sonyps4.ru

G сенсор – что это в видеорегистраторе. Что такое G‑Sensor в видеорегистраторе

G-сенсор применяется во многих гаджетах: планшетах, смартфонах, видеорегистраторах. Он формирует сигнал в зависимости от своего гравитационного положения, то есть расположения G-сенсора относительно гравитационного поля земли (отсюда первая буква G — Gravitation в названии датчика).

Первоначально такие сенсоры использовались для переворота картинки на дисплее в зависимости от положения гаджета (горизонтальное, вертикальное). Иначе они именуются акселерометры. Затем G-сенсоры адаптировали к играм, увеличив чувствительность к поворотам на различные углы. G-сенсор, применяемый в видеорегистраторах, имеет отличный от других устройств алгоритм работы.

Используемый в видеорегистраторе G-сенсор: что это такое и зачем он нужен

Основное назначение G-сенсора в видеорегистраторе – реагировать на изменение динамики движения автомобиля. Так как автомобиль движется в трехмерном пространстве, то датчик выполнен таким образом, что реагирует на динамику движения в 3D режиме.

Если быть предельно точным, то датчик работает в четырех измерениях (4D), так как одновременно с данными по изменению динамики движения в трех осях, он фиксирует временные данные.

Иногда G-сенсор именуют датчиком удара подобно аналогичным устройствам в автосигнализациях. Это не совсем правильно, так как для датчика видеорегистратора более важной информацией является ускорение при движении транспортного средства, а не абсолютное положение автомобиля и механические воздействия на корпус, как в датчиках наклона/удара охранных устройств.

Сигнал, формируемый датчиком, передается микропроцессору управления режимами видеорегистратора и служит для:

  • определения и фиксации времени столкновения или других ситуаций резкого изменения динамики движения автомобиля;
  • передачи сигналов управления для переноса видеозаписи в «нестираемую» папку памяти регистратора (часто такая папка именуется Sobitie или, как нетрудно догадаться, Событие);
  • экстренного включения видеозаписи, если она не активирована в текущем режиме работы видеорегистратора;
  • регистрации траектории движения автомобиля (в некоторых дорогих моделях устройств).

Принцип работы и технологическое исполнение G-sensor

В настоящее время используются два основных типа G-датчиков: пьезоэлектрические и магниторезистивные.

Принцип работы пьезоэлектрических датчиков состоит в формировании электродвижущей силы (ЭДС) при изменении геометрических размеров пьезоэлемента. Инерционный элемент (микрошарик определенной массы) расположен на трехмерной пьезоподвеске. Во время ускорения по одной или нескольким осям соответствующие пьезоэлементы формируют электрический сигнал, который после обработки аналого-цифровой схемой передается на выход G-сенсора.

В магнитоэлектрических датчиках в качестве инерционного элемента используется магнит. Регистрацию перемещения осуществляют магниторезистивные датчики, которые при варьировании магнитного поля изменяют сопротивление.

Технологически G-сенсоры исполнены в виде гибридного чипа с небольшим количеством выводов.

Как настроить

К основным характеристикам G-сенсоров относятся их функциональные возможности, а именно:

  • регулировки чувствительности датчиков;
  • возможность установки временных интервалов сохраняемой «нестираемой» записи.

Регулировка чувствительности датчиков предусмотрена в основном меню видеорегистратора. Она возможна по цифровой шкале либо количеством полосок (обычно в пределах от 1 до 10), и по уровням срабатывания 2g/4g/6g/8g. Во многих регистраторах уровень 6g отсутствует.

Уровень срабатывания 2g является наиболее чувствительным. Что это означает. Видеорегистратор будет давать сигнал на перенос в папку «Событие» даже незначительных изменений динамики движения автомобиля, связанных с:

  • попаданием авто в мелкие ямки, неровности дорожного покрытия;
  • небольшими воздействиями на кузов автомобиля;
  • резким стартом и торможением авто;
  • крутыми маневрами.

Если чувствительность G-сенсора будет высокой, в нестираемую память будут записываться ненужные события, она быстро заполнится. Может наступить такой момент, когда для записи момента ДТП просто не хватит памяти: она к тому времени будет захламлена ненужной информацией.

Нестираемую папку также можно очистить, подключив видеорегистратор к компьютеру либо вручную с помощью органов управления на регистраторе, но для этого требуется определенное время.

