрузки не заметил. Лента соцсети скроллится в броузере плавно, без рывков. В третьей вкладке открыл Youtube, а в нем - популярный видеоклип. Видео воспроизводится без задержек и рывков с достаточно хорошим разрешением и достаточно качественным звуком. Развернул видео на полный экран - воспроизведение продолжилось без рывков. Заметил единственный момент - немного заторможенную реакцию на клики мышкой по интерфейсу воспроизведения видео. Можно сказать, что тест на производительность работы в интернет Raspberry Pi прошел.
Проверил скорость рендеринга страниц электронной книги во встроенном в систему PDF-просмотрщике Xpdf. Для этого решил воткнуть в USB-разъем "флешку" и... система сразу ее распознала, открыв через пару секунд окно файлменеджера на папке /media/pi/usb/ с содержимым моего сменного носителя! Приятный сюрприз - в Raspbian ОС реализовано автомонтирование USB-drive! Как выяснилось позже, для демонтирования "флешки" перед отсоединением надо нажать на стрелочку в правом верхнем углу экрана и выбрать ее из списка.
Быстро выбрав нужный PDF-файл, просто кликнул по нему и увидел содержимое в окне просмотрщика. При скроллинге страницы электронной книги рендерились с задержкой примерно в одну секунду, что можно считать вполне приемлемым результатом. Единственный неприятный момент - просмотрщик не смог отобразить русские буквы в оглавлении книги.
Чтобы проверить воспроизведение музыки и видео с "флешки", решил не пользоваться консолью и установил для этого графическую оболочку на Python для системного проигрывателя omxplayer. Конечно, tk-интерфейс оболочки не блещет красотой и дизайном, но все-таки позволяет при помощи мышки выбрать нужные файлы и создавать плей-листы. Хотя в сети писали, что в окне на Raspberry Pi видео с аппаратным ускорением не воспроизводится, как оказалось, через omxplayerGUI это вполне возможно! Видео выводилось на экране с исходным разрешением в окне без рамки, но позволяло перетаскивать окно, причем, без остановки воспроизведения.
Одним словом, интернет на Raspberry Pi работает без ограничений, музыка и видео воспроизводятся, флешки автомонтируются, офисные документы редактируются, фотографии показываются. Что еще нужно для продуктивной работы?

Мне давно хотелось разбудить в себе композитора и начать творить свою собственную электронную музыку. Однако я был (мягко говоря) обескуражен высокими ценами на MIDI контроллеры. Но порыскав по просторам интернета у меня появилась задумка создать собственный контроллер, используя для этого Arduino Uno и токопропроводящие краски!

Давайте начнём)

Шаг 1: Подбор деталей

Вы можете слегка отойти от изложенного материала и собранный вами MIDI контроллер все равно будет работать (под «слегка отойти» имею ввиду, что можете установить резистора с чуть-чуть другим номиналом или оставить один из выводов отключенным).

С электроники нам понадобится:

  • 1 Arduino Uno с usb кабелем;

  • 1 баночка токопроводящей краски;

  • 1 монтажная плата размерами 5×7 см;

  • 3 кнопки;

  • резисторы с сопротивлением 2.2 кОм;

  • 1 светодиод;

  • резисторы с сопротивлением 10кОм;

  • 1 LDR сенсор;

  • резисторы с сопротивлением 4.7кОм;

  • 1 перемычка;

  • 12 шт 2.7 MОм резисторов;

  • 30 прямых штырей;

  • 12 согнутых штырей;

  • 12 переходников;

  • 12 скрепок.

Кроме электроники, также потребуются следующие инструменты:

  • Паяльник и припой;
  • Кусачки;
  • Подставка для пайки деталей (третья рука);
  • Мультиметр;
  • Несколько проводов и/или тонкая металлическая проволока.

Шаг 2: Припаиваем штыри

Создание платы начнём с припаивания штырей. Разместим согнутые штырьки в центре первого ряда на плате. Они в последующем будут служить «чувствительными» выводами, к которым будет подсоединяться клавиатура.

