sonyps4.ru

Cоздание печатной платы. Общие сведения, история, технологии

В статье рассматривается топология высокочастотных плат с практической точки зрения. Основная ее цель - помочь новичкам прочувствовать множество моментов, которые должны быть учтены при разработке печатных плат (ПП) для высокочастотных устройств. Она также будет полезна и для повышения квалификации тех специалистов, у кого был перерыв в разработке плат. Основное внимание уделено способам улучшения характеристик схем, ускорению времени их разработки и внесения изменений.

Рассмотренные вопросы и предлагаемые методики применимы к топологии высокочастотных схем вообще. Когда операционный усилитель (ОУ) работает на высоких частотах, основные характеристики схемы зависят от топологии ПП. Даже при качественном проектировании работа схемы может оказаться посредственной из-за плохо продуманной или неаккуратной печатной платы. Быть уверенным в том, что схема покажет расчетные параметры, можно, только продумав заранее и обращая внимание на основные моменты в течение всего процесса разработки топологии ПП.

Схема

Хорошая схема - это необходимое, но не достаточное условие хорошей топологии. При ее проектировании не стоит скупиться на дополнительную информацию на чертеже, и внимательно отслеживать направление прохождения сигнала. Непрерывность прохождения сигнала слева направо, скорее всего, даст тот же эффект и на печатной плате. Максимум полезной информации в схеме обеспечит оптимальную работу разработчиков, техников, инженеров, которые будут весьма признательны вам, а заказчикам в случае возникновения каких-либо трудностей не придется срочно разыскивать разработчика.

Какую информацию, помимо обычных позиционных обозначений, рассеиваемой мощности и допусков, наносить на схему? Вот несколько советов, как из обычной схемы сделать суперсхему: добавьте формы сигналов, механическую информацию о корпусах или размерах, укажите длину дорожек, площади, где нельзя размещать детали, детали, которые должны быть на верхней стороне ПП; добавьте инструкцию по настройке, диапазоны номиналов элементов, тепловую информацию, линии согласованных импедансов, краткие определения работы схемы и так далее.

Никому не доверяйте

Если вы сами не занимаетесь топологией, выделите достаточно времени, чтобы вместе с разработчиком топологии пройтись вдоль и поперек схемы. Намного проще и быстрее уделить внимание топологии вначале, чем впоследствии заниматься бесконечными доработками. Не рассчитывайте, что разработчик топологии умеет читать ваши мысливводные и руководство наиболее важны в начале процесса разводки платы. Чем больше информации и участия в процессе разводки, тем лучше получится плата. Укажите разработчику промежуточные этапы, на которых вы хотите ознакомиться с процессом разводки. Эти «контрольные точки» предохраняют плату от далеко зашедших ошибок и минимизируют исправления топологии.

Указания разработчику должны включать: краткое описание функций схемы; эскиз платы, на которой показаны расположения входов и выходов; конструктив (stack up) платы (т. е. толщина платы, количество слоев, подробности сигнальных слоев и сплошных слоев - питания, земли - аналоговой, цифровой, высокочастотной); сигналы, которые должны быть на каждом слое; размещение критичных элементов; точное размещение развязывающих элементов; критичные дорожки; линии с согласованным импедансом; дорожки одинаковой длины; размеры элементов; дорожки вдали (или вблизи) друг от друга; цепи ближе (или дальше) друг от друга; элементы вблизи (или вдали) друг от друга; элементы на верхней и на нижней стороне платы. Никто не обвинит вас в излишке информации, если слишком мало - пожалуются, наоборот - никогда.

Расположение, расположение и еще раз расположение

При размещении схемы на плате важно все: от компоновки отдельных элементов до выбора того, какие цепи должны быть расположены рядом.

Обычно определяется местоположение входов, выходов и питания. Особое внимание следует уделить топологии: расположению критических элементов - как отдельных цепей, так и схемы в целом. Определение местоположения основных компонентов и путей прохождения сигнала с самого начала дает уверенность, что схема будет работать как положено. Это позволяет уменьшить стоимость, решить проблемы и сократить сроки разводки.

Развязка цепей питания

Развязка источника питания на выводах питания усилителя для минимизации шумов является критическим аспектом процесса разработки ПП - как для схем с высокоскоростными ОУ, так и для других высокочастотных схем. Обычно для развязки высокоскоростных ОУ применяется одна из двух конфигураций.

Между шиной питания и землей

Этот метод в большинстве случаев работает лучше и позволяет использовать конденсаторы, параллельно подключенные от выводов питания ОУ напрямую к земле. Обычно достаточно двух, но некоторые схемы выигрывают от нескольких параллельно соединенных конденсаторов.

Параллельное соединение конденсаторов с разной емкостью дает уверенность, что на выводах питания будет низкий импеданс по переменному току вшироком диапазоне частот. Это особенно важно, когда коэффициент влияния нестабильности источника питания (PSR) падает - конденсаторы компенсируют усилителю такое снижение. Обеспечение низкого импеданса пути к земле для многих декад частоты не дает нежелательным помехам попасть в ОУ. На рис. 1 показаны преимущества этого метода. На низших частотах конденсаторы с большой емкостью оказывают малое сопротивление цепи к земле. При частоте собственного резонанса конденсатора качество конденсатора ухудшается, и он становится индуктивностью. Поэтому важно использовать множество конденсаторов: когда частотная характеристика одного падает, другой становится значимым, обеспечивая низкий импеданс по переменному току в диапазоне многих декад частоты.

Рис. 1. Зависимость импеданса конденсатора от частоты

Непосредственно вблизи выводов питания ОУ конденсатор с меньшей емкостью и меньшими геометрическими размерами следует расположить на той же стороне, что и ОУ - и как можно ближе к усилителю. Сторону земли конденсатора необходимо подсоединить к слою земли с минимальными длинами вывода и дорожки. Соединение должно быть как можно ближе к нагрузке усилителя, чтобы минимизировать помехи между шинами питания и землей. Рис. 2 иллюстрирует эту методику.

Рис. 2. Подсоединение шин питания к земле параллельными конденсаторами

Этот процесс следует повторить со следующим по емкости конденсатором. Хорошее правило - начинать с конденсатора наименьшей емкости - 0,01 мкФ и далее переходить к оксидному конденсатору емкостью 2,2 мкФ с малым ESR (эквивалентное последовательное сопротивление). Первый из указанных в корпусе 0508 имеет малую последовательную индуктивность и отличные высокочастотные параметры.

Между одной и другой шиной

Альтернативной конфигурацией является использование одного или более конденсаторов, подключенных между положительной и отрицательной шинами питания ОУ. Этот способ используется, когда трудно установить все четыре конденсатора в схему. Недостатком является увеличение размеров конденсаторов, так как напряжение на них удваивается по сравнению с блокировкой каждого источника по отдельности. В этом случае требуется конденсатор с большим напряжением пробоя, что приводит к увеличению его размера. Однако этот вариант улучшает как PSR, так и характеристики по искажениям.

Так как каждая схема и ее топология имеют различия, то конфигурация, число и емкости конденсаторов определятся конкретными требованиями схемы.

где C - емкость; A - площадь обкладки в см²; k - относительная диэлектрическая проницаемость материала платы; и d - расстояние между обкладками в см.

Рис. 5. Емкость плоскопараллельного конденсатора

Следует рассмотреть также и индуктивность полоски проводника, возникающей изза чрезмерной длины дорожки и недостатка земляного слоя. Уравнение 2 дает формулу индуктивности дорожки (рис. 6):

где W - ширина дорожки; L - ее длина; и H - толщина. Все размеры - в миллиметрах.

Рис. 6. Индуктивность дорожки

Рис. 7. Отклик на импульс без слоя и со слоем земли

где T - толщина платы и d - диаметр переходного отверстия в сантиметрах.

Рис. 8. Размеры переходного отверстия

Слой земли

Здесь мы коснемся отдельных ключевых моментов этого вопроса. Перечень ссылок на данную тему приводится в конце статьи.