Установка временных интервалов обычно предусматривает настройки времени нестираемой памяти до и после события 10, 20, 30 и 60 секунд. В большинстве случаев с целью экономии места на носителе достаточно 30-ти секунд для объективного и полного отображения информации о дорожной ситуации в чрезвычайном случае.

Для того, чтобы настроить G-сенсор, необходимо зайти в меню настроек видеорегистратора.

Решение проблемы уменьшения чувствительности G-сенсора при отсутствии регулировок в меню

Некоторые водители в целях экономии (или недостаточной осведомленности) приобретают видеорегистраторы, в которых отсутствуют регулировки чувствительности G-датчиков. Они начинают быстро заполнять неперезаписываемую область памяти незначительными событиями, в конце концов последующая запись становится невозможной.

В случаях, когда регистратор используется во время движения на неидеальных российских автодорогах, да еще с агрессивным стилем вождения, практически все записи автоматически переносятся в разряд Событий. Нестираемая память может заполниться за пару часов. Что можно в таких случаях предпринять?

Самый простой способ устранения проблемы – создать мягкую подвеску для видеорегистратора. Это можно сделать при помощи амортизации подвески или специального чехла с «подушкой» для видеорегистратора. Таким образом, можно уменьшить чувствительность в два-четыре раза. Иногда хватает.

Совсем отчаявшиеся владельцы нерегулируемых G-сенсоров применяют кардинальные меры: выпаивают их из платы. Правда, не совсем понятно, зачем тогда нужен видеорегистратор вообще.

Видео — как решают проблему нерегулируемых G-сенсоров в видеорегистраторах некоторые автовладельцы:

Приобретая видеорегистратор, следует проверить возможности функциональных настроек G-сенсора.

При настройке чувствительности сенсора следует руководствоваться состоянием дорожного покрытия в местах предполагаемой эксплуатации автомобиля и стилем вождения.

Необходимо отрегулировать чувствительность G-датчика, чтобы он включал «нестираемый режим» при «щелчке» по корпусу видеорегистратора — это очень пригодится при «разборках» в случае, если автомобиль станет участником ДТП.

Многие автолюбителей, у которых установлена хорошо отзываются о её работе в совершенно разных условиях.

Читайте полярность автомобильного аккумулятора.

В настройках сложных моделей видеорегистраторов достаточно много нюансов, которые инструкция устройства подробно не объясняет. Многих водителей, заинтересованных в правильных настройках прибора, интересует вопрос: «g сенсор – что это в видеорегистраторе, как правильно настраивать опцию?».

Общие принципы действия датчика, использование G-сенсора в различных моделях видеорегистраторов

По принципу работы G-сенсор похож на датчик удара, знакомый многим автолюбителям по работе противоугонных систем сигнализации. Датчик, размещенный в электронной плате видеорегистратора, реагирует на резкие движения корпуса прибора (вместе с кузовом автомобиля) в трех плоскостях.

В отличие, от противоугонного сигнального датчика, включающего сирену сигнализации, при ударах, резких дорожных маневрах (торможении, боковом уходе) G-сенсор может выполнять несколько действий:

  1. Включать видеозапись, если для прибора не включен режим постоянной записи.
  2. Автоматически фиксировать дату и время аварийной записи.
  3. Заносить видеозапись в «нестираемую» папку, архива, предохраняя от случайного удаления.
  4. Фиксировать на видеозаписи траекторию движения машины. Такая функция характерна для дорогих моделей видеорегистраторов.

Недостатком простых моделей G-сенсоров, установленных в недорогих видеорегистраторах, становится самопроизвольное включение режима, отсутствие регулировок чувствительности. При этом прибор может реагировать на громкую музыку автомобильных динамиков, дорожные ямы, резкие повороты, постоянно переполняя память архива.

Настройка чувствительности G-сенсора

В дешевых моделях видеорегистраторов на дисплее может присутствовать обозначение функции, которую можно включить или отключить (как правило, обозначается символами «on» и «off»).

Как перейти курсором на нужную строчку меню, чтобы включить режим, разобраться несложно, простые модели снабжаются интуитивно понятным интерфейсом.

Более сложные настройки дорогих моделей видеорегистраторов позволяют отрегулировать функциональность прибора в зависимости от дорожных условий, стиля вождения автолюбителя.

Подробно описывать регулировку прибора нет смысла, у разных моделей видеорегистраторов она отличается. Чувствительность G-сенсора отображается цифровой шкалой (с числами от 0 до 10) или цветной полоской (у видеорегистраторов с сенсорным управлением на дисплее). Вывод шкалы на цифру «0» или исчезновение цветовой полоски отключает функцию.