После установки штырей, обратите внимание – короткие выводы торчат из платы. Надавливаем на них, чтобы всё зашло заподлицо. Теперь припаиваем их и сразу проверяем места соединений на предмет короткого замыкания.

Примечание: Не припаивайте штырьки слишком долго, иначе они разогреются и расплавят пластик.

Для следующего этапа, расположим прямые гребёнки в слотах Arduino . Установимповерх штырей, что вставлены в Arduino, плату. Данное действие потребовало приложения небольшого усилия, поскольку штыри не идеально отцентрованы относительно отверстий платы.

После того, как успешно установили плату на штырях, убедитесь, что выводы находятся заподлицо с верхним краем платы. После чего их можно запаять.

Шаг 3: Напаиваем перемычки

Теперь удалим плату с Arduino и перевернём её на обратную сторону. Напаяем перемычки, на которые в дальнейшем будут крепится компоненты. Есть два способа сделать это:

  • Заполнить все необходимые отверстия припоем, а после соединить их друг с другом.
  • Использовать тонкую проволоку.

Советую использовать второй метод, поскольку он проще и быстрее. Если вы выберете этот метод, расположите проволоку на плате, как на изображении.

  • Красная точка означает — припаиваем провод в отверстие.
  • Желтая точка — соединяем тонкую проволоку со штырём на другой стороне платы (как на третьем изображении).

Как вы можете видеть, немного испортил нижний левый угол, когда нанёс слишком много припоя, поэтому будьте внимательны!

Совет: Если у вас нет тонкой проволоки, используйте обрезки выводов используемых резисторов.

Шаг 4: Припаиваем сенсорно-ёмкостные резисторы

Устанавливаем компоненты, а именно 2.7 MОм резисторы , которые будут выполнять сенсорно-ёмкостные функции.

Примечание: Если вы хотите узнать больше о теоретических основах и практическом применении сенсорно-ёмкостных датчиков, советую ознакомится со следующими ссылками:

Расположим один 2.7 MОм резистор снизу самого правого согнутого штыря и протолкнём ножки через отверстия (как на первом изображении). Теперь перевернём плату и протолкнём один вывод резистора обратно в следующее отверстие (как показано на втором изображении). Припаяем нижнюю ногу резистора к отверстию, а верхнюю ногу резистора к выводу штыря. После чего прикрепим 7 cm провод на этот штырь (как видно с третьего изображения).

Повторим процесс со всеми резисторами и проводами, припаяв их на места. Нижнее ножки резисторов должны сформировать одно длинное соединение.

Совет : Выбирайте чередующееся цвета для проводов — это позволит проще производить соединение в последующих шагах.

Шаг 5: Припаиваем кнопки

Начнём с размещения кнопок и резисторов на плате, как на первом и втором изображениях. В моём случае использовал 2.2 кОм резисторы , но можно использовать любой резистор со значением между 2кОм и 10кОм.

Перевернём плату и припаяем всё на свои места. Изображение 3 объясняет, какие различные соединения вам нужно будет сделать:

  • синяя точка – обозначает ножку кнопки, что необходимо припаять на плату;
  • розовaя точка – обозначает ножку резистора, которую необходимо припаять на плату;
  • красная линия означает — вам следует спаять две точки в одно соединение;
  • чёрная линия обозначает провод, что будет идти от одной ножки кнопки через отверстие в плате, что потом соединится со штырём на другой стороне.

Если всё спаяно правильно, две самые левые кнопки позволят изменять октавы , в то время как самая правая кнопка позволит включать LDR сенсор.

Шаг 6: Припаиваем LDR и LED

После того, как кнопки припаяны, продолжаем монтаж LDR, LED и соответствующих резисторов. Перед тем, как сделать это, будет мудро поэкспериментировать со значениями номиналов резисторов, что будут идти к LED. Возможно мой номинал слишком большой для включения вашего светодиода. Поэкспериментируйте немного, чтобы найти правильное значение резистора.

