sonyps4.ru

Где фонотека ютуба. На Youtube появилась фонотека с бесплатной музыкой

Дисциплина, изучающая способы использования организмов для решения технологических задач, - вот что такое биотехнология. А проще говоря, это наука, которая изучает живые организмы в поисках новых способов для обеспечения человеческих потребностей. Например, генная инженерия или клонирование - это новые дисциплины, которые используют с одинаковой активностью как организмы, так и новейшие компьютерные технологии.

Биотехнология: кратко

Очень часто понятие «биотехнология» путают с генной инженерией, возникшей в XX—XXI веках, а ведь биотехнология относится к более широкой специфике работы. Биотехнология специализируется на модификации растений и животных путем гибридизации и искусственного отбора для потребностей человека.

Эта дисциплина дала человечеству возможность улучшить качество пищевых продуктов, увеличить продолжительность жизни и продуктивность живых организмов - вот что такое биотехнология.

До 70-х годов прошлого века этот термин использовали исключительно в пищевой промышленности и сельском хозяйстве. И только в 1970 году ученые начали использовать термин «биотехнология» в лабораторных исследованиях, таких как выращивание живых организмов в пробирках или при создании рекомбинантных ДНК. Эта дисциплина базируется на таких науках, как генетика, биология, биохимия, эмбриология, а также на робототехнике, химических и информационных технологиях.

На основе новых научно-технологических подходов были разработаны методы биотехнологии, которые заключаются в двух основных позициях:

  • Крупномасштабном и глубинном культивировании биологических объектов в периодическом постоянном режиме.
  • Выращивании клеток и тканей в особых условиях.

Новые методы биотехнологии позволяют манипулировать генами, создавать новые организмы или менять свойства уже существующих живых клеток. Это дает возможность более обширно использовать потенциал организмов и облегчает хозяйственную деятельность человека.

История биотехнологии

Как бы это странно ни звучало, но свои истоки биотехнология берет с далекого прошлого, когда люди только начинали заниматься виноделием, хлебопечением и другими способами приготовления пищи. К примеру, биотехнологический процесс брожения, в котором активно участвовали микроорганизмы, был известен еще в древнем Вавилоне, где широко применялся.

Как науку, биотехнологию стали рассматривать только в начале XX века. Ее основоположником стал французский ученый, микробиолог Луи Пастер, а сам термин впервые ввел в обиход венгерский инженер Карл Эреки (1917 год). XX век был ознаменован бурным развитием молекулярной биологии и генетики, где активно применялись достижения химии и физики. Одним из ключевых этапов исследования стала разработка методов культивирования живых клеток. Изначально для промышленных целей начинали выращивать только грибы и бактерии, но спустя несколько десятилетий ученые могут создавать любые клетки, полностью управляя их развитием.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В это время предпринимаются первые попытки по налаживанию производства антибиотиков. Разрабатываются первые пищевые концентраты, контролируется уровень ферментов в продуктах животного и растительного происхождения. В 1940 году ученым удалось получить первый антибиотик - пенициллин. Это стало толчком к развитию промышленного производства лекарств, возникает целая отрасль фармацевтической промышленности, что представляет собой одну из ячеек современной биотехнологии.

Сегодня биотехнологии используются в пищевой промышленности, медицине, сельском хозяйстве и многих других сферах человеческой жизнедеятельности. Соответственно появилось множество новых научных направлений с приставкой «био».

Биоинженерия

На вопрос о том, что такое биотехнология, основная часть населения без сомнений ответит, что это не что иное, как генная инженерия. Отчасти это правда, но инженерия лишь часть обширной дисциплины биотехнологий.

Биоинженерия - это дисциплина, основная деятельность которой направлена на укрепление человеческого здоровья посредством объединения знаний из области инженерии, медицины, биологии и применения их на практике. Полное название этой дисциплины - биомедицинская инженерия. Главная ее специализация - решение медицинских проблем. Применение биотехнологий в медицине позволяет моделировать, разрабатывать и изучать новые субстанции, разрабатывать фармацевтические препараты и даже избавлять человека от врожденных заболеваний, что передаются по ДНК. Специалисты в этой области могут создавать приборы и оборудование для проведения новых процедур. Благодаря применению биотехнологий в медицине были разработаны искусственные суставы, кардиостимуляторы, протезы кожи, аппараты искусственного кровообращения. При помощи новых компьютерных технологий специалисты в области биоинженерии могут создавать белки с новыми свойствами при помощи компьютерного моделирования.

Биомедицина и фармакология

Развитие биотехнологий дало возможность по-новому посмотреть на медицину. Нарабатывая теоретическую базу о человеческом организме, специалисты в этой области имеют возможность использовать нанотехнологии для изменения биологических систем. Развитие биомедицины дало толчок для появления наномедицины, основная деятельность которой заключается в слежении, исправлении и конструировании живых систем на молекулярном уровне. К примеру, адресная доставка лекарств. Это не курьерская доставка от аптеки до дома, а передача препарата непосредственно к больной клетке организма.