В дорогих моделях видеорегистраторов есть такие настройки G-сенсора, к которым нужно отнестись внимательно:

  • Интервал съемки. Варьируется от 5 до 60 секунд. Для экономии места на карте памяти рекомендуется выставлять интервал в 20-30 секунд, этого достаточно для записи дорожного происшествия.
  • Отображение даты и времени. Рекомендуется как постоянная опция, места в памяти практически не занимает.
  • Избыточные показатели чувствительности. При выставленном максимальном уровне сенсор реагирует на обычные движения руля, торможения. Рекомендуется регулировать опытным путем, проверяя реакцию датчика на обычные действия водителя.

Не пожалейте времени на настройку функции, это окупится нормальным функционированием датчика, сохранением объема памяти.

На видео вы можете посмотреть, как российские водители используют включение G сенсора в нестандартных ситуациях:

Щелчком пальца по видеорегистратору можно включить в нестираемую папку запись проезда трудного участка дороги или общение с заправщиком на АЗС. При таком использовании нужно регулярно переносить нужные файлы в архив компьютера, так как «нестираемая» папка удаляет давние видеозаписи по мере переполнения памяти.

Правильная настройка полезной опции станет дополнительной защитой вашего автомобиля в сложных дорожных ситуациях, при происшествиях на парковке, дворовой стоянке.

Запись дорожного происшествия с траекторией движения вашей машины, предоставленная инспектору ГИБДД, страховым организациям, судебным органам, станет весомым доказательством вашей правоты.

В этой заметке речь пойдет о паре миниатюрных приспособлений, которые встраиваются во многие современные электронные устройства: плееры, планшеты, коммуникаторы, фото- и видеокамеры. А именно - о гироскопе и акселерометре. Стоит, кстати, сказать, что синонимом слова «гироскоп» является слово «гиродатчик», а синонимом «акселерометра» - G-сенсор. Сами же гироскоп и акселерометр - вещи разные (некоторые их путают), но они отлично дополняют друг друга, работая в паре.

Акселерометр (G-сенсор) - это миниатюрное устройство, которое, если говорить научным языком, измеряет проекцию кажущегося ускорения. Если говорить проще, то оно определяет угол наклона устройства относительно поверхности Земли. Программное обеспечение, получающее информацию об угле наклона с акселерометра, поворачивает изображение на экране. Например, на устройстве с G-сенсором для перехода в альбомную (ландшафтную) ориентацию экрана достаточно всего лишь повернуть устройство на 90 градусов. Изображение на экране повернется как бы «само», так как сработает акселерометр.

Гироскоп (гиродатчик) - это приспособление, которое служит для определения ориентации устройства в пространстве, для отслеживания его перемещения. Программное обеспечение, используемое вместе с гироскопом, способно быстро реагировать на перемещение устройства в пространстве и принимать соответствующие решения. Например, в ноутбуках гироскоп позволяет быстро включить режим фиксации жесткого диска в случае падения или просто резкого перемещения устройства. Это очень полезно, поэтому желательно, чтобы покупаемый вами ноутбук/нетбук был оснащен гиродатчиком. Впрочем, во многих ноутбуках для аналогичных целей используется и акселерометр.

В современных коммуникаторах, телефонах и планшетах акселерометр и гироскоп используются также как важные элементы управления игровым процессом. В результате у игрока появляется возможность управления, например, виртуальным автомобилем в каких-нибудь гонках простыми поворотами, встряхиваниями и прочими движениями устройства. И, естественно, спектр игр не ограничивается только гонками. Существует огромное количество самых разных игр, использующих гироскоп и акселерометр как средство управления. Все это делает игровой процесс более увлекательным и интерактивным.

В ряде устройств программное обеспечение также может использовать акселерометр и гироскоп в самых различных случаях. Например, на коммуникаторах iPhone в портретной (стандартной) ориентации экрана калькулятор самый обычный - отображаются лишь кнопки с цифрами и простейшими арифметическими действиями. А вот при повороте устройства на 90 градусов калькулятор автоматически переходит в профессиональный режим - появляются кнопки с тригонометрическими, логарифмическими и прочими функциями.

Помимо этого, в iPhone, iPod и iPad акселерометр задействуется музыкальным проигрывателем: в портретной (вертикальной) ориентации экрана на дисплее отображается список песен/авторов/альбомов, а при повороте устройства на 90 градусов происходит переход в своеобразный режим, который называется CoverFlow. На экране появляются изображения обложек альбомов, которые можно прокручивать простым движением пальца. Важно понимать, что акселерометр здесь выполняет только одну функцию: обеспечение автоматического перехода из стандартного режима в режим CoverFlow.