Совет: Любой резистор в интервале между 330 Ом и 5 кОм будет хорошим решением для 5 mm LED.

Теперь расположим LED, LDR и резисторы (4.7 K для LDR ) в нужных местах. Перевернём плату и припаяем всё. Третье изображение пояснит, какие различные соединения следует выполнить:

  • коричневые точки – выводы LDR, что следует припаять на плату;
  • розовая точка – ножка резистора, что следует припаять на плату;
  • оранжевые точки – выводы LED, что необходимо припаять на плату;
  • красная полоса – вам нужно спаять две точки в одно соединение;
  • чёрная полоса – провод, что будет идти от вывода резистора через отверстие платы, что потом будет соединяться со штырём.

Примечание: Перед припаиванием LED, убедитесь в том, что полярность светодиода верная. Положительный вывод LED следует соединить с резистором, а отрицательный вывод с землей.

Шаг 7: Тестируем все соединения

Сейчас хорошее время протестировать удачно ли пропаяны соединения кнопок, LDR и LED. Это последняя возможность исправить ошибки, советую вам загрузить прикрепленный код и запустить программу. и загрузите Arduino_Test_Fixture_Code на плату Arduino.

Если всё удачно и тест завершён, можете двигаться к следующему шагу. Если нет, еще раз проверьте пропаянные соединения на плате. Мультиметр лучше держать под рукой, говорю это по своему личному горькому опыту.

Шаг 8: Завершение работы с платой

Начнём с монтажа проводов в отверстия, как видно с первого изображения. В этом шаге удобно использовать два провода разных цветов.

Перевернём плату и отрежем провода нужной длины. Припаяем их к штырям, что заходят в разъемы Arduino. Прежде чем начать использовать MIDI контроллер, сначала нужно протестировать его соединения с помощью тестового скетча . Загрузите скетч, откройте последовательный порт и прикоснитесь к «чувствительным» штырям на плате. Если вы увидите текст ‘Note x is active’ для каждого штыря, во время касания, все выводы работают корректно.

Шаг 9: Преобразуем Arduino в MIDI устройство

После того, как плата готова, пришло время преобразовать Arduino в MIDI контроллер, который будет распознаваться музыкальными программами, такими как Ableton и Fl Studio или даже другими MIDI устройствами. Процесс состоит из двух шагов:

  1. Изменить текущие встроенные программы на Arduino Uno на MIDI совместимые программы;
  2. Загрузить MIDI скетч на Arduino.

Начнём с первого пункта. По условию в Arduino загружена прошивка usb-последовательный порт , что позволяет Arduino обмениваться сообщениями с ПК и Arduino IDE. С новой программой DualMoco , добавиться второй режим, что позволит Arduino выступать в роли MIDI устройства .

Будем использовать программу FLIP и следуя инструкции изменим прошивку Arduino. Работоспособный файл вы найдете в архиве в папке Firmware — файл DualMoco.hex.

После загрузки новой прошивки, переподключите Arduino к ПК. Если всё пройдёт успешно, Arduino не должен будет обнаруживаться Arduino IDE, потому что новая программа находится в режиме (MIDI mode ). Откройте музыкальную программу, что способна записывать MIDI и проверьте, чтобы Arduino с именем MIDI / MOCO for LUFA отображалась над MIDI настройками, как вы можете видеть на 1-ом изображении.

Шаг 10: Производим последнее приготовления

Особенность DualMoco в том, что у неё есть второй режим — usb-последовательный порт , что позволяет загружать скетчи с Arduino IDE, точно также, как при обычной прошивке. Чтобы перевести Arduino во второй режим, соедините два ISCP вывода вместе, как показано на 1 и 2 изображении. Вы можете либо использовать кусочек провода или маленькую перемычку, как показано на изображениях. Теперь отключите USB кабель на несколько секунд от Arduino и переподключите его, Arduino должен обнаружится в Arduino IDE.

Примечание: Когда вы захотите переключится из режима usb- последовательный порт в MIDI режим, удалите перемычку с ISCP выводов, как показано на третьем изображении и переподключите Arduino к ПК.