Также развивается и биофармакология. Она изучает эффекты, которые оказывают вещества биологического или биотехнологического происхождения на организм. Исследования этой области знаний сосредоточены на изучении биофармацевтических препаратов и разработке способов для их создания. В биофармакологии лечебные средства получают из живых биологических систем или тканей организма.

Биоинформатика и бионика

Но биотехнологии - это не только учение о молекулах тканей и клеток живых организмов, это еще и применение компьютерных технологий. Таким образом, имеет место биоинформатика. Она включает в себя совокупность таких подходов, как:

  • Геномная биоинформатика. То есть методы компьютерного анализа, которые применяются в сравнительной геномике.
  • Структурная биоинформатика. Разработка компьютерных программ, которые предсказывают пространственную структуру белков.
  • Вычисление. Создание вычислительных методологий, которые могут управлять биологическими системами.

В этой дисциплине вместе с биологическими методами используются методы математики, статистических вычислений и информатики. Как в биологии используются приемы информатики и математики, так и в точных науках сегодня могут использовать учение об организации живых организмов. Как в бионике. Это прикладная наука, где в технических устройствах применяются принципы и структуры живой природы. Можно сказать, что это своеобразный симбиоз биологии и техники. Дисциплинарные подходы в бионике рассматривают с новой точки зрения как биологию, так и технику. Бионика рассматривала сходные и отличительные черты этих дисциплин. Эта дисциплина имеет три подвида - биологический, теоретический и технический. Биологическая бионика изучает процессы, которые происходят в биологических системах. Теоретическая бионика строит математические модели биосистем. А техническая бионика применяет наработки теоретической бионики для решения различных задач.

Как видно, достижения биотехнологий широко распространены в современной медицине и здравоохранении, но это лишь вершина айсберга. Как уже было сказано, биотехнология начала развиваться с того момента, как человек стал готовить себе пищу, а после широко применялась в сельском хозяйстве для выращивания новых селекционных культур и вывода новых пород домашних животных.

Клеточная инженерия

Одним из самых важных методов в биотехнологии является генная и клеточная инженерия, которые сосредоточены на создании новых клеток. С помощью этих инструментов человечество получило возможность создавать жизнеспособные клетки из совершенно разных элементов, принадлежащих различным видам. Таким образом, создается новый не существующий в природе набор генов. Генная инженерия дает возможность человеку получить желаемые качества от модифицированных клеток растений или животных.

Особенно ценятся достижения генной инженерии в сельском хозяйстве. Это позволяет выращивать растения (или животных) с улучшенными качествами, так называемые селекционные виды. Селекционная деятельность основана на отборе животных или растений с ярко выраженными благоприятными признаками. После эти организмы скрещивают и получают гибрид с требуемой комбинацией полезных признаков. Конечно, на словах все звучит просто, но получить искомый гибрид достаточно сложно. В реальности можно получить организм только с одним или несколькими полезными генами. То есть к исходному материалу добавляется лишь несколько дополнительных качеств, но даже это позволило сделать огромный шаг в развитии сельского хозяйства.

Селекция и биотехнологии дали возможность фермерам повысить урожайность, сделать плоды более крупными, вкусными, а главное, стойкими к морозам. Не обходит селекция стороной и животноводческую сферу деятельности. С каждым годом появляются новые породы домашних животных, которые могут давать больше поголовья и продуктов питания.

Достижения

В создании селекционных растений ученые выделяют три волны:

  1. Конец 80-х годов. Тогда ученые впервые начали выводить растения, устойчивые к вирусам. Для этого они брали один ген у видов, которые могли противостоять заболеваниям, «пересаживали» его в ДНК-структуру других растений и заставляли «работать».
  2. Начало 2000-х годов. В этот период начали создаваться растения с новыми потребительскими свойствами. Например, с повышенным содержанием масел, витаминов и т. д.
  3. Наши дни. В ближайшие 10 лет ученые планируют выпустить на рынок растения-вакцины, растения-лекарства и растения-биорекаткоры, которые будут производить компоненты для пластика, красителей и т. д.

Даже в животноводстве перспективы биотехнологии поражают. Уже давно создаются животные, которые имеют трансгенный ген, то есть обладают каким-либо функциональным гормоном, например гормон роста. Но это были лишь начальные эксперименты. В результате исследований были выведены трансгенные козы, которые могут вырабатывать белок, который останавливает кровотечение у больных, страдающих плохой свертываемостью крови.

В конце 90-х годов прошлого века американские ученые вплотную занялись клонированием клеток эмбрионов животных. Это позволило бы выращивать скот в пробирках, но сейчас этот метод все еще нуждается в доработке. Зато в ксенотрансплантации (пересадка органов одних видов животным другим) ученые в области прикладной биотехнологии достигли существенного прогресса. К примеру, в качестве доноров можно использовать свиней с геномом человека, тогда наблюдается минимальный риск отторжения.