Еще одно применение описываемых датчиков можно увидеть в режиме навигации. Например, смотрите вы на устройстве (с GPS-модулем, конечно) карту местности. Карта эта - с помощью гироскопа - отображается в соответствии с вашим расположением; иными словами, на экране изображается схема той местности, которая находится прямо перед вами. Вы поворачиваетесь, и карта на экране тоже поворачивается. Фактически, карта всегда соотвествует направлению вашего взгляда/тела. Это очень практично.

Наконец, стоит отметить функцию шагомера, которой обладают некоторые устройства с акселерометром (например, плееры iPod Nano 5-го и 6-го поколений, коммуникаторы iPhone). Шагомер позволяет измерять пройденное за день расстояние (или же, к примеру, расстояние, которое вы пробежали за какое-то время). Правда, точность измерения зависит от многих факторов и иногда бывает весьма низка.

Как видите, акселерометр и гироскоп - вещи достаточно полезные, хотя жизненной необходимости в них, разумеется, нет. Хотелось бы также заметить, что гиродатчик и акселерометр не обладают телепатическими свойствами и реагируют на любые повороты и передвижения устройства, в том числе и случайные. Это, естественно, раздражает, и многие данные датчики просто-напросто отключают. Лично я - использую.

Отдельно стоит сказать несколько слов об акселеромтрах (G-сенсорах) в e-ink ридерах. Из-за специфики е-инк экрана (он отличается медлительностью), G-сенсор в ридере - удовольствие очень сомнительное. Если он ошибочно сработает, вам придется ждать, пока произойдет поворот изображения/текста на экране в ненужный вам режим, а потом - пока произойдет обратный поворот.

А ошибочные срабатывания, на самом деле, не так уж редки. Например, ложитесь вы с ридером на кровать или на диван, и G-сенсор подает сигнал - надо повернуть текст на экране. А вам это вовсе не требуется. Подождали, повернули текст обратно. Затем решили повернуться на бок. Снова сработал G-сенсор, и снова зря. Как видите, неудобно. Именно поэтому многие пользователи е-инк ридеров акселерометр отключают. И именно поэтому я не советую делать наличие акселерометра (равно как и гиродатчика) одним из критериев выбора ридера. Лучше, чтобы у ридера была возможность осуществлять поворот текста/изображения на экране при помощи одной кнопки. Вот это действительно удобно.

Раз уж я вспомнил про ридеры, то стоит сказать пару слов о читалках PocketBook, на которые можно установить дополнительную программу, которая называется FBReader 180 (распространяется она бесплатно). Данная программа обладает очень интересной функцией: листание наклоном устройства. Фактически, вы можете перелистывать страницы книг без нажатий на кнопки, достаточно просто наклонять устройство на определенный угол вправо/влево. Величина этого угла задается в настройках. Имейте в виду, что эта функция работает только на устройствах PocketBook со встроенным G-сенсором: модели 360, 360+, 602, 603, 612, 902, 903, 912.

Напоследок дам такой совет : если вы планируете пользоваться акселерометром или гиродатчиком устройства, обязательно проверьте корректность их работы при покупке, чтобы потом не было разочарования. И ещё я очень не советую покупать устройства со встроенным акселерометром без возможности его отключения. Такие устройства, к сожалению, выпускаются (обычно мелкими китайскими фирмами), и подчас они весьма раздражают своих владельцев ложными срабатываниями данного датчика.

И помните, что наличие и гироскопа, и акселерометра гораздо лучше наличия одного лишь акселерометра (G-сенсора). Гироскоп в паре с G-сенсором способен точнее определять положение устройства в пространстве, и возможностей интерактивного управления - например, в играх - будет больше.

Современный смартфон — это не просто звонки и SMS, а намного большее. Но сегодня мы поговорим не о том, как выходить с этих устройств в интернет, не о их гиперкоммуникационных возможностях и не о преимуществах той или иной мобильной операционной системы. Статья будет посвящена датчикам и сенсорам, которыми разработчики оснащают современные устройства, чтобы их функциональность стала еще более разнообразной. Итак, что такое датчики и сенсоры? Это микроустройства в самом смартфоне (плеере, планшете, навигаторе, ноутбуке, цифровой фотокамере, игровой консоли и т.д.), которые делают его умным, а также связывают с внешним миром. Без них смартфон не будет столь интересен и востребован, так как гаджет окажется без связи с окружающей средой. Именно с помощью датчиков и сенсоров появляется связь с миром вокруг, а значит, появляются новые удивительные функции.