Так как слой земли обычно имеет большую площадь и поперечное сечение, его сопротивление сохраняется минимальным. На низких частотах ток протекает по пути наименьшего сопротивления, но на высоких частотах - по пути наименьшего сопротивления. Тем не менее есть исключения, и иногда меньший слой заземления работает лучше. Это касается и высокоскоростных ОУ, если удалить часть земли под входными и выходными контактными площадками.

Аналоговые и цифровые цепи, включая их землю и подложки, по возможности, должны быть разделены. Крутые фронты импульсов создают пики тока, текущие по слою земли и создающие помехи, ухудшая аналоговые параметры схемы.

На высоких частотах следует обратить внимание на явление, называемое скин-эффектом. Он заставляет ток протекать по внешней поверхности проводника, как бы делая его уже и увеличивая сопротивление по сравнению с значением проводника на постоянном токе. Хотя рассмотрение скин-эффекта не входит в задачи этой статьи, приведем приблизительное выражение для расчета глубины скин-слоя в меди (в см):

Для снижения скин-эффекта может быть полезным покрытие из металлов, снижающих возможность его появления.

Корпуса

Рис. 9. Отличия топологии схем с ОУ: a) корпус SOIC; б) корпус SOT-23; в) корпус SOIC с резистором RF с нижней стороны платы.

Топология платы с корпусом SOT-23 почти идеальна: минимальная длина дорожек обратной связи, минимальное использование переходных отверстий; нагрузка и развязывающий конденсатор подключены к земле короткими дорожками к одной точке; развязывающий конденсатор положительного напряжения, не показанный на рис. 9б, размещен прямо под конденсатором отрицательного напряжения на нижней стороне платы.

Цоколевка усилителя с малым уровнем искажений

Новая цоколевка для уменьшения искажений, примененная в некоторых ОУ компании Analog Devices (например, AD8045), помогает ликвидировать обе упомянутых выше проблемы и улучшает характеристики в двух других важных областях. Цоколевка с малым уровнем искажений LFCP, показанная на рис. 10, получена из традиционной для ОУ цоколевки, поворотом ее против часовой стрелки на один вывод и добавлением второго выходного вывода, предназначенного для цепи обратной связи.

Рис. 10. ОУ с цоколевкой для малых искажений

Цоколевка для малых искажений допускает короткое соединение между выходом (выводом, предназначенным для обратной связи) и инвертирующим входом, как показано на рис. 11. Это значительно упрощает топологию и придает ей рациональную форму.

Рис. 11. Топология ПП для ОУ с малыми искажениями AD8045

Вторым преимуществом корпуса является ослабление второй гармоники нелинейных искажений. Одной из причин ее возникновения является связь между неинвертирующим входом и выводом отрицательного напряжения питания. Цоколевка для малых искажений корпуса LFCP ликвидирует эту связь и значительно ослабляет вторую гармонику; в некоторых случаях ее снижение может быть до 14 дБ. На рис. 12 показана разница в искажениях ОУ AD8099 в корпусе SOIC и в корпусе LFCSP.

Рис. 12. Сравнение искажений ОУ AD8099 в разных корпусах - SOIC и LFCSP

Этот корпус имеет еще одно преимущество - в рассеянии мощности. У корпуса открытая подложка микросхемы, которая снижает его тепловое сопротивление, улучшая θ JA примерно на 40%. В этом случае микросхема работает при пониженных температурах, что повышает ее надежность.

В настоящее время в новых корпусах для малых искажений доступны три высокоскоростных ОУ Analog Devices: AD8045, AD8099 и AD8000.

Разводка и экранирование

На печатных платах электронных схем могут одновременно присутствовать самые различные сигналы - аналоговые и цифровые, с высоким и низким напряжением, большим и малым током - от постоянного тока до гигагерцовых частот. Не дать им интерферировать друг с другом- трудная задача.

Важно заранее продумать план обработки сигналов на плате, отметить, какие из них чувствительны, и определить шаги для сохранения их неприкосновенности. Слои земли, кроме предоставления опорного потенциала для электрических сигналов, можно также использовать и для экранирования. Когда требуется изолировать сигналы, первым делом следует обеспечить достаточное расстояние между дорожками сигналов. Рассмотрим несколько практических мер:

  • Минимизирование длины параллельных линий и предотвращение близкого соседства между сигнальными дорожками на одном и том же слое уменьшит индуктивную связь.
  • Минимизирование длины дорожек на смежных слоях предотвратит емкостную связь.
  • Сигнальные дорожки, требующие особой изоляции, должны проходить на разных слоях и, если их невозможно разнести подальше,- перпендикулярно друг другу, между ними следует проложить слой земли. Перпендикулярная разводка минимизирует емкостную связь, а земля образует электрический экран. Эта методика используется при формировании линий с согласованным импедансом (волновым сопротивлением).

Высокочастотные (ВЧ) сигналы обычно проводят по линиям с согласованным импедансом. То есть волновое сопротивление дорожки обеспечивается равным, например 50 Ом (типичное для ВЧ-схем). Два широко применяемых типа согласованных линий - микрополосковые и полосковые - могут дать одинаковые результаты, но имеют разные реализации.

Микрополосковая согласованная линия, показанная на рис. 13, может проходить на любой стороне платы; она использует слой земли, лежащий непосредственно под ней, в качестве плоскости базового заземления.

Рис. 13. Микрополосковая линия передачи

Для расчета характеристического волнового сопротивления линии на плате FR4 можно воспользоваться следующей формулой:

где H - расстояние от плоскости земли до дорожки; W - ширина дорожки; T - толщина дорожки; все размеры в милах (1 мил = 10 –3 дюйма). ε r - относительная диэлектрическая проницаемость материала платы.

Полосковая согласованная линия (рис. 14) использует два слоя плоскости земли и находящуюся между ними сигнальную дорожку. Этот способ использует больше дорожек, требует большего количества слоев, чувствителен к изменениям толщины изолятора и стоит дороже, поэтому он обычно применяется только в устройствах с повышенными требованиями.

Рис. 14. Полосковая согласованная линия

Уравнение для расчета характеристического волнового сопротивления полосковой линии:

Рис. 15. Защитные кольца: a) инвертирующая и неинвертирующая схема; б) реализация обоих вариантов в корпусе SOT-23-5

Существует много других вариантов экранирования и разводки. Для получения дополнительной информации по этим и другим темам, упомянутым выше, читателю предлагается ознакомиться с нижеприведенными ссылками.

Заключение

Для успешного проектирования приборов на высокоскоростных ОУ важна разумная топология печатных плат. Ее основой является хорошая схема, важно также тесное сотрудничество инженера-схемотехника и разработчика печатной платы, особенно при размещении элементов и их соединении.

Литература

  1. Ardizzoni J. Keep High-Speed Circuit-Board Layout on Track // EE Times, May 23, 2005.
  2. Brokaw P. An IC Amplifier User"s Guide to Decoupling, Grounding, and Making Things Go Right for a Change // Analog Devices Application Note AN-202.
  3. Brokaw P., Barrow J. Grounding for Low- and High-Frequency Circuits // Analog Devices Application Note AN-345.
  4. Buxton J. Careful Design Tames High-Speed Op Amps // Analog Devices Application Note AN-257.
  5. DiSanto G. Proper PC-Board Layout Improves Dynamic Range // EDN, November 11, 2004.
  6. Grant D., Wurcer S. Avoiding Passive-Component Pitfalls // Analog Devices Application Note AN-348.
  7. Johnson H. W., Graham M. High-Speed Digital Design, a Handbook of Black Magic. Prentice Hall, 1993.
  8. Jung W., ed., Op Amp Applications Handbook // Elsevier-Newnes, 2005.
Что такое печатная платa

Печа́тная пла́та (англ. printed circuit board, PCB, или printed wiring board, PWB) - пластина из диэлектрика, на поверхности и/или в объёме которой сформированы электропроводящие цепи электронной схемы. Печатная плата предназначена для электрического и механического соединения различных электронных компонентов. Электронные компоненты на печатной плате соединяются своими выводами с элементами проводящего рисунка обычно пайкой.