Пищевая биотехнология

Как уже было упомянуто, первоначально методы биотехнологических исследований стали применять в пищевом производстве. Йогурты, закваски, пиво, вино, хлебобулочные изделия - это продукты, полученные при помощи пищевой биотехнологии. Этот сегмент исследования включает в себя процессы, направленные на изменение, улучшение или создание конкретных характеристик живых организмов, в частности бактерий. Специалисты этой области знаний занимаются разработкой новых методик по изготовлению различных продуктов питания. Ищут и улучшают механизмы и методы их приготовления.

Еда, которую человек ест каждый день, должна быть насыщена витаминами, минералами и аминокислотами. Однако по состоянию на сегодняшний день, согласно данным ООН, существует проблема обеспечения человека продуктами питания. Почти половина населения не имеет должного количества пищи, 500 миллионов голодают, четверть населения планеты питаются недостаточно качественными продуктами.

Сегодня на планете проживает 7,5 миллиарда человек, и если не принимать необходимых действий по повышению качества и количества продуктов питания, если этим не заниматься, то люди в развивающихся странах станут страдать от губительных последствий. И если можно заменить липиды, минералы, витамины, антиоксиданты продуктами пищевой биотехнологии, то заменить белок практически невозможно. Более 14 миллионов тонн белка каждый год не хватает, чтобы обеспечить потребности человечества. Но здесь на помощь приходят биотехнологии. Современное белковое производство строится на том, что искусственно формируются белковые волокна. Их пропитывают необходимыми веществами, придают форму, соответствующий цвет и запах. Этот подход дает возможность заменить практически любой белок. А вкус и вид ничем не отличаются от естественного продукта.

Клонирование

Важной областью знаний в современных биотехнологиях является клонирование. Вот уже на протяжении нескольких десятилетий ученые пытаются создать идентичных потомков, не прибегая к половому размножению. В процессе клонирования должен получиться организм, который похож на родительский не только внешне, но и генной информацией.

В природе процесс клонирования распространен среди некоторых живых организмов. Если у человека рождаются однояйцевые близнецы, то их можно считать естественными клонами.

Впервые клонирование провели в 1997 году, когда искусственно создали овцу Долли. И уже в конце ХХ века ученые стали говорить о возможности клонирования человека. Кроме того, исследовалось такое понятие, как частичное клонирование. То есть можно воссоздавать не целый организм, а его отдельные части или ткани. Если усовершенствовать этот метод, то можно получить «идеального донора». Кроме того, клонирование поможет сохранить редкие виды животных или восстановить исчезнувшие популяции.

Моральный аспект

Несмотря на то что основы биотехнологии могут оказать решающее влияние на развитие всего человечества, о таком научном подходе плохо отзывается общественность. Подавляющая часть современных религиозных деятелей (да и некоторые ученые) пытаются предостеречь биотехнологов от чрезмерного увлечения своими исследованиями. Особенно остро это касается вопросов генной инженерии, клонирования и искусственного размножения.

С одной стороны, биотехнологии представляются яркой звездой, мечтой и надеждой, которые станут реальными в новом мире. В будущем эта наука подарит человечеству множество новых возможностей. Станет возможным преодоление смертельных болезней, устранятся физические проблемы, и человек, рано или поздно, сможет достигнуть земного бессмертия. Хотя, с другой стороны, на генофонде может сказаться постоянное употребление генномодифицированных продуктов или появление людей, которых создали искусственно. Появится проблема изменения социальных структур, и, вполне вероятно, придется столкнуться с трагедией медицинского фашизма.

Вот что такое биотехнология. Наука, которая может подарить блестящие перспективы человечеству путем создания, изменения или улучшения клеток, живых организмов и систем. Она сможет подарить человеку новое тело, и мечта о вечной жизни станет реальностью. Но за это придется заплатить немалую цену.

Посетители конференции Startup Village, прошедшей на минувшей неделе в Сколково, имели уникальную возможность заглянуть в то недалекое будущее, когда человечество, вынужденное пересмотреть рацион питания, начнет получать значительную долю белков за счет насекомых

На одном из стендов на выставке стартапов расположились производители кормового протеина из личинок мух, представляющие липецкую компанию «Новые Биотехнологии». Пока корм предназначен для животных, но в будущем блюда из насекомых, как следует из многочисленных прогнозов, перестанут быть экзотикой и в человеческом меню. Попробовать продукт с исключительными питательными свойствами на Startup Village отважились пятеро смельчаков. Корреспондент сайт не рискнул последовать их примеру, но зато подробно расспросил дегустаторов, каков он, вкус еды будущего, а заодно узнал, что окруженные теплом и заботой селекционеров мухи из Липецка становятся гораздо плодовитее своих сородичей.