Из основных датчиков и сенсоров, известных многим, и без которых сегодня не обходятся разве что совсем уж бюджетные мобильные телефоны, можно выделить следующие:

1. Proximity Sensor

2. Accelerometer

3. Light Sensor

4. Gyroscope Sensor

5. Magnetic Field Sensor (магнитный компас обычно не считают датчиком, но мы все-таки включили его в перечень)

Proximity Sensor (Датчик приближения)

Датчик приближения позволяет определить приближение объекта без физического контакта с ним. Например, датчик приближения, установленный на мобильном телефоне, позволяет отключать подсветку экрана при приближении телефона к уху пользователя во время разговора. То есть, его основная задача заключается в блокировании смартфона, чтобы пользователь не нажал случайно, скажем, щекой на отбой. Кстати, в данном случае экономится и заряд аккумуляторной батареи. Естественно, производители всячески пытаются расширить возможности этой функции. Например, год назад в Samsung Galaxy S3 появилась функция «Прямой вызов», которая при поднесении устройства к лицу позволяет звонить контакту, чьи сведения, журнал вызовов или данные о сообщениях отображаются на экране. Так же телефон с этим датчиком можно спокойно класть в карман или чехол, не боясь случайно совершить ненужный звонок.

Вообще, управление движениями — это следующий этап в общении между человеком и техникой, над чем сегодня работает масса производителей. Например, в прошлом году компания Pioneer представила модельный ряд автомобильных мультимедийно-навигационных GPS-систем, управлять которыми можно с помощью жестов. Pioneer назвала свою разработку «Air Gesture». Если пользователь подносит свою руку к передней части экрана мультимедийно-навигационной системы, она выводит окно с названием воспроизводимой в данный момент композиции и часто используемые команды управления: «Установить в качестве пункта назначения» и «Установить любимое место в качестве пункта назначения». Как только пользователь уберет руку от экрана, эти команды исчезнут, а навигационная карта снова отобразится на всем экране. Кроме того, путем перемещения рук по горизонтали, определенные функции, заданные пользователем, могут быть вызваны без нажатия кнопки. Можно установить одну из 10 функций, включая «Переключение между навигацией и AV-функциями» и «Пропуск воспроизводимой композиции / Воспроизведение предыдущей композиции». Датчик, который определяет движения руки, состоит из двух инфракрасных излучающих частей и одной приемной между ними. Когда рука движется к передней части экрана, приемный ИК-датчик обнаруживает отражения инфракрасного света. При горизонтально движущейся руке ИК-датчик определяет изменение таймингов инфракрасного излучения с правой и левой излучающих частей так, что становится понятным, в какую из сторон производится движение рукой. Кстати, производство моделей с пользовательским интерфейсом управления жестами Air Gesture уже началось.

Эта же функция реализована в новом флагмане Samsung Electronics — Galaxy S4. Кроме датчика приближения, рядом с фронтальной камерой расположен еще один датчик, который используется для распознавания жестов. Он распознает движения руки, принимая инфракрасные лучи, которые отражаются от ладони пользователя, и работает в паре с функцией Air Gesture, предоставляя пользователям возможность принять вызов, сменить музыкальную композицию или прокрутить web-страницу вверх или вниз буквально одним взмахом руки.

Accelerometer (Акселерометр)

Пожалуй, это самый распространенный датчик. G-сенсор, как его называют многие производители, сегодня можно встретить практически в каждом современном устройстве. Задача акселерометра проста — отслеживать ускорение, которое придается устройству. Вроде бы напрашивается вопрос, а зачем измерять ускорение смартфона? Но давайте задумаемся, в тот момент, когда мы переворачиваем телефон, происходит движения с ускорением. Акселерометр регистрирует его и, на основе полученных от него данных, запускает процесс, например, смены ориентации экрана. Датчик также используется для масштабирования страниц браузера при наклоне смартфона, обновление списка Bluetooth-устройств при встряске, в специфических приложениях, ну и, конечно же, в играх, особенно в симуляторах. Кроме этого, акселерометр используется в качестве карманного шагомера для подсчета количества шагов, сделанных пользователем.