Пришло время загрузить действующий скетч в Arduino, Arduino_ Final_ Code . Скачайте его, переведите Arduino в usb последовательный порт режим и загрузите код. Если необходимо точная настройка пороговой величины, поэкспериментируйте со значениями THRESHOLD и RES . После того, как все заработает, как и ожидалось, поменяйте текущую строку 17, с:

boolean midiMode = false; // if midiMode = false, the Arduino will act as a usb-to-serial device

boolean midiMode = true; // if midiMode = true, the Arduino will act as a native MIDI device.

После того, как в код внесены последние изменения, пришло время протестировать музыкальную программу способную поддерживать MIDI устройства. Сначала переведём Arduino в MIDI режим, для этого:

  1. Загрузим финальный код в Arduino.
  2. Извлечем USB кабель с Arduino.
  3. Переключим Arduino в МIDI режим удалив перемычку с выводов ISCP.
  4. Установим USB кабель в Arduino.

Если всё прошло успешно, откройте музыкальную программу и начните прикасаться к штырькам. Магические звуки должны зазвучать….

Шаг 11: Припаиваем скрепки на джампепы

После того, как плата для Arduino полностью завершена, пришло время сфокусироваться на клавиатуре и способе её подключения к плате. Существуют миллионы вариантов сделать это, но я выбрал скрепки, которые будут закреплены на окрашенной бумаге (их легко закрепить и можно использовать повторно).

Процесс припайки скрепок к проводам довольно прост:

  1. Отрезаем штекер с одной стороны провода;
  2. Зачищаем провод от изоляции на 5 мм;
  3. Припаиваем зачищенный провод к скрепке;
  4. Повторяем для всех 12 скрепок.

Примечание: Скрепки не должны быть покрыты никаким покрытием (краской или пластиком).

Шаг 12: Закрашиваем шаблон

Хотя и можно играть на Arduino MIDI клавиатуре только прикасаясь к скрепкам, гораздо интереснее, сделать свой собственный трафарет и использовать его. Раскрасил распечатанный шаблон. Шаблон находится в архиве с проектами.

Раскрашивание шаблона довольно простое занятие, только убедитесь в том, что оставляете пространство между линиями и используете соответствующие краски, иначе ничего работать не будет. После того, как краска высохнет, закрепите скрепки на «клавишах» и можете приступать творить музыку.

Спасибо за внимание!)

Midi - представляет собой специальный интерфейс, придуманный для обмена данными между музыкальными инструментами. В данном проекте мы будем подружим плату Arduino и midi интерфейс и будем передавать midi данные при помощи Arduino и обрабатывать данные на компьютере. Подключение Arduino к компьютеру мы будем осуществлять через mid-USB переходник. А обрабатывать данные через известную многим музыкантам программу FL studio.

Для начала давайте подключим Arduino к midi кабелю. Внешний вид midi-USB кабеля представлен на рисунке ниже. На данном кабеле есть 2 специальных разъема. Одни предназначен для ввода данных в компьютер а другой соответсвенно для вывода. Для подключения нам понадобиться всехо лишь один резистор номиналом в 2.2 кОм.

Внешний вид midi-USB кабеля

На переходнике имеются 2 индикатора для отображения процесса переданных или полученных данных. Если все подключенно и настроенно правильно то они будут моргать в такт передаваемым midi-данным.

Схема подключения Arduino к midi-USB кабелю

Для соединения используются 3 провода, один это собсвенно сами midi-данные, а другие это питание с Arduino. Плюсовой вывод подсоединяется через ограничивающий резистор. Не совсем понимаю зачем подводить напряжение, у меня к примеру работало все на одном проводе с данными. Провода с питанием скорее всего необходимы для подавления помех которые могут быть наведены в проводе с midi-данными.

Настройка программы FL studio для работы с внешними midi-данными

Для настройки программы необходимо зайти в настройки самой программы, выбрать вкладку midi и нажать кнопку сканировать midi устройства (Rescan MIDI devices). подключенный шнур должен сразу определиться.