Алексей Истомин с продукцией "Новых Биотехнологий" на Startup Village. Фото: сайт

«Новые Биотехнологии» специализируются на производстве высокобелкового корма из высушенных и измельченных личинок зеленых мясных мух по аналогии с тем механизмом, над выработкой которого природа трудилась миллионы лет. «Животные, рыбы, птицы размножаются, питаются, оставляют после себя навоз и помет, умирают, а природа все это неустанно перерабатывает.. - Мухи откладывают на отходах яйца, из них появляются личинки, которые выделяют ферменты, ускоряющие процесс разложения и минерализации отходов. При этом личинки сами становятся кормом для животных, рыб и птиц. А оставшийся субстрат под воздействием дождей и солнца в виде органического удобрения попадает в почву и способствует бурному росту фитомассы, которая также является кормом для всего живого. Иными словами, происходит рециркуляция питательных веществ, причем безо всяких пестицидов и ядов. Только органика».

Этот природный процесс и заимствовали в компании «Новые Биотехнологии». Получившаяся в результате применения технологии биомасса, личинки мух, обладают высоким содержанием питательных веществ. На 50-70% биомасса состоит из сырого протеина, 20-30% приходятся на сырой жир, 5-7% - это сырая клетчатка.

При описании положительного эффекта применения кормового белка (коммерческое название - «Зоопротеин») в разных отраслях сельского хозяйства Алексей Истомин был весьма убедителен. «В свиноводстве применение в микродозах белково-липидного концентрата в качестве добавки в рацион поросят, свиней, хряков позволяет повысить усвояемость пищи и естественную резистентность организма болезням и вирусам, увеличить привес, активность и приплод, - перечисляет преимущества корма из личинок мух г-н Истомин. - Это происходит за счет содержания в «Зоопротеине» большого количества ферментов, хитина, меланина, иммуномодуляторов. В птицеводстве включение нашего кормового белка в состав рациона для цыплят-бройлеров, индеек, уток и другой птицы позволяет повысить ежедневный привес и снизить кормовой коэффициент. У кур-несушек наблюдается повышение яйценоскости, возрастает резистентность организма к болезням и вирусам, снижается смертность». В звероводстве добавление «Зоопротеина» в корм норок, песцов, лисиц приводит к улучшению качества меха и снижению процента брака. Животные имеют большую длину тела и обхват груди, следовательно, из них можно получить большее количество шкурок.

Слева направо: готовый корм, высушенные и живые личинки. Фото: сайт

Появление корма из мух обрадует и владельцев домашних питомцев. По словам Алексея Истомина, «у кошек и собак легче проходит течка и линька, повышается мышечный тонус и активность, шерсть становится более плотной; животные меньше болеют». Здоровее при добавлении белка из личинок мух в корм становятся и домашние птицы, их окрас становится ярче. Мальки аквариумных рыбок развиваются в два раза быстрее, причем выживаемость мальков приближается к 100%.

Чудодейственная технология возникла не на пустом месте - ее теоретические основы были заложены еще полвека назад во Всесоюзном научно-исследовательском институте животноводства, а также в Новосибирском государственном сельскохозяйственном институте. Там в лабораторных условиях всесторонне изучали кормовые добавки из личинок мух. Сейчас работы в этом направлении продолжаются Новосибирском государственном аграрном университете, ВНИИЖ им. Л.К. Эрнста, Институте проблем экологии и эволюции им. А.Н. Северцова. По словам Алексея Истомина, эффективность использования белкового корма, полученного в результате переработки отходов личинками мух, по сравнению с другими животными белками (рыбная и мясо-костная мука) подтверждена исследованиями, проведенными во Всероссийском научно-исследовательском институте животноводства и Всероссийском научно-исследовательском и технологическом институт птицеводства. Примечательно, что со временем актуальность этой технологии лишь растет, ведь мир столкнулся с острым дефицитом белков животного происхождения.

«То, что нам мешает, плохо пахнет и требует больших затрат, может помочь и работать на благо отечественного сельского хозяйства, принося дополнительную прибыль и снижая нагрузку на окружающую среду»

В компании «Новые Биотехнологии» его оценивают в 25 млн тонн; в России аналогичный показатель - 1 млн тонн. С 1961 года население Земли выросло более чем в два раза, а мировое потребление мяса - в 4 раза. По прогнозам, до 2030 года глобальное потребление животного белка увеличится на 50%. Пока в сельском хозяйстве его основными источниками являются рыба (рыбная мука) и мясо-костная мука. «Самая качественная рыбная мука производится в Марокко, Мавритании и Чили, и ее стоимость увеличивается пропорционально издержкам на логистику. Цена рыбной муки за последние 15 лет выросла в 8 раз, - делится статистикой Алексей Истомин. - Многие производители сельскохозяйственной продукции отказываются от качественной импортной рыбной муки в пользу более дешевых и менее качественных аналогов, а также переходят на мясо-костную муку или растительные белки, в частности, сою. Использование растительных белков не позволяет достичь желаемого результата - такой протеин требует большого количества земельных ресурсов и не может в полной мере заменить животный белок по составу».