В отличие от навесного монтажа, на печатной плате электропроводящий рисунок выполнен из фольги, целиком расположенной на твердой изолирующей основе. Печатная плата содержит монтажные отверстия и контактные площадки для монтажа выводных или планарных компонентов. Кроме того, в печатных платах имеются переходные отверстия для электрического соединения участков фольги, расположенных на разных слоях платы. С внешних сторон на плату обычно нанесены защитное покрытие («паяльная маска») и маркировка (вспомогательный рисунок и текст согласно конструкторской документации).

В зависимости от количества слоёв с электропроводящим рисунком, печатные платы подразделяют на:

    односторонние (ОПП): имеется только один слой фольги, наклеенной на одну сторону листа диэлектрика.

    двухсторонние (ДПП): два слоя фольги.

    многослойные (МПП): фольга не только на двух сторонах платы, но и во внутренних слоях диэлектрика. Многослойные печатные платы получаются склеиванием нескольких односторонних или двухсторонних плат.

По мере роста сложности проектируемых устройств и плотности монтажа, увеличивается количество слоёв на платах.

Основой печатной платы служит диэлектрик, наиболее часто используются такие материалы, как стеклотекстолит, гетинакс. Также основой печатных плат может служить металлическое основание, покрытое диэлектриком (например, анодированный алюминий), поверх диэлектрика наносится медная фольга дорожек. Такие печатные платы применяются в силовой электронике для эффективного теплоотвода от электронных компонентов. При этом металлическое основание платы крепится к радиатору. В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт, армированный стеклотканью (например, ФАФ-4Д), и керамика. Гибкие платы делают из полиимидных материалов, таких как каптон.

Какой материал будем использовать для изготовления плат

Самые распространненые, доступные материалы для изготовления плат - это Гетинакс и Стеклотекстолит. Гетинакс-бумага пропитанная бакелитовым лаком, текстолит стекловолокно с эпоксидкой. Однозначно будем использовать стеклотекстолит!

Стеклотекстолит фольгированный представляет собой листы, изготовленные на основе стеклотканей, пропитанных связующим на основе эпоксидных смол и облицованные с двух сторон медной электролитической гальваностойкой фольгой толщиной 35 мкм. Предельно допустимая температура от -60ºС до +105ºС. Имеет очень высокие механические и электроизоляционные свойства, хорошо поддается механической обработке резкой, сверлением, штамповкой.

Стеклотекстолит в основном используется одно или двухсторонний толщиной 1.5мм и с медной фольгой толщиной 35мкм или 18мкм. Мы будем использовать односторонний стеклотекстолит толщиной 0.8мм с фольгой толщиной 35мкм (почему будет подробно рассмотрено далее).

Методы изготовления печатных плат дома

Платы можно изготавливать химическим методом и механическим.

При химическом методе в тех местах где должны быть дорожки (рисунок) на плате на фольгу наносится защитный состав (лак, тонер, краска и т.д.). Далее плата погружается в специальный раствор (хлорное железо, перекись водорода и другие) который «разъедает» медную фольгу, но не действует на защитный состав. В итоге под защитным составом остается медь. Защитный состав в дальнейшем удаляется растворителем и остаётся готовая плата.

При механическом методе используется скальпель (при ручном изготовлении) или фрезерный станок. Специальная фреза делает бороздки на фольге, в итоге оставляя островки с фольгой - необходимый рисунок.

Фрезерные станки довольно дорогое удовольствие, а также сами фрезы дороги и имеют небольшой ресурс. Так что, этот метод мы не будем использовать.

Самый простой химический метод - ручной. Ризографом лаком рисуются дорожки на плате и потом травим раствором. Этот метод не позволяет делать сложные платы, с очень тонкими дорожками - так что это тоже не наш случай.


Следующий метод изготовления плат - с помощью фоторезиста. Это очень распространненая технология (на заводе платы делаются как раз этим методом) и она часто используется в домашних условиях. В интернет очень много статей и методик изготовления плат по этой технологии. Она дает очень хорошие и повторяемые результаты. Однако это тоже не наш вариант. Основная причина - довольно дорогие материалы (фоторезист, который к тому же портится со временем), а также дополнительные инструменты (УФ ламка засветки, ламинатор). Конечно, если у вас будет объемное производство плат дома - то фоторезист вне конкуренции - рекомендуем освоить его. Также стоит отметить, что оборудование и технология фоторезиста позволяет изготовливать шелкографию и защитные маски на платы.

С появлением лазерных принтеров радиолюбители стали активно их использовать для изготовления плат. Как известно, для печати лазерный принтер использует «тонер». Это специальный порошок, который под температурой спекается и прилипает к бумаге - в итоге получается рисунок. Тонер устойчив к различным химическим веществам, это позволяет использовать его как защитное покрытие на поверхности меди.

Итак, наш метод состоит в том, чтобы перенести тонер с бумаги на поверхность медной фольги и потом протравить плату специальным раствором для получения рисунка.

В связи с простотой использования данный метод заслужил очень большое распространение в радиолюбительстве. Если вы наберете в Yandex или Google как перенести тонер с бумаги на плату - то сразу найдёте такой термин как «ЛУТ» - лазерно утюжная технология. Платы по этой технологии делаются так: печатается рисунок дорожек в зеркальном варианте, бумага прикладывается к плате рисунком к меди, сверху данную бумагу гладим утюгом, тонер размягчяется и прилипает к плате. Бумага далее размачивается в воде и плата готова.

В интернет «миллион» статей о том как сделать плату по этой технологии. Но у данной технологии есть много минусов, которые требуют прямых рук и очень долгой пристройки себя к ней. То есть ее надо почувствовать. Платы не выходят с первого раза, получаются через раз. Есть много усовершенствований - использовать ламинатор (с переделкой - в обычном не хватает температуры), которые позволяют добиться очень хороших результатов. Даже есть методы построения специальных термопрессов, но все это опять требует специального оборудования. Основные недостатки ЛУТ технологии:

    перегрев - дорожки растекаются - становятся шире

    недогрев - дорожки остаютяся на бумаге

    бумага «прижаривается» к плате - даже при размокании сложно отходит - в итоге может повредится тонер. Очень много информации в интернете какую бумагу выбрать.

    Пористый тонер - после снятия бумаги в тонере остаются микропоры - через них плата тоже травится - получаются изъеденные дорожки

    повторяемость результата - сегодня отлично, завтра плохо, потом хорошо - стабильного результат добиться очень сложно - нужна строго постоянная температура прогрева тонера, нужно стабильное давление прижима платы.

К слову, у меня этим методом не получилось сделать плату. Пробовал делать и на журналах, и на мелованной бумаге. В итоге даже платы портил - от перегрева вздувалась медь.

В интернет почему-то незаслуженно мало информации про еще один метод переноса тонера - метод холодного химического переноса. Он основан на том факте, что тонер не растворяется спиртом, но растворяется ацетоном. В итоге, если подобрать такую смесь ацетона и спирта, которая будет только размягчать тонер - то его можно «переклеить» на плату с бумаги. Этот метод мне очень понравился и сразу дал свои плоды - первая плата была готова. Однако, как оказалось потом, я нигде не смог найти подробной информации, которая давала бы 100% результат. Нужен такой метод, которым плату мог сделать даже ребёнок. Но на второй раз плату сделать не вышло, потом опять и пришло долго подбирать нужные ингридиенты.

В итоге после долгих была разработана последовательность действий, подобраны все компоненты, которые дают если не 100% то 95% хорошего результата. И самое главное процесс настолько простой, что плату может сделать ребенок полностью самостоятельно. Вот этот метод и будем использовать. (конечно его можно и далее доводить до идеала - если у вас выйдет лучше - то пишите). Плюсы данного метода:

    все реактивы недорогие, доступные и безопасные

    не нужны дополнительные инструменты (утюги, лампы, ламинаторы - ничего, хотя нет - нужна кастрюля)

    нет возможности испортить плату - плата вообще не нагревается

    бумага отходит сама - видно результат перевода тонера - где перевод не вышел

    нет пор в тонере (они заклеиваются бумагой) - соответственно нет протравов

    делаем 1-2-3-4-5 и получаем всегда один и тот же результат - почти 100% повторяемость

Прежде чем начать, посмотрим какие платы нам нужны, и что мы сможем сделать дома данным методом.