Код программы на Arduino передающий midi-данные

void setup() { Serial.begin(31250); } void loop() { for (int note = 0x1E; note < 0x5A; note ++) { noteOn(0x90, note, 0x45); delay(100); noteOn(0x90, note, 0x00); delay(100); } } void noteOn(int cmd, int pitch, int velocity) { Serial.write(cmd); Serial.write(pitch); Serial.write(velocity); }

Первым делом необходимо настроить скорость передачи последовательного порта в методе setup(). Передача данных осуществляется через метод noteOn(), в теле которого при помощи метода write() поочередно записываються 3 байта информации.

После записи данной программы на Arduino и подключения midi-USB переходника, на нем сразу же должна заморгать лампочка INPUT, что говорит о том что все идет как надо и данные передаются. А в программе FL stuido должен сразу появиться звук. Ни каких настроек кроме сказанных выше делать не нужно.

В очередной раз играя на гитаре и управляя звуком через Peavey ReValver и прочие Amplitube, задумался о приобретении MIDI-контроллера. Фирменные устройства, вроде Guitar Rig Kontrol 3, стоят около 13 000 рублей, и обладают только напольным исполнением. То есть оперативно менять положения нескольких регуляторов весьма проблематично.

Различные контроллеры DJ направленности выглядели интереснее за счет обилия фейдеров и энкодеров. Решено было совместить приятное с полезным и сделать MIDI-контроллер самому.

Начальные требования: 2-7 фейдеров, столько же роторных потенциометров/энкодеров, около 10 кнопок, подключение по USB.

Далее стал выбирать компоненты. Arduino выбрал по причине наличия, в принципе можно использовать ту же ATmega32u4, STM, либо другой контроллер. Фейдеры и кнопки нашел в местном радиомагазине. Энкодер и потенциометры уже были когда-то куплены. Тумблеры нашел в гараже. Корпус решил изготовить из верхней крышки DVD плеера.

Комплектующие:

  • Arduino UNO R3 1 шт.
  • Фейдеры сп3-25а 5 шт.
  • Рот. потенциометры 3 шт.
  • Энкодер 1 шт.
  • Кнопки pbs-26b 16 шт.
  • Крышка от DVD 1 шт.
  • Тумблеры 2шт.

Сначала согнул корпус и пропилил в нем бормашиной отверстия под фейдеры:

Затем просверлил отверстия для тумблеров и рот. потенциометров, разметил положение кнопок. Так как сверла на 19 (да и соответствующего патрона для дрели) у меня не было, то отверстия для кнопок сверлил на 13, а затем увеличивал разверткой.

Основа готова, теперь можно думать, как подключать все это добро к Arduino. Во время изучения данного вопроса наткнулся на замечательный проект HIDUINO . Это прошивка для ATmega16u2 на борту Arduino, благодаря которой устройство определяется как USB-HID MIDI device. Нам остаётся только отправлять данные MIDI по UART со скоростью 31250 бод. Чтобы не захламлять исходники дефайнами с кодами MIDI событий, я воспользовался этой библиотекой .

Так как я использовал Arduino, то решил сделать шилд, к которому уже и будут подключаться вся периферия.
Схема шилда:

Как видно из схемы кнопки подключил по матричной схеме. Задействованы встроенные подтягивающие резисторы ATmega328, поэтому логика инверсная.

Инициализация кнопок

for(byte i = 0; i < COLS; i++){ //--Конфигурируем строки мтрчн клвтр как выходы pinMode(colPins[i], OUTPUT); //--подаём на них лог. 1 digitalWrite(colPins[i], HIGH); } for(byte i = 0; i < ROWS; i++){ //--Конфигурируем столбцы мтрчн клвтр как входы--------- pinMode(rowPins[i], INPUT); //--включаем встроенные в мк подтягивающие резисторы-- digitalWrite(rowPins[i], HIGH); }