Проект "Новых Биотехнологий" вызвал интерес у вице-премьера Аркадия Дворковича и губернатора Ростовской области Василия Голубева. Фото: сайт

Кроме экономических, есть и экологические предпосылки смены кормовой парадигмы. Так, для изготовления 1 тонны муки требуется выловить 5 тонн промысловой рыбы. Учитывая, что потребность в животных белках велика, вылов рыбы достиг значительных показателей (170 млн тонн в 2015-м году). Экосистема не успевает воспроизвести рыбные запасы в морях. При изготовлении одной тонны рыбной муки в атмосферу выделяется почти 11 тонн углекислого газа. Дополнительные расходы на экологию в этом случае оценивается в 3,5 тысячи долларов. При производстве одной тонны муки из личинок мух в атмосферу попадает в 5 раз меньше СО2. То есть каждая произведенная тонна белка из личинок мух сохраняет 5 тонн рыбы в море.

«Вкус необычный, не похож ни на что. Зато этот белок укрепляет иммунитет и способствует росту мышечной массы»

Задумавшись об альтернативных источниках животного белка, исследователи обратили внимание на насекомых. На планете - более 90 тысяч видов мух, и каждый из них питается определенными отходами: растительными, навозом/пометом, пищевые отходы и т.д. «То, что нам мешает, плохо пахнет и требует больших затрат, - экологических, финансовых, энергетических - может помочь и работать на благо отечественного сельского хозяйства, принося дополнительную прибыль и снижая нагрузку на окружающую среду», - говорит Алексей Истомин. По крайне мере, опытное производство компании «Новые Биотехнологии» в Липецке доказывает перспективность использования технологии в промышленных условиях.

Фарш из Люси

Известные многим металлически-зелёные яркие мухи Lucilia caesar (в компании этот вид насекомым ласково именуют Люсей) на производстве в Липецке содержатся в специальных инсектариях. Там живет несколько десятков миллионов мух. Это во многом уникальные насекомые. Чтобы улучшить их репродукционные способности, ученые более двух лет вели кропотливую селекционную работу, по определенной методике скрещивая насекомых. Если в природе одна муха делает кладку в 60 яиц, то у липецких насекомых кладка (и, следовательно, количество личинок и получившегося из них корма) - в среднем в три раза больше. Никаких генетических манипуляций над мухами специалисты «Новых Биотехнологий» не производят, речь идет о «традиционной» селекции, уверяет г-н Истомин.Показывая на затянутую мелкой сеткой клетку-садок с роящимися насекомыми на стенде, он продолжает: «Еще вчера здесь было всего 6 мух; всего за сутки их количество достигло несколько сотен. Это стало возможным благодаря правильному подбору цикла развития кукол, называемых еще пупариями. Мы подгадали цикл таким образом, чтобы сегодня их стало намного больше. Завтра их количество еще подрастет». Отчасти этот процесс сдерживался не слишком подходящей погодой: оптимальная температура для превращения куколки в муху - около 30-ти градусов. Несмотря на то, что на Startup Village по ночам насекомых заносили в помещение, температура там была ниже.

На производстве в Липецке мухам - полное раздолье. Фото: "Новые Биотехнологии".

На производстве в Липецке мухам - полное раздолье, там их оберегают и от неблагоприятных условий, и от стресса. Мухи содержатся в специальных клетках-садках, в которых есть вода, сахар, сухое молоко и боксы с мясным фаршем, где мухи делают кладки яиц. Кладки вынимают ежесуточно. Контроль качества и чистоты популяции осуществляет главный технолог. Для этого отбирают личинки, которые в специальных условиях окукливаются и в виде куколок хранятся в холодильной камере. При необходимости куколки помещают в клетки инсектария, и через некоторое время из них появляются мухи.

Как только из яиц появились личинки, их перемещают в выростной цех. В специальных лотках на подстилке из опилок размещают кормовой субстрат и кладки яиц. Личинки очень прожорливы и быстро растут, увеличиваясь в размере до 350 раз за сутки. Период откармливания и активного роста составляет 3-4 суток. Затем выросшие личинки оказываются на выгонке. Так называют процесс отделения личинок от органического субстрата. После биомассу высушивают и отправляют на хранение.

Мухи растут на мясе с птицефабрики, которая находится недалеко от опытного производства компании «Новые биотехнологии». Личинки, выращенные на мясе птицы, обладают более высокими показателями содержания питательных веществ, чем те, которые культивировались на навозе и помёте. При этом запасов мяса должно быть много - чтобы произвести 1 кг «Зоопротеина», необходимо вырастить 3,5 кг живых личинок, для чего требуется 10 кг мясных отходов.