Основные требования к изготовленным платам

Мы будем делать приборы на микроконтроллерах, с применением современных датчиков и микросхем. Микросхемы становятся все меньше и меньше. Соответственно необходимо выполнение следующих требований к платам:

    платы должны быть двух сторонними (как правило развести одностороннюю плату очень сложно, сделать дома четырехслойные платы довольно сложно, микроконтроллерам нужен земляной слой для защиты от помех)

    дорожки должны быть толщиной 0.2мм - такого размера вполне достаточно - 0.1мм было бы еще лучше - но есть вероятность протравов, отхода дорожек при пайке

    промежутки между дорожками - 0.2мм - этого достаточно практически для всех схем. Уменьшение зазора до 0.1мм чревато сливанием дорожек и сложностью в контроле платы на замыкания.

Мы не будем использовать защитные маски, а также делать шелкографию - это усложнит производство, и если вы делаете плату для себя, то в этом нет нужды. Опять же в интернет много информации на эту тему, и если есть желание вы можете навести «марафет» самостоятельно.

Мы не будем лудить платы, в этом тоже нет необходимости (если только вы не делаете прибор на 100лет). Для защиты мы будем использовать лак. Основная наша цель - быстро, качественно, дёшево в домашних условиях сделать плату для прибора.

Вот так выглядит готовая плата. сделанная нашим методом - дорожки 0.25 и 0.3, расстояния 0.2

Как сделать двухстороннюю плату из 2-ух односторонних

Одна из проблем изготовления двухсторонних плат - это совмещение сторон, так чтобы переходные отверстия совпадали. Обычно для этого делается «бутерброд». На листе бумаги печатается сразу 2 стороны. Лист сгибается пополам, на просвет точно совмещаются стороны с помощью специальных меток. Внутрь вкладывается двухсторонний текстолит. При методе ЛУТ такой бутерброд проглаживается утюгом и получается двухсторонняя плата.

Однако, при методе холодного переноса тонера сам перенос осуществляется с помощью жидкости. И поэтому очень сложно организовать процесс смачивания одной стороны одновременно с другой стороной. Это конечно тоже можно сделать, но с помощью специального приспособления - мини пресса (тисков). Берутся плотные листы бумаги - которые впитывают жидкость для переноса тонера. Листы смачиваются так, чтобы жидкость не капала, и лист держал форму. И дальше делается «бутерброд» - смоченный лист, лист туалетной бумаги для впитывания лишней жидкости, лист с рисунком, плата двухсторонняя, лист с рисунком, лист туалетной бумаги, опять смоченный лист. Все это зажимается вертикально в тиски. Но мы так делать не будем, мы поступим проще.

На форумах по изготовлению плат проскочила очень хорошая мысль - какая проблема делать двухстороннюю плату - берем нож и режем текстолит пополам. Так как стеклотекстолит - это слоеный материал, то это не сложно сделать при опредленной сноровке:


В итоге из одной двухсторонней платы толщиной 1.5мм получаем две односторонние половинки.


Далее делаем две платы, сверлим и все - они идеально совмещены. Ровно разрезать текстолит не всегда получалось, и в итоге пришла идея использовать сразу тонкий односторонний текстолит толщиной 0.8мм. Две половинки потом можно не склеивать, они будут держаться за счет запаяных перемычек в переходных отверстиях, кнопок, разъемов. Но если это необходимо без проблем можно склеить эпоксидным клеем.

Основные плюсы такого похода:

    Текстолит толщиной 0,8мм легко режется ножницами по бумаге! В любую форму, то есть очень легко обрезать под корпус.

    Тонкий текстолит - прозрачный - посветив фонарем снизу можно легко проверить корректность всех дорожек, замыкания, разрывы.

    Паять одну сторону проще - не мешают компоненты на другой стороне и легко можно контролировать спайки выводов микросхем- соединить стороны можно в самом конце

    Сверлить надо в два раза больше отверстий и отверстия могут чуть-чуть не совпасть

    Немного теряется жёсткость конструкции если не склеивать платы, а склеивать не очень удобно

    Односторонний стеклотекстолит толщиной 0.8мм трудно купить, в основном продается 1.5мм, но если не удалось достать, то можно раскроить ножем более толстый текстолит.

Перейдем к деталям.

Необходимые инструменты и химия

Нам понадобятся следующие ингридиенты:


Теперь когда все это есть, делаем по шагам.

1. Компоновка слоев платы на листе бумаги для печати c помощью InkScape

Автоматический цанговый набор:

Мы рекомендуем первый вариант - он дешевле. Далее необходимо к мотору припаять провода и выключатель (лучше кнопку). Кнопку лучше разместить на корпусе, чтобы удобнее было быстро включать и выключать моторчик. Остается подобрать блок питания, можно взять любой блок питания на 7-12в током 1А (можно и меньше), если такого блока питания нет, то может подойти зарядка по USB на 1-2А или батарейка Крона (только надо пробовать - не все зарядки любят моторы, мотор может не запустится).

Дрель готова, можно сверлить. Но вот только необходимо сверлить строго под углом 90градусов. Можно соорудить мини станок - в интернет есть различные схемы:

Но есть более простое решение.

Кондуктор для сверления

Чтобы сверлить ровно под 90 градусов достаточно изготовить кондуктор для сверления. Мы будем делать вот такой:

Изготовить его очень легко. Берем квадратик любого пластика. Кладем нашу дрель на стол или другую ровную поверхность. И сверлим в пластике нужным сверлом отверстие. Важно обеспечить ровное горизонтальное смещение дрели. Можно прислонить моторчик к стене или рейке и пластик тоже. Далее большим сверлом рассверлить отверстие под цангу. С обратной стороны рассверлить или срезать кусок пластика, чтобы было видно сверло. На низ можно приклеить нескользящую поверхность - бумагу или резинку. Такой кондуктор надо сделать под каждое сверло. Это обеспечит идеально точное сверление!

Такой вариант тоже подойдет, срезать сверху часть пластика и срезать уголок снизу.

Вот как производится сверление с его помощью:


Зажимаем сверло так, чтобы оно торчало на 2-3мм при полном погружении цанги. Ставим сверло на место где надо сверлить (при травлении платы у нас будет оставаться метка где сверлить в виде мини отверстия в меди - в Kicad мы специально ставили галку для этого, так что сверло будет само вставать туда), прижимаем кондуктор и включаем мотор - отверстие готово. Для подстветки можно использовать фонарик, положив его на стол.

Как уже мы писали ранее, сверлить можно только отверстия с одной стороны - там где подходят дорожки - вторую половину можно досверлить уже без кондуктора по направляющему первому отверстию. Это немного экономит силы.

8. Лужение платы

Зачем лудить платы - в основном для защиты меди от корозии. Основной минус лужения - перегрев платы, возможная порча дорожек. Если у вас нет паяльной станции - однозначо - не лудите плату! Если она есть, то риск минимальный.

Можно лудить плату сплавом РОЗЕ в кипящей воде, но он дорого стоит и его сложно достать. Лудить лучще обычным припоем. Чтобы сдеалать это качественно, очень тонким слоем надо сделать простое приспособление. Берем кусочек оплетки для выпайки деталей и одеваем ее на жало, прикручиваем проволокой к жалу, чтобы она не соскочила:

Плату покрываем флюсом - например ЛТИ120 и оплетку тоже. Теперь в оплетку набираем олово и ей водим по плате (красим)- получается отличный результат. Но по мере использования оплетка расподается и на плате начинают оставаться ворскинки медные - их обязательно надо убрать, а то будет замыкание! Увидеть это очень легко посветив фонарем с обратной стороны платы. При таком методе хорошо использовать или мощный паяльник (60ват) или сплав РОЗЕ.