В фотоаппаратах акселерометр используется для поворота отснятого кадра, а в ноутбуках — для срочной парковки головок жесткого диска, если вдруг компьютер падает. А в автомобилях он служит для срабатывания подушек безопасности при ударе. Проще говоря, акселерометр имеет дело с положением устройства в пространстве и наклоном корпуса, опираясь при этом на его ускорения при смене этого положения.

Light Sensor (Датчик освещенности)

Задачи этого датчика предельно просты и заключаются в том, чтобы определить степень наружного освещения и соответственно настроить яркость экрана. Благодаря такой автонастройке яркости, стала возможной экономия электроэнергии, особенно если вы хотите оптимизировать расход вашего аккумулятора. Пожалуй, это самый старый датчик в мобильном мире, и даже при том, что в работе этого датчика вроде бы нет никаких возможностей по улучшению функциональности, производители и в этом случае стараются сделать работу со смартфоном еще более комфортной.

Например, в мобильной операционной системе iOS 6 от Apple появилась возможность регулировки автояркости. Ранее датчик освещенности был полностью автоматизированным и регулировал яркость экрана на свое усмотрение. Теперь же пользователь получил возможность контролировать работу этого датчика. Вы можете легко определить уровень яркости, который комфортен для вас, и iOS принимает этот выбор во внимание при расчете уровня яркости для новых условий освещения. Однако для того чтобы датчик корректно функционировал, необходимо произвести небольшую настройку устройства.

Gyroscope Sensor (Гироскоп)

Если возможности акселерометра по большому счету исчерпаны, а сферы его применения четко ограничены, то устройство еще одного инерционного датчика, которым является гироскоп, в смартфонах освоены еще не до конца. История использования гироскопов берет свое начало еще в конце XIX века. Инерционные датчики на тот момент были распространены во флоте, так как с помощью гироскопа наиболее точно можно определить расположение сторон света. Позже, благодаря столь уникальной функции, гироскоп получил широкое распространение и в авиации. По своей конструкции гироскоп в мобильных телефонах напоминает классические роторные, представляющие собой быстро вращающийся диск, закрепленный на подвижных рамах. Даже при смене положения рам в пространстве ось вращения диска не изменится. Благодаря постоянному вращению диска, например, с помощью электромотора, и существует возможность постоянно определять положение объекта (в котором есть гироскоп) в пространстве, его наклоны либо крены.

Гироскопы в современных устройствах основаны на микроэлектромеханическом датчике, но принцип действия инерционного датчика остается тем же. В это же семейство входят акселерометры, магнитометрические и прочие узкоспециализированные датчики. Рынок этих миниатюрнейших элементов, также известных как MEMS, получил серьезный толчок для развития в тот момент, когда Apple начала устанавливать гироскоп в iPhone 4, а затем и в iPod Touch. Успешные продажи мобильных устройств привели к тому, что производители элементов MEMS успешно обосновались на мобильном рынке. Apple iPhone 4, где впервые был использован гироскоп и два MEMS-микрофона для подавления шума, произвел огромный эффект на индустрию телефонов. Например, в конце 2010 года менее пяти телефонов, выпущенных на рынок, могли похвастаться наличием гироскопа, а в 2011 году уже было представлено более 50 моделей телефонов и планшетов с гироскопом.

Гироскопы, встроенные в мобильные телефоны, делают качество игр наиболее высоким. С помощью данного датчика для управления игрой можно пользоваться не только обычным поворотом устройства, но и скоростью поворота, что обеспечивает более реалистичное управление. Кроме игр гироскоп используется в браузерах дополненной реальности для более точного позиционирования устройства в пространстве, а также в управляемых при помощи смартфонов на платформах iOS и Android радиомоделях летательных аппаратов.

Magnetic Field Sensor (Магнитный компас )

После прихода в наш мир GPS-приемников, появились и цифровые компасы, правда, в эпоху развития навигационных технологий от них не так много пользы. Магнитометр, как и привычный магнитный компас, отслеживает ориентацию устройства в пространстве относительно магнитных полюсов Земли.

Информация, полученная от компаса, используется в картографических и навигационных приложениях. На практике это устройство показало себя довольно хорошо и сегодня незаменимо в ряде игр и приложений, например, в браузере дополненной реальности Layar.