С 1961 года население Земли выросло более чем в два раза, а мировое потребление мяса - в 4 раза. По прогнозам, до 2030 года глобальное потребление животного белка увеличится на 50%

«Среднестатистический падеж на птицефабриках составляет 5% от общего поголовья. Такой вид отходов доставляет большое количество хлопот птицеводческим хозяйствам. Это и экологические вопросы (надо утилизировать), и финансовые (за утилизацию надо платить), и организационные (собирать, хранить, доставлять, учитывать). Поэтому применение нашего метода наиболее эффективно непосредственно на птицефабрике, что позволяет делать производство птицы безотходным, - пояснил Алексей Истомин. - В целом, рост объемов сельскохозяйственного производства неминуемо влечёт за собой увеличение негативного влияния на окружающую среду. По данным Минсельхоза, в России общая площадь земель, загрязненных сельскохозяйственными отходами, превышает 2,4 млн гектаров. В 2015-м году суммарное количество таких отходов превысило 380 млн тонн. В стране практически отсутствует культура переработки отходов сельского хозяйства. Счет таким производствам идет на единицы».

Опытное производство в Липецке. Фото: "Новые Биотехнологии"

Сложность промышленного внедрения технологии обусловлена, прежде всего, административными и экологическими факторами. «За границей, в частности, в Китае и Индонезии используется бассейновый («открытый») метод, поясняет Истомин. - Он неприемлем в наших условиях, поскольку личинки в процессе жизнедеятельности вырабатывают большое количество аммиака. В нашем проекте предложен «закрытый» метод с использованием выростных шкафов для мух, оборудованных локальной вытяжной вентиляцией, микробиологическим фильтром для очистки воздуха, особыми системами приготовления сырья, инфракрасной сушки. Все это позволяет максимально выполнить требования, предъявляемые к экологической безопасности».

Личинки очень прожорливы и быстро растут, увеличиваясь в размере до 350 раз за сутки. Фото: "Новые Биотехнологии"

Сейчас компания «Новые Биотехнологии» находится в процессе получения статуса резидента «Сколково». Команда рассчитывает на помощь Фонда главным образом в сертификации продукции. В России отсутствует нормативная база, связанная с регламентацией использования технологии переработки отходов личинками мух, поэтому, рассказывает Алексей Истомин, «приходится изощряться». При этом контролирующие инстанции констатируют безопасность продукции: «Липецкая облветлаборатория» производит исследования живой биомассы на наличие сальмонелл, генома возбудителей орнитоза и гриппа у птиц, яиц и личинок гельминтов. У высушенной биомассы личинок мух определяется массовая доля сырого протеина, массовая доля сырого жира, влажность и токсичность. «Тульская межобластная ветеринарная лаборатория» проводит исследования органического удобрения зоогумуса на наличие патогенной флоры. Результаты каждого исследования оформлены протоколом».

Собеседник сайт убежден: в обозримом будущем со вкусом белка из насекомых познакомятся на только животные, но и люди. Эту точку зрения разделяет все больше специалистов. Так, три года назад Продовольственная и сельскохозяйственная организация ООН выпустила исследование, в котором говорилось, что в рационе 2 миллиардов человек в той или иной степени насекомые присутствуют уже сейчас. Чтобы справиться с голодом и загрязнением окружающей среды, человечеству следует есть больше насекомых, призвали составители отчета.

Тем более что, как свидетельствует личный опыт Алексея Истомина, это не так страшно. Вот уже несколько месяцев он добавляет столовую ложку белка из насекомых в утренний шейк из молока, банана и прочих традиционных ингредиентов. «Вкус необычный, не похож ни на что. Зато укрепляет иммунитет и способствует росту мышечной массы», - рассказывает Алексей.

Baklanov Mikhail and 8 others like this" data-format="people who like this" data-configuration="Format=%3Ca%20class%3D%27who-likes%27%3Epeople%20who%20like%20this%3C%2Fa%3E" >


Биотехнология - это производственное использование биологических агентов или их систем для получения ценных продуктов и осуществления целевых превращений.

Биологические агенты в данном случае - микроорганизмы, растительные или животные клетки, клеточные компоненты (мембраны клеток, рибосомы, митохондрии, хлоропласты), а также биологические макромолекулы (ДНК, РНК, белки - чаще всего ферменты). Биотехнология использует также вирусную ДНК или РНК для переноса чужеродных генов в клетки.

Человек использовал биотехнологию многие тысячи лет: люди пекли хлеб, варили пиво, делали сыр, используя различные микроорганизмы, при этом, даже не подозревая об их существовании. Собственно сам термин появился в нашем языке не так давно, вместо него употреблялись слова «промышленная микробиология», «техническая биохимия» и др.

Вероятно, древнейшим биотехнологическим процессом было сбраживание с помощью микроорганизмов. В пользу этого свидетельствует описание процесса приготовления пива, обнаруженное в 1981 г. при раскопках Вавилона на дощечке, которая датируется примерно 6-м тысячелетием до н. э.

В 3-м тысячелетии до н. э. шумеры изготовляли до двух десятков видов пива. Не менее древними биотехнологическими процессами являются виноделие, хлебопечение, и получение молочнокислых продуктов. В традиционном, классическом, понимании биотехнология - это наука о методах и технологиях производства различных веществ и продуктов с использованием природных биологических объектов и процессов.