В итоге, платы лучше не лудить, а покрывать лаком в самом конце- например PLASTIC 70, или простой акриловый лак купленный в автозапчастях KU-9004:

Тонкий тюнинг метода переноса тонера

В методе есть два момента, которые поддаются тюнингу, и могут не получиться сразу. Для их настройки, необходимо в Kicad сделать тестовую плату, дорожки по квадратной спирали разной толщины, от 0.3 до 0.1 мм и с разными промежутками, от 0.3 до 0.1 мм. Лучше сразу распечатать несколько таких образцов на одном листе и провести подстройку.

Возможные проблемы, которые мы будем устранять:

1) дорожки могут менять геометрию - растекаться, становится шире, обычно очень не значительно, до 0.1мм - но это не хорошо

2) тонер может плохо прилипать к плате, отходить при снятии бумаги, плохо держаться на плате

Первая и вторая проблема взаимосвязаны. Решаю первую, вы приходите ко второй. Надо найти компромисс.

Дорожки могут растекаться по двум причинам - слишкой большой груз прижима, слишком много ацетона в составе полученной жидкости. В первую очередь надо попробовать уменьшить груз. Минимальный груз - около 800гр, ниже уменьшать не стоит. Соответственно груз кладем без всякого прижима - просто ставим сверху и все. Обязательно должно быть 2-3 слоя туалетной бумаги для хорошего впитывания лишнего раствора. Вы должны добиться того, что после снятия груза, бумага должна быть белая, без фиолетовых подтеков. Такие подтеки говорят о сильном расплавлении тонера. Если грузом отрегулировать не получилось, дорожки все равно расплываются, то увеличиваем долю жидкости для снятия лака в растворе. Можно увеличить до 3 части жидкости и 1 часть ацетона.

Вторая проблема, если нет нарушения геометрии, говорит о недостаточном весе груза или малом количестве ацетона. Начать опять же стоит с груза. Больше 3кг смысла не имеет. Если тонер все равно плохо держится на плате, то надо увеличить количество ацетона.

Эта проблема в основном возникает, когда вы меняете жидкость для снятия лака. К сожалению, это не постоянный и не чистый компонент, но на другой его заменить не получилось. Пробовал заменить его спиртом, но видимо получается не однородная смесь и тонер прилипает какими-то вкраплениями. Также жидкость для снятия лака может содержать ацетон, тогда ее надо будет меньше. В общем, такой тюнинг вам надо будет провести один раз, пока не закончится жидкость.

Плата готова

Если вы не будете сразу запаивать плату, то ее необходимо защитить. Самый простой способ сделать это - покрыть спиртоканифольным флюсом. Перед пайкой это покрытие надо будет снять например изопропиловым спиртом.

Альтернативные варианты

Вы также можете сделать плату:

Дополнительно, сейчас набирает популярность сервис изготовления плат на заказ - например Easy EDA . Если необходима более сложная плата (например 4-х слойная) - то это единственный выход.

ОБЩИЕ СООБРАЖЕНИЯ

Из-за существенных отличий аналоговой схемотехники от цифровой, аналоговая часть схемы должна быть отделена от остальной части, а при ее разводке должны соблюдаться особые методы и правила. Эффекты, возникающие из-за неидеальности характеристик печатных плат, становятся особенно заметными в высокочастотных аналоговых схемах, но погрешости общего вида, описанные в этой статье, могут оказывать воздействие на качественные характеристики устройств, работающих даже в звуковом диапазоне частот.

Намерением этой статьи является обсуждение распространенных ошибок, совершаемых разработчиками печатных плат, описание воздействия этих ошибок на качественные показатели и рекомендации по разрешению возникших проблем.

Печатная плата - компонент схемы

Лишь в редких случаях печатная плата аналоговой схемы может быть разведена так, чтобы вносимые ею воздействия не оказывали никакого влияния на работу схемы. В то же время, любое такое воздействие может быть минимизировано так, чтобы характеристики аналоговой схемы устройства были такими же, как и характеристики модели и прототипа.

Макетирование

Разработчики цифровых схем могут скорректировать небольшие ошибки на изготовленной плате, дополняя ее перемычками или, наоборот, удаляя лишние проводники, внося изменения в работу программируемых микросхем и т.п., переходя очень скоро к следующей разработке. Для аналоговой схемы дело обстоит не так. Некоторые из распространенных ошибок, обсуждаемых в этой статье, не могут быть исправлены дополнением перемычек или удалением лишних проводников. Они могут и будут приводить в нерабочее состояние печатную плату целиком.

Очень важно для разработчика цифровых схем, использующего такие способы исправления, прочесть и понять материал, изложенный в этой статье, заблаговременно, до передачи проекта в производство. Немного внимания, уделенного при разработке, и обсуждение возможных вариантов помогут не только предотвратить превращение печатной платы в утильсырье, но и уменьшить стоимость из-за грубых ошибок в небольшой аналоговой части схемы. Поиск ошибок и их исправление может привести к потерям сотен часов. Макетирование может сократить это время до одного дня или менее. Макетируйте все свои аналоговые схемы.

Источники шума и помех

Шум и помехи являются основнымм элементами, ограничивающими качественные характеристики схем. Помехи могут как излучаться источниками, так и наводиться на элементы схемы. Аналоговая схема часто располагается на печатной плате вместе с быстродействующими цифровыми компонентами, включая цифровые сигнал-процессоры (DSP ).

Высокочастотные логические сигналы создают значительные радиочастотные помехи (RFI ). Количество источников излучения шума огромно: ключевые источники питания цифровых систем, мобильные телефоны, радио и телевидение, источники питания ламп дневного света, персональные компьютеры, грозовые разряды и т.д. Даже если аналоговая схема работает в звуковом частотном диапазоне, радиочастотные помехи могут создавать заметный шум в выходном сигнале.

Выбор конструкции печатной платы является важным фактором, определяющим механические характеристики при использовании устройства в целом. Для изготовления печатных плат используются материалы различного уровня качества. Наиболее подходящим и удобным для разработчика будет, если изготовитель печатных плат находиться неподалеку. В этом случае легко осуществить контроль удельного сопротивления и диэлектрической постоянной - основных параметров материала печатной платы. К сожалению, этого бывает недостаточно и часто необходимо знание других параметров, таких как воспламеняемость, высокотемпературная стабильность и коэффициент гигроскопичности. Эти параметры может знать только производитель компонентов, используемых при производстве печатных плат.

Слоистые материалы обозначаются индексами FR (flame resistant, сопротивляемость к воспламенению ) и G. Материал с индексом FR-1 обладает наибольшей горючестью, а FR-5 - наименьшей. Материалы с индексами G10 и G11 обладают особыми характеристиками. Материалы печатных плат приведены в табл. 1.

Не используйте печатную плату категории FR-1. Есть много примеров использования печатных плат FR-1, на которых имеются повреждения от теплового воздействия мощных компонентов. Печатные платы этой категории более похожи на картон.

FR-4 часто используется при изготовлении промышленного оборудования, в то время, как FR-2 используется в производстве бытовой техники. Эти две категории стандартизованы в промышленности, а печатные платы FR-2 и FR-4 часто подходят для большинства приложений. Но иногда неидеальность характеристик этих категорий заставляет использовать другие материалы. Например, для очень высокочастотных приложений в качестве материала печатных плат используются фторопласт и даже керамика. Однако, чем экзотичнее материал печатной платы, тем выше может быть цена.

При выборе материала печатной платы обращайте особое внимание на его гигроскопичность, поскольку этот параметр може оказать сильный негативный эффект на желаемые характеристики платы - поверхностное сопротивление, утечки, высоковольтные изоляционные свойства (пробои и искрения) и механическая прочность. Также обращайте внимание на рабочую температуру. Участки с высокой температурой могут встречаться в неожиданных местах, например, рядом с большими цифровыми интегральными схемами, переключения которых происходят на высокой частоте. Если такие участки расположены непосредственно под аналоговыми компонентами, повышение температуры может сказаться на изменении характеристик аналоговой схемы.