Прочие датчики и сенсоры

Барометр

Помогает с позиционированием и этот сенсор. Барометр стал появляться в смартфонах совсем недавно, с выходом Samsung Galaxy Nexus, и может уменьшить время подключения к сигналу GPS. Встроенный барометр измеряет атмосферное давление в текущем местоположении владельца смартфона и определяет высоту над уровнем моря. Многие флагманские смартфоны сегодня оснащаются не только приемниками GPS и ГЛОНАСС, но и барометром, благодаря чему захват сигнала от спутника и определение первоначального местоположения происходит мгновенно. Эта функция пригодится и в случае, когда пользователь передвигается по наклонным плоскостям, будь то холм или гора, потому что в зависимости от атмосферного давления и высоты, может подсчитать точное количество калорий, которые сжигаются во время прогулки. Ну и, соответственно, для определения давления и погодных условий прямо со своего смартфона.

Рассмотрим принцип работы этого датчика на примере смартфона Samsung Galaxy S III, где определение разницы давления может быть пересчитано около 25 раз в секунду. Такая скорость позволяет четко определять движение человека вверх и вниз, то есть использовать навигацию не только в горизонтальной плоскости, но и в вертикальной. Таким образом, мы получаем объемную навигацию, которая полностью соответствует действительности. Например, при навигации в торговом центре вам будет недостаточно обычного GPS-навигатора, так как он укажет точку на плоскости земли, а не то, на какой высоте находится ваш маршрут. А автомобильные навигаторы могут ориентироваться в многоэтажных парковках и многоярусных дорогах.

Датчик давления позволяет это осуществить, и вы получите не только точные координаты заданного места, но и информацию, на каком этаже или высоте пролегает ваш маршрут. Обычно подобные датчики включают в себя и систему обработки данные, а их размеры находятся в пределах 3х3х1 мм. Крошечный сенсор реагирует на изменения по высоте с точностью до 50 см. Методика реализована путем сравнения внешнего атмосферного давления по отношению к вакуумной камере внутри датчика. Помимо вакуумной камеры и сенсоров, в миниатюрном корпусе устройства поместились встроенный микропроцессор, аналоговый усилитель, цифровой со-процессор и элемент энергонезависимой памяти.

Датчик температуры/влажности

Такой датчик стал новым дополнением к Samsung Galaxy S4. Он определяет уровни температуры и влажности окружающей среды через небольшое отверстие, расположенное в основании смартфона. А потом датчик определяет оптимальный уровень комфорта и отображает эту информацию на экране приложения S Health. Кроме этого, температурный датчик позволяет откорректировать погрешности давления, вызванные изменением температуры воздуха. Те же, кто хочет незамедлительно воспользоваться возможностями температурного датчика, могут обратить внимание на разработку ученых компании Robocat.

Они создали крошечный электрический термометр Thermodo, который подключается к телефону через порт наушников. Thermodo состоит из пассивных датчиков температуры, встроенных в стандартное 4-полюсное гнездо для наушников в прочном корпусе. Никакого подключения к сети не требуется, устройство получает питание от телефона и потребляет мало энергии. Когда измерение температуры не требуется, Thermodo можно повесить на ключи в виде брелока. С помощью Thermodo можно измерить температуру как в помещении, так и на открытом воздухе.

3D-сенсор

Сенсор, который постоянно сканирует окружающее пространство и создает компьютерную виртуальную модель с высокой точностью. Что-то подобное представляет из себя Kinect, но новая версия планшета Google Nexus 10 получила сенсор намного компактнее и уже есть готовые приложения, которые могут работать на планшете и продемонстрировать возможности не только самых современных игр.

Помимо прочего, сенсор Capri 3D, который был представлен в рамках конференции Google I/O 2013 компанией PrimeSense, умеет регистрировать движения и получать метрические параметры предметов. Кстати, эта развитие этой технологии доказывает предположение IBM, что в середине этого десятилетия общения с помощью приложений для видеоконференций начнут напоминать 3D-голограммы.

Безопасность

Недавно профессор Суортмор колледжа (штат Пенсильвания, США) Адам Дж. Авив продемонстрировал возможность осуществления атак, используя данные, полученные акселерометром смартфона. Оказалось, что данные, полученные сенсорами смартфона, могут помочь злоумышленникам получить доступ к кодам разблокировки устройства. Они могут узнать Pin-коды и пароли пользователя. Получать информацию через сенсоры гораздо легче, чем через приложения, загружаемые на смартфон, утверждает профессор. Исследователи провели анализ данных, полученных акселерометром, и составили своеобразный «словарь» движений смартфона при введении пароля, после чего разработали программное обеспечение, позволяющее расшифровывать Pin-коды при помощи данных, полученных с акселерометра. В ходе исследований ученым удалось правильно определить Pin-код в 43% случаев, а пароль — в 73%. Система дает сбои, когда пользователь находится в движении во время использования устройства, так как движения создают дополнительные помехи, и получить от акселерометра точные данные весьма трудно.