Термин «новая» биотехнология в противоположность «старой» биотехнологии применяют для разделения биопроцессов, использующих методы генной инженерии и более традиционные формы биопроцессов. Так, обычное производство спирта в процессе брожения – «старая» биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта – «новая» биотехнология.

Биотехнология как наука является важнейшим разделом современной биологии, которая, как и физика, стала в конце XX в. одним из ведущих приоритетов в мировой науке и экономике.

Всплеск исследований по биотехнологии в мировой науке произошел в 80-х годах, но, несмотря на столь короткий срок своего существования, биотехнология привлекла пристальное внимание, как ученых, так и широкой общественности. По прогнозам, уже в начале 21 века биотехнологические товары будут составлять четверть всей мировой продукции.

Что касается более современных биотехнологических процессов, то они основаны на методах рекомбинантных ДНК, а также на использовании иммобилизованных ферментов, клеток или клеточных органелл.

Современная биотехнология - это наука о генно-инженерных и клеточных методах создания и использования генетически трансформированных биологических объектов для улучшения производства или получения новых видов продуктов различного назначения.

Основные направления биотехнологии

Условно можно выделить следующие основные направления биотехнологии:

Биотехнология пищевых продуктов;
- биотехнология препаратов для сельского хозяйства;
- биотехнология препаратов и продуктов для промышленного и бытового использования;
- биотехнология лекарственных препаратов;
- биотехнология средств диагностики и реактивов.

Биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.

Развитие биотопливного направления

Растительный покров Земли составляет более 1800 млрд. т сухого вещества, что энергетически эквивалентно известным запасам энергии полезных ископаемых. Леса составляют около 68% биомассы суши, травяные экосистемы - примерно 16%, а возделываемые земли - только 8%. Для сухого вещества простейший способ превращения в энергию заключается в сгорании - оно обеспечивает тепло, которое в свою очередь превращается в механическую или электрическую энергию.

Что же касается сырого вещества, то в этом случае древнейшим и наиболее эффективным методом превращения биомассы в энергию является получение биогаза (метана). Метановое «брожение», или биометаногенез, - давно известный процесс превращения биомассы в энергию. Он был открыт в 1776г. Вольтой, который установил наличие метана в болотном газе.

Отходы пищевой промышленности и сельскохозяйственного производства характеризуются высоким содержанием углерода (в случае перегонки свеклы на 1л отходов приходится до 50г углерода), поэтому они лучше всего подходят для метанового «брожения», тем более что некоторые из них получаются при температуре, наиболее благоприятной для этого процесса.

Конференция ООН по науке и технике для развивающихся стран (1979 г.) и эксперты Экономической и социальной комиссии по странам Азии и Тихого океана подчеркнули достоинства сельскохозяйственных программ, использующих биогаз.

Надо отметить, что 38% от 95-миллионного поголовья крупного рогатого скота в мире, 72% остатков сахарного тростника и 95% отходов бананов, кофе и цитрусовых приходятся на долю стран Африки, Латинской Америки, Азии и Ближнего Востока. Не удивительно, что в этих регионах сосредоточены огромные количества сырья для метанового «брожения».

Следствием этого явилась ориентация некоторых стран сельскохозяйственно ориентированной экономикой на биоэнергетику. Производство биогаза путем метанового «брожения» отходов - одно из возможных решений энергетической проблемы в большинстве сельских районов развивающихся стран.

Биотехнология в состоянии внести крупный вклад в решение проблем энергетики также посредством производства достаточно дешевого биосинтетического этанола, который, кроме того, является и важным сырьем для микробиологической промышленности при получении пищевых и кормовых белков, а также белково-липидных кормовых препаратов.

Достижения биотехнологии

С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной и химической промышленности. Причем важно то, что многие из них не могли быть получены без применения биотехнологических способов. Особенно большие надежды связываются с попытками использования микроорганизмов и культур клеток для уменьшения загрязнения среды и производства энергии.

В молекулярной биологии использование биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т.д.

Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе.

Микробиологическая промышленность в настоящее время использует тысячи штаммов различных микроорганизмов. В большинстве случаев они улучшены путем индуцированного мутагенеза и последующей селекции. Это позволяет вести широкомасштабный синтез различных веществ. Некоторые белки и вторичные метаболиты могут быть получены только путем культивирования клеток эукариот. Растительные клетки могут служить источником ряда соединений - атропин, никотин, алкалоиды, сапонины и др.

В биохимии, микробиологии, цитологии несомненный интерес вызывают методы иммобилизации как ферментов, так и целых клеток микроорганизмов, растений и животных. В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение.

Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.

Видео: Biotechnology and the Emergence of New Therapeutics.



Вопрос 1. Что такое биотехнология?