Таблица 1

Компоненты, комментарии

бумага, фенольная композиция: прессование и штамповка при комнатной температуре, высокий коэффициент гигроскопичности

бумага, фенольная композиция: применимый для односторонних печатных плат бытовой техники, невысокий коэффициент гигроскопичности

бумага, эпоксидная композиция: разработки с хорошими механическими и электрическими характеристиками

стеклоткань, эпоксидная композиция: прекрасные механические и электрические свойства

стеклоткань, эпоксидная композиция: высокая прочность при повышенных температурах, отсутствие воспламенения

стеклоткань, эпоксидная композиция: высокие изоляционные свойства, наиболее высокая прочность стеклоткани, низкий коэффициент гигроскопичности

стеклоткань, эпоксидная композиция: высокая прочность на изгиб при повышенных температурах, высокая сопротивляемость растворителям

После того, как материал печатной платы выбран, необходимо определить толщину фольги печатной платы. Этот параметр в первую очередь выбирается исходя из максимальной величины протекающего тока. По возможности, старайтесь избегать применения очень тонкой фольги.

КОЛИЧЕСТВО СЛОЕВ ПЕЧАТНОЙ ПЛАТЫ

В зависимости от общей сложности схемы и качественных требований разработчик должен определить количество слоев печатной платы.

Однослойные печатные платы

Очень простые электронные схемы выполняются на односторонних платах с использованием дешевых фольгированных материалов (FR-1 или FR-2) и часто имеют много перемычек, напоминая двухсторонние платы. Такой способ создания печатных плат рекомендуется только для низкочастотных схем. По причинам, которые будут описаны ниже, односторонние печатные платы в большой степени восприимчивы к наводкам . Хорошую одностороннюю печатную плату достаточно сложно разработать из-за многих причин. Тем не менее хорошие платы такого типа встречаются, но при их разработке требуется очень многое обдумывать заранее.

Двухслойные печатные платы

На следующем уровне стоят двухсторонние печатные платы, которые в большинстве случаев используют в качестве материала подложки FR-4, хотя иногда встречается и FR-2. Применение FR-4 более предпочтительнее, поскольку в печатных платах из этого материала отверстия получаются более лучшего качества. Схемы на двухсторонних печатных платах разводятся гораздо легче, т.к. в двух слоях проще осуществить разводку пересекающихся трасс. Однако для аналоговых схем пересечение трасс выполнять не рекомендуется. Где возможно, нижний слой (bottom ) необходимо отводить под полигон земли, а остальные сигналы разводить в верхнем слое (top ). Использование полигона в качестве земляной шины дает несколько преимуществ:

  • общий провод является наиболее часто подключаемым в схеме проводом; поэтому резонно иметь "много" общего провода для упрощения разводки.
  • увеличивается механическая прочность платы.
  • уменьшается сопротивление всех подключений к общему проводу, что, в свою очередь, уменьшает шум и наводки.
  • увеличивается распределенная емкость для каждой цепи схемы, помогая подавлять излучаемый шум.
  • полигон, являющийся экраном, подавляет наводки, излучаемые источниками, располагающимися со стороны полигона.

Двухсторонние печатные платы, несмотря на все свои преимущества, не являются лучшими, особенно для малосигнальных или высокоскоростных схем. В общем случае, толщина печатной платы, т.е. расстояние между слоями металлизации, равняется 1,5 мм, что слишком много для полной реализации некоторых преимуществ двухслойной печатной платы, приведенных выше. Распределенная емкость, например, слишком мала из-за такого большого интервала.

Многослойные печатные платы

Для ответственных схемотехнических разработок требуются многослойные печатные платы (МПП). Некоторые причины их применения очевидны:

  • такая же удобная, как и для шины общего провода, разводка шин питания; если в качестве шин питания используются полигоны на отдельном слое, то довольно просто с помощью переходных отверстий осуществить подводку питания к каждому элементу схемы;
  • сигнальные слои освобождаются от шин питания, что облегчает разводку сигнальных проводников;
  • между полигонами земли и питания появляется распределенная емкость, которая уменьшает высокочастотный шум.

Кроме этих причин применения многослойных печатных плат существуют другие, менее очевидные:

  • лучшее подавление электромагнитных (EMI ) и радиочастотных (RFI ) помех благодаря эффекту отражения (image plane effect ), известному еще во времена Маркони. Когда проводник размещается близко к плоской проводящей поверхности, большая часть возвратных высокочастотных токов будет протекать по плоскости непосредственно под проводником. Направление этих токов будет противоположно направлению токов в проводнике. Таким образом, отражение проводника в плоскости создает линию передачи сигнала. Поскольку токи в проводнике и в плоскости равны по величине и противоположны по направлению, создается некоторое уменьшение излучаемых помех. Эффект отражения эффективно работает только при неразрывных сплошных полигонах (ими могут быть как полигоны земли, так и полигоны питания). Любое нарушение целостности будет приводить к уменьшению подавления помех.
  • снижение общей стоимости при мелкосерийном производстве. Несмотря на то, что изготовление многослойных печатных плат обходится дороже, их возможное излучение меньше, чем у одно- и двухслойных плат. Следовательно, в некоторых случаях применение лишь многослойных плат позволит выполнить требования по излучению, поставленные при разработке, и не проводить дополнительных испытаний и тестирований. Применение МПП может снизить уровень излучаемых помех на 20 дБ по сравнению с двухслойными платами.

Порядок следования слоев

У неопытных разработчиков часто возникает некоторое замешательство по поводу оптимального порядка следования слоев печатной платы. Возьмем для примера 4-слойную палату, содержащую два сигнальных слоя и два полигонных слоя - слой земли и слой питания. Какой порядок следования слоев лучший? Сигнальные слои между полигонами, которые будут служить экранами? Или же сделать полигонные слои внутренними, чтобы уменьшить взаимовлияние сигнальных слоев?

При решении этого вопроса важно помнить, что часто расположение слоев не имеет особого значения, поскольку все равно компоненты располагаются на внешних слоях, а шины, подводящие сигналы к их выводам, порой проходят через все слои. Поэтому любые экранные эффекты представляют собой лишь компромисс. В данном случае лучше позаботиться о создании большой распределенной емкости между полигонами питания и земли, расположив их во внутренних слоях.

Другим преимуществом расположения сигнальных слоев снаружи является доступность сигналов для тестирования, а также возможность модификации связей. Любой, кто хоть раз изменял соединения проводников, располагающихся во внутренних слоях, оценит эту возможность.

Для печатных плат с более, чем четырьмя слоями, существует общее правило располагать высокоскоростные сигнальные проводники между полигонами земли и питания, а низкочастотным отводить внешние слои.

ЗАЗЕМЛЕНИЕ

Хорошее заземление - общее требование насыщенной, многоуровневой системы. И оно должно планироваться с первого шага дизайнерской разработки.

Основное правило: разделение земли .

Разделение земли на аналоговую и цифровую части - один из простейших и наиболее эффективных методов подавления шума. Один или более слоев многослойной печатной платы обычно отводится под слой земляных полигонов. Если разработчик не очень опытен или невнимателен, то земля аналоговой части будет непосредственно соединена с этими полигонами, т.е. аналоговый возвратный ток будет использовать такую же цепь, что и цифровой возвратный ток. Авторазводчики работают примерно также и объединяют все земли вместе.

Если переработке подвергается ранее разработанная печатная плата с единым земляным полигоном, объединяющим аналоговую и цифровую земли, то необходимо сначала физически разделить земли на плате (после этой операции работа платы становится практически невозможной). После этого прозводятся все подключения к аналоговому земляному полигону компонентов аналоговой схемы (формируется аналоговая земля) и к цифровому земляному полигону компонентов цифровой схемы (формируется цифровая земля). И лишь после этого в источнике производится объединение цифровой и аналоговой земли.

Другие правила формирования земли:

Почти все сигналы тактовых частот являются достаточно высокочастотными сигналами, поэтому даже небольшие емкости между трассами и полигонами могут создавать значительные связи. Необходимо помнить, что не только основная тактовая частота может вызывать проблему, но и ее высшие гармоники.

Пример хорошего размещения компонентов

На рисунке 4 показан возможный вариант размещения всех компонентов на плате, включая источник питания. Здесь используются три отделенных друг от друга и изолированных полигона земли/питания: один для источника, один для цифровой схемы и один для аналоговой. Цепи земли и питания аналоговой и цифровой частей объединяются только в источнике питания. Высокочастоный шум отфильтровывается в цепях питания дросселями. В этом примере высокочастотные сигналы аналоговой и цифровой частей отнесены друг от друга. Такой дизайн имеет очень высокую вероятность на благоприятный исход, поскольку обеспечено хорошее размещение компонентов и следование правилам разделения цепей.