Эксперты, занимающиеся мобильной безопасностью, также считают, что чем больше у смартфона сенсоров, тем больше данных они могут зафиксировать, а это значит, что проблема защиты устройства становится более острой. Сейчас исследователи разрабатывают методы для предотвращения утечки данных, собранных гироскопами, акселерометрами или другими сенсорами. Так что можно предположить, что с развитием технологий и расширением функционала датчиков ситуация в сфере безопасности будет только накаляться.

Перспективы

Недавно американский изобретатель Джейкоб Фрэйден основал компанию Fraden Corporation и запатентовал систему бесконтактного измерения температуры для мобильных устройств. На тыльной стороне смартфона размещается небольшой инфракрасный датчик, который всего за секунду может снять показания температуры тела пользователя. Таким образом, в будущем смартфоны вполне могут превратиться в наших персональных медицинских помощников. Фрэйден собирается создать также средства измерения ультрафиолетового излучения и электромагнитного загрязнения. А вот сотрудники из лаборатории Next Lab Массачусетского технологического института утверждают, что скоро датчики в смартфонах смогут обнаруживать аритмию и тахиакардию, что заставит пользователей своевременно обращаться за помощью к врачам.

По мнению специалистов из IBM, к 2017 году смартфоны получат обоняние. Крошечные датчики запаха могут быть встроены в смартфоны и другие мобильные устройства. Обнаруженные следы химических соединений будут передаваться на мощное облачное приложение, способное проанализировать все, начиная от угарного газа до вируса гриппа. В результате, если вы чихнули, телефон сможет рассказать вам о вашей болезни.

Все самое интересное только начинается, и сегодня работы идут по массе направлений. Например, не исключено, что в ближайшем будущем ваш смартфон с помощью определенного рода датчиков научится имитировать тактильные ощущения. Вы сможете различать ткани, текстуры и переплетения. А звуковые датчики в сочетании массивными облачными вычислительными системами получат сверхчеловеческие слуховые возможности. Эх, чего только нельзя предположить, тем более, что масса предположений, расчетов и даже фантазий в последние годы стала сбываться с удивительной скоростью.

», в ней дал несколько советов при покупке, также затронул несколько технических терминов в устройстве самого аппарата. И самый непонятный термин это G – sensor. Сегодня я хочу рассказать – что это такое…


G-сенсор – это гравитационный датчик, так называемый «датчик удара» (сейчас практически все гаджеты комплектуются этими датчиками), эта функция следит за всеми гравитационными изменениями автомобиля, например резкие торможения, резкие повороты, разгоны, удары и т.д. При этом видеорегистратор записывает данные при помощи этого сенсора в отдельную специальную папку, чтобы ее нельзя было перезаписать (обычно папка носит название «Sobitie» могут быть и произвольные названия), ведь основное видео пишется непрерывно (стираются старые файлы и записываются новые и так по кругу). На основе данных «гравитационного датчика» можно узнать с какой стороны случилась авария, на видео при «ударе» автоматически накладывается дата и время. Нужно отметить срабатывает даже в припаркованном автомобиле.

Если у вас нет G-сенсора на вашем устройстве, то вы можете потерять запись важного события, что недопустимо.

Функциональность достаточно широка. Вы можете настроить съемку видео, как перед событием, так и после него. Можно настроить интервалы от 10 до 60 секунд, это позволит увидеть полную картину происшествия – занос автомобиля, пересечение сплошной, занос и т.д.

Нужно отметить, что водитель может настроить чувствительность «датчика удара» по своему усмотрению. При максимальной чувствительности, датчик будет учитывать даже мелкие отклонения автомобиля.

Как работает G-sensor

G-sensor распознает положение машины в трех осях. Дорогие модели видеорегистраторов могут получать данные даже в графическом режиме. На таких графиках можно увидеть колебание машины по каждой из осей, в зависимости от времени. При таких данных наглядно можно понять с какой точки был совершен удар. Все эти данные + видео с регистратора, практически на 100 % помогут выявить виновника прямо на месте, перед сотрудниками ГИБДД.

Я считаю что в видеорегистраторе наличие этого сенсора обязательно, ведь мы покупаем видеорегистратор именно для доказывания своей невиновности, а чем больше данных тем лучше.

НА этом все, думаю моя статья была вам полезна.



Загрузка...