Биотехнология — это использование ор-ганизмов, биологических систем или биологи-ческих процессов в промышленном производ-стве. К отраслям биотехнологии относятся генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных расте-ний и животных, использование микроорга-низмов в хлебопечении, виноделии, производ-стве лекарств и др.

Вопрос 2. Какие проблемы решает генная ин-женерия? С какими трудностями связаны исследования в этой области?

Методы генной инженерии позволяют ввес-ти в генотип одних организмов (например,бактерий) гены других организмов (напри-мер, человека). Генная инженерия позволила решить проблемы промышленного синтеза микроорганизмами различных человеческих гормонов, например инсулина и гормона рос-та. Путем создания генетически модифициро-ванных растений она обеспечила появление сортов, устойчивых к холодам, заболеваниям и вредителям. Основной трудностью для ген-ной инженерии является наблюдение и конт-роль за деятельностью привнесенной извне ДНК. Важно знать, способны ли трансгенные организмы выдерживать «нагрузку» чужерод-ных генов. Существует также опасность само-произвольного переноса (миграции) чужерод-ных генов в другие организмы, в результате чего они могут приобрести нежелательные для человека и природы свойства. Не на последнем месте стоит и этическая проблема: а имеем ли мы право переделывать живые организмы ра-ди собственного блага?

Вопрос 3. Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?

Существует несколько причин повышения интереса к селекции микроорганизмов:

  • легкость селекции (по сравнению с рас-тениями и животными), которая обусловлена большой скоростью размножения и простотой культивирования бактерий;
  • огромный биохимический потенциал (разнообразие осуществляемых бактериями реакций — от синтеза антибиотиков и витами нов до выделения из руд редких химических элементов);
  • простота генно-инженерных манипу-ляций; важно также то, что встроенный в ДНК бактерии ген автоматически начинает рабо-тать, поскольку (в отличие от эукариотических организмов) все гены прокариотов активны.

В результате на сегодняшний день сущест-вует огромное число примеров использования новых штаммов бактерий на практике: произ-водство продуктов питания, гормонов человека, переработка отходов, очистка сточных вод и др.

Вопрос 4. Приведите примеры промышленно-го получения и использования продуктов жизнеде-ятельности микроорганизмов.

С давних времен кисломолочные бактерии обеспечивают приготовление простокваши и сыра; бактерии, для которых характерно спиртовое брожение, — синтез этилового спир-та; дрожжи используют в хлебопечении и ви-ноделии.

С 1982 г. в промышленных масштабах по-лучают инсулин, синтезируемый кишечной палочкой. Это стало возможным после того, как при помощи методов генной инженерии ген инсулина человека был встроен в ДНК бак-терии. В настоящее время налажен синтез трансгенного гормона роста, который исполь-зуется для лечения карликовости у детей.

Микроорганизмы участвуют также в биотех-нологических процессах по очистке сточных мод, переработке отходов, удалению нефтяных разливов в водоемах, получению топлива.

Вопрос 5. Какие организмы называют транс-генными?

Трансгенными (генетически модифициро-ванными) называют организмы, содержащие искусственные дополнения в геноме. Приме-ром (помимо упомянутой выше кишечной па-лочки) могут служить растения, в ДНК кото-рых встроен фрагмент бактериальной хро-мосомы, ответственный за синтез токсина, отпугивающего вредных насекомых. В резуль-тате получены сорта кукурузы, риса, картофе-ля, устойчивые к вредителям и не требующие использования пестицидов. Интересен при-мер лосося, ДНК которого дополнили геном, активирующим выработку гормона роста. В результате лосось рос в несколько раз быст-рее, и вес рыб оказался гораздо больше нормы.

Вопрос 6. В чем преимущество клонирования по сравнению с традиционными методами селекции?

Клонирование направлено на получение точных копий организма с уже известными характеристиками. Оно позволяет добиваться лучших результатов в более короткие сроки, чем традиционные методы селекции. Материал с сайта

Клонирование дает возможность работать с отдельными клетками или небольшими заро-дышами. Например, при разведении крупного рогатого скота зародыш теленка на стадии не-дифференцированных клеток разделяют на фрагменты и помещают их в суррогатных матерей. В результате развиваются несколько идентичных телят с необходимыми признаками и свойствами.

При необходимости можно использовать и клонирование растений. В этом случае селек-ция происходит в клеточной культуре (на ис-кусственно культивируемых изолированных клетках). И лишь затем из клеток, обладаю-щих необходимыми свойствами, выращивают полноценные растения.

Наиболее известный пример клонирова-ния — пересадка ядра соматической клетки в развивающуюся яйцеклетку. Эта технология в будущем позволит создать генетического двойника любого организма (или, что более актуально, его тканей и органов).

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • презентация на тему биотехнология достижения и перспективы развития
  • биотехнологии клонирование с видео
  • как вы думаете почему селекция микроорганизмов приобретает в настоящее время
  • в чем приимущество клонирования по сравнению с традиционными методами селекции?
  • почему селекция микроорганизмов приобретает в наше время


Загрузка...