Имеется лишь один случай, когда необходимо объединение аналоговых и цифровых сигналов над областью полигона аналоговой земли. Аналого-цифровые и цифро-аналоговые преобразователи размещаются в корпусах с выводами аналоговой и цифровой земли. Принимая во внимание предыдущие рассуждения, можно предположить, что вывод цифровой земли и вывод аналоговой земли должны быть подключенны к шинам цифровой и аналоговой земли соответственно. Однако в данном случае это не верно.

Названия выводов (аналоговый или цифровой) относятся лишь к внутренней структуре преобразователя, к его внутренним соединениям. В схеме эти выводы должны быть подключены к шине аналоговой земли. Соединение может быть выполнено и внутри интегральной схемы, однако получить низкое сопротивление такого соединения довольно сложно из-за топологических ограничений. Поэтому при использовании преобразователей предполагается внешнее соединение выводов аналоговой и цифровой земли. Если этого не сделать, то параметры микросхемы будут значительно хуже приведенных в спецификации.

Необходимо учитывать то, что цифровая элементы преобразователя могут ухудшать качественные характеристики схемы, привнося цифровые помехи в цепи аналоговой земли и аналогового питания. При разработке преобразователей учитывается это негативное воздействие так, чтобы цифровая часть потребляла как можно меньше мощности. При этом помехи от переключений логических элементов уменьшаются. Если цифровые выводы преобразователя не сильно нагружены, то внутренние переключения обычно не вызывают особых проблем. При разработке печатной платы, содержащей АЦП или ЦАП, необходимо должным образом отнестись к развязке цифрового питания преобразователя на аналоговую землю.

ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ПАССИВНЫХ КОМПОНЕНТОВ

Для правильной работы аналоговых схем весьма важен правильный выбор пассивных компонентов. Начинайте дизайнерскую разработку с внимательного рассмотрения высокочастотных характеристик пассивных компонентов и предварительного размещения и компоновки их на эскизе платы.

Большое число разработчиков совершенно игнорируют частотные ограничения пассивных компонентов при использовании в аналоговой схемотехнике. Эти компоненты имеют ограниченные частотные диапазоны и их работа вне специфицированной частотной области может привести к непредсказуемым результатам. Кто-то может подумать, что это обсуждение касается только высокоскоростных аналоговых схем. Однако, это далеко не так - высокочастотные сигналы достаточно сильно воздействуют на пассивные компоненты низкочастотных схем посредством излучения или прямой связи по проводникам. Например, простой низкочастотный фильтр на операционном усилителе может легко превращаться в высокочастотный фильтр при воздействии на его вход высокой частоты.

Резисторы

Высокочастотные характеристики резисторов могут быть представлены эквивалентной схемой, приведенной на рисунке 5.

Обычно применяются резисторы трех типов: 1) проволочные, 2) углеродные композитные и 3) пленочные. Не надо иметь много воображения, чтобы понять, как проволочный резистор может превращаться в индуктивность, поскольку он представляет собой катушку с проводом из высокоомного металла. Большинство разработчиков электронных устройств не имеют понятия о внутренней структуре пленочных резисторов, которые также представляют собой катушку, правда, из металлической пленки. Поэтому пленочные резисторы также обладают индуктивностью, которая меньше, чем у проволочных резисторов. Пленочные резисторы с сопротивлением не более 2 кОм можно свободно использовать в высокочастотных схемах. Выводы резисторов параллельны друг другу, поэтому между ними существует заметная емкостная связь. Для резисторов с большим сопротивлением межвыводная емкость будет уменьшать полный импеданс на высоких частотах.

Конденсаторы

Высокочастотные характеристики конденсаторов могут быть представлены эквивалентной схемой, приведенной на рисунке 6.

Конденсаторы в аналоговых схемах используются в качестве элементов развязки и фильтрующих компонентов. Для идеального конденсатора реактивное сопротивление определяется по следующей формуле:

Следовательно, электролитический конденсатор емкостью 10 мкФ будет обладать сопротивлением 1,6 Ом на частоте 10 кГц и 160 мкОм на частоте 100 МГц. Так ли это?

При использовании электролитических конденсаторов необходимо следить за правильным подключением. Положительный вывод должен быть подключен к более положительному постоянному потенциалу. Неправильное подключение приводит к протеканию через электролитический конденсатор постоянного тока, что может вывести из строя не только сам конденсатор, но и часть схемы.

В редких случаях разность потенциалов по постоянному току между двумя точками в схеме может менять свой знак. Это требует применения неполярных электролитических конденсаторов, внутренняя структура которых эквивалентна двум полярным конденсаторам, соединенным последовательно.

Индуктивности

Высокочастотные характеристики индуктивностей могут быть представлены эквивалентной схемой, приведенной на рисунке 7.

Реактивное сопротивление индуктивности описывается следующей формулой:

Следовательно, индуктивность 10 мГн будет обладать реактивным сопротивлением 628 Ом на частоте 10 кГц, а на частоте 100 МГц - сопротивлением 6,28 МОм. Верно?

Печатная плата

Сама печатная плата обладает характеристиками рассмотренных выше пассивных компонентов, правда, не столь очевидными.

Рисунок проводников на печатной плате может быть как источником, так и приемником помех. Хорошая разводка проводников уменьшает чувствительность аналоговой схемы к излучению источников.

Печатная плата восприимчива к излучению, поскольку проводники и выводы компонентов образовывают своеобразные антенны. Теория антенн представляет собой достаточно сложный предмет для изучения и не рассматривается в этой статье. Тем не менее, некоторые основы здесь приводятся.

Немного из теории антенн

На постоянном токе или низких частотах преобладает активная составляющая. При повышении частоты реактивная составляющая становится все более и более значимой. В диапазоне от 1 кГц до 10 кГц индуктивная составляющая начинает оказывать влияние, и проводник более не является низкоомным соединителем, а скорее выступает как катушка индуктивности.

Формула для расчета индуктивности проводника печатной платы выглядит следующим образом:

Обычно, трассы на печатной плате обладают значениями от 6 нГн до 12 нГн на сантиметр длины. Например, 10-сантиметровый проводник обладает сопротивлением 57 мОм и индуктивностью 8 нГн на см. На частоте 100 кГц реактивное сопротивление становится равным 50 мОм, а на более высоких частотах проводник будет представлять собой скорее индуктивность, чем активное сопротивление.

Правило штыревой антенны гласит, что она начинает ощутимо взаимодействовать с полем при своей длине около 1/20 от длины волны, а максимальное взаимодействие происходит при длине штыря, равной 1/4 от длины волны. Поэтому 10-сантиметровый проводник из примера в предыдущем параграфе начнет становиться довольно хорошей антенной на частотах выше 150 МГц. Необходимо помнить, что несмотря на то, что генератор тактовой частоты цифровой схемы может и не работать на частоте выше 150 МГц, в его сигнале всегда присутствуют высшие гармоники. Если на печатной плате присутствуют компоненты со штыревыми выводами значительной длины, то такие выводы также могут служить антеннами.

Другой основной тип антенн - петлевые антенны. Индуктивность прямого проводника сильно увеличивается, когда он изгибается и становится частью дуги. Увеличивающаяся индуктивность понижает частоту, на которой начинает происходить взаимодействие антенны с линиями поля.

Опытные дизайнеры печатных плат, достаточно хорошо разбирающиеся в теории петлевых антенн, знают, что нельзя создавать петли для критичных сигналов. Некоторые разработчики, однако, не задумываются об этом, и проводники возвратного и сигнального тока в их схемах представляют собой петли. Создание петлевых антенн легко показать на примере (рис. 8). Кроме того, здесь показано и создание щелевой антенны.