Считывание значений

for(byte i = 0; i < COLS; i++) //-Цикл чтения матричной клавиатуры----- { digitalWrite(colPins[i], LOW); //--На считываемый столбец выставляем 0--- for(byte j = 0; j < ROWS; j++) //--Построчно считываем каждый столбец-- { //--И при нажатой кнопке передаём ноту-- dval=digitalRead(rowPins[j]); if (dval == LOW && buttonState[i][j] == HIGH) MIDI.sendNoteOn(kpdNote[j][i],127,1); if (dval == HIGH && buttonState[i][j] == LOW) MIDI.sendNoteOff(kpdNote[j][i],127,1); buttonState[i][j] = dval; } digitalWrite(colPins[i], HIGH); }




Забыл разместить на печатке диоды, пришлось подпаивать к кнопкам.

Потенциометры подключены через мультиплексор 4052b к вводам АЦП.

Считывание положений потенциометров

for(byte chn = 0; chn < 4; chn++) //-Цикл чтения значений потенциометров { set_mp_chn(chn); //--Задаём параметры мультиплексора val=analogRead(0) / 8; //--Считываем значение с канала X if (abs(val-PrVal) > 5) //--Если текущее значение отл. от прошлого { //--больше чем на 5, то посылаем новое значение MIDI.sendControlChange(chn,val,1); PrVal=val; } val=analogRead(1) / 8; //--Считываем значение с канала Y аналогично X if (abs(val-PrVal) > 5) { MIDI.sendControlChange(chn+4,val,1); PrVal=val; } }


Энкодер повесил на аппаратное прерывание.

Считывание энкодера

void enc() // Обработка энкодера { currenttime=millis(); if (abs(ltime-currenttime)>50) // антидребезг { b=digitalRead(4); if (b == HIGH && eval<=122) eval=eval+5; else if (b == LOW && eval>=5) eval=eval-5; MIDI.sendControlChange(9,eval,1); ltime = millis(); } }


Печатную плату развёл в Sprint layout, Затем изготовил старым добрым ЛУТ"ом с использованием самоклеющейся плёнки и хлорного железа. Качество пайки страдает от ужасного припоя.

Готовый шилд:



Для заливки прошивки в ATmega32u4 я кратковременно замыкал 2 пина ICSP, затем использовал Flip . В дальнейшем подключил к этим пинам кнопку.

Прошивка работает, осталось прикрутить стенки и лицевую панель. Так как я размечал все по месту, то на рисование панели времени ушло больше, чем на всё остальное. Выглядело это так:

  • 1. В качестве фона картинки выставлялась миллиметровка
  • 2. Размечались отверстия
  • 3. Полученное выводилось на печать
  • 4. Вырезались все отверстия
  • 5. Откручивались и снимались все элементы
  • 6. Устанавливалась панель, устанавливались на места все кнопки/потенциометры
  • 7. Отмечались несоответствия шаблона и корпуса
  • 8. Переход к пункту 2, пока все отверстия не совпадут
Панель изготовлена из миллиметрового ПЭТ, покрытого плёнкой с принтом и ламинированием, отверстия вырезались лазером по cdr файлу. У иркутских рекламщиков все это обошлось мне всего в 240 рублей.

Боковые стенки выпилил из фанеры.

Вид устройства на текущий момент:

Стоимость комплектующих:

  • Arduino UNO R3 320 р.
  • Фейдеры сп3-25а 5х9=45 р.
  • Рот. потенциометры + ручки 85 р.
  • Энкодер 15 р.
  • Кнопки pbs-26b 16х19=304 р.
  • Панель 240 р.
  • Мультиплексор 16 р.
  • Фанера, текстолит, тумблера, корпус от DVD - в моём случае бесплатно.
Итого: 1025 руб.

Контроллер справляется с возложенными на него задачами и рулит звуком практически в любой программе аудио обработки.

В планах покрыть фанеру морилкой и вырезать из оргстекла нижнюю крышку. Так же добавить порт расширения для подключения напольного контроллера.

Код для Arduino и печатка на гитхабе.



Загрузка...