Рассмотрим три случая:

Вариант A - пример скверного дизайна. В нем вовсе не используется полигон аналоговой земли. Петлевой контур формируется земляным и сигнальным проводником. При прохождении тока возникают электрическое и перпендикулярное ему магнитное поля. Эти поля образовывают основу петлевой антенны. Правило петлевой антенны гласит, что для наибольшей эффективности длина каждого проводника должна быть равно половине длины волны принимаемого излучения. Однако, следует не забывать, что даже при 1/20 от длины волны петлевая антенна все еще остается достаточно эффективной.

Вариант Б лучше варианта A, но здесь присутствует разрыв в полигоне, вероятно, для создания определенного места для разводки сигнальных проводников. Пути сигнального и возвратного токов образуют щелевую антенну. Другие петли образуются в вырезах вокруг микросхем.

Вариант В - пример лучшего дизайна. Пути сигнального и возвратного тока совпадают, сводя на нет эффективность петлевой антенны. Заметьте, что в этом варианте также присутствуют вырезы вокруг микросхем, но они отделены от пути возвратного тока.

Теория отражения и согласования сигналов находится близко к теории антенн.

Когда проводник печатной платы поворачивает на угол 90° может возникнуть отражение сигнала. Это происходит, главным образом, из-за изменения ширины пути прохождения тока. В вершине угла ширина трассы увеличивается в 1.414 раза, что приводит к рассогласованию характеристик линии передачи, особенно распределенной емкости и собственной индуктивности трассы. Довольно часто необходимо повернуть на печатной плате трассу на 90°. Многие современные CAD-пакеты позволяют сглаживать углы проведенных трасс или проводить трассы в виде дуги. На рисунке 9 показаны два шага улучшения формы угла. Только последний пример поддерживает постоянной ширину трассы и минимизирует отражения.

Совет для опытных разводчиков печатных плат: оставляйте процедуру сглаживания на последний этап работ перед созданием каплеобразных выводов и заливкой полигонов. Иначе, CAD-пакет будет производить сглаживание дольше из-за более сложных вычислений.

Между проводниками печатной платы, находящимися на разных слоях, возникает емкостная связь, когда они пересекаются. Иногда это может создать проблему. Проводники, находящиеся друг над другом на смежных слоях, создают длинный пленочный конденсатор. Емкость такого конденсатора расчитывается по формуле, приведенной на рисунке 10.

Например, печатная плата может обладать следующими параметрами:
- 4 слоя; сигнальный и слой полигона земли - смежные,
- межслойный интервал - 0,2 мм,
- ширина проводника - 0,75 мм,
- длина проводника - 7,5 мм.

Типовое значение диэлектрической постоянной ER для FR-4 равняется 4.5.

Подставив все значения в формулу, получим значение емкости между этими двумя шинами, равное 1,1 пФ. Даже такая, казалось бы, небольшая емкость для некоторых приложений является недопустимой. Рисунок 11 иллюстрирует эффект от емкости в 1 пФ, возникающий при подключении ее к инвертирующему входу высокочастотного операционного усилителя.

Видно, что происходит удвоение амплитуды выходного сигнала на частотах, близких к верхнему пределу частотного диапазона ОУ. Это, в свою очередь, может привести к генерации, особенно на рабочих частотах антенны (выше 180 МГц).

Этот эффект порождает многочисленные проблемы, для решения которых, тем не менее, существует много способов. Самый очевидный из них - уменьшение длины проводников. Другой способ - уменьшение их ширины. Нет причины применения проводника такой ширины для подводки сигнала к инвертирующему входу, т.к. по этому проводнику протекает очень небольшой ток. Уменьшение длины трассы до 2,5 мм, а ширины до 0,2 мм приведет к уменьшению емкости до 0,1 пФ, а такая емкость уже не приведет к столь значительному подъему частотной характеристики. Еще один способ решения - удаление части полигона под инвертирующим входом и проводником, подходящим к нему.

Ширину проводников печатной платы невозможно бесконечно уменьшить. Предельная ширина определяется как технологическим процессом, так и толщиной фольги. Если два проводника проходят близко друг к другу, то между ними образуется емкостная и индуктивная связь (рис. 12).

Сигнальные проводники не должны разводиться параллельно друг другу, исключая случаи разводки дифференциальных или микрополосковых линий. Зазор между проводниками должен быть минимум в три раза больше ширины проводников.

Емкость между трассами в аналоговых схемах может создать затруднения при больших сопротивлениях резисторов (несколько МОм). Относительно большая емкостная связь между инвертирующим и неинвертирующим входами операционного усилителя легко может привести к самовозбуждению схемы.

Например, при d=0,4 мм и h=1,5 мм (достаточно распространенные величины) индуктивность отверстия равна 1,1 нГн.

Помните, что, если в схеме присутствуют большие сопротивления, то особое внимание следует уделить очистке платы. На заключительных операциях изготовления печатной платы должны удаляться остатки флюса и загрязнений. В последнее время при монтаже печатных плат достаточно часто применяются водорастворимые флюсы. Являясь менее вредными, они легко удаляются водой. Но при этом отмывка платы недостаточно чистой водой может привести к дополнительным загрязнениям, которые ухудшают диэлектрические характеристики. Следовательно, очень важно производить отмывку печатной платы с высокоимпедансной схемой свежей дистиллированой водой.

РАЗВЯЗКА СИГНАЛОВ

Как уже отмечалось, помехи могут проникать в аналоговую часть схемы через цепи питания. Для уменьшения таких помех применяются развязывающие (блокировочные) конденсаторы, уменьшающие локальный импеданс шин питания.

Если необходимо развести печатную плату, на которой имеются и аналоговая, и цифровая части, то необходимо иметь хотя бы небольшое представление об электрических характеристиках логических элементов.

Типовой выходной каскад логического элемента содержит два транзистора, последовательно соединенные между собой, а также между цепями питания и земли (рис. 14).

Эти транзисторы в идеальном случае работают строго в противофазе, т.е. когда один из них открыт, то в этот же момент времени второй закрыт, формируя на выходе либо сигнал логической единицы, либо логического нуля. В установившемся логическом состоянии потребляемая мощность логического элемента невелика.

Ситуация кардинально меняется, когда выходной каскад переключается из одного логического состояния в другое. В этом случае в течение короткого промежутка времени оба транзистора могут быть открыты одновременно, а ток питания выходного каскада сильно увеличивается, поскольку уменьшается сопротивление участка пути тока от шины питания до шины земли через два последовательно соединенных транзистора. Потребляемая мощность скачкообразно возрастает, а затем также убывает, что приводит к локальному изменению напряжения питания и возникновению резкого, кратковременного изменения тока. Такие изменения тока приводят к излучению радиочастотной энергии. Даже на сравнительно простой печатной плате может быть десятки или сотни рассмотренных выходных каскадов логических элементов, поэтому суммарный эффект от их одновременной работы может быть очень большим.

Невозможно точно предсказать диапазон частот, в котором будут находиться эти выбросы тока, поскольку частота их возникновения зависит от множества причин, в том числе и от задержки распространения переключений транзисторов логического элемента. Задержка, в свою очередь, также зависит от множества случайных причин, возникающих в процессе производства. Шум от переключений имеет широкополосное распределение гармонических составляющих во всем диапазоне. Для подавления цифрового шума существует несколько способов, применение которых зависит от спектрального распределения шума.

В таблице 2 представлены максимальные рабочие частоты для распространенных типов конденсаторов.

Таблица 2

Из таблицы очевидно, что танталовые электролитические конденсаторы применяются для частот ниже 1 МГц, на более высоких частотах должны применяться керамические конденсаторы. Необходимо не забывать, что конденсаторы имеют собственный резонанс и их неправильный выбор может не только не помочь, но и усугубить проблему. На рисунке 15 показаны типовые собственные резонансы двух конденсаторов общего применения - 10 мкФ танталового электролитического и 0,01 мкФ керамического.

Реальные характеристики могут отличаться у различных производителей и даже от партии к партии у одного производителя. Важно понимать, что для эффективной работы конденсатора подавляемые им частоты должны находиться в более низком диапазоне, чем частота собственного резонанса. В противном случае характер реактивного сопротивления будет индуктивным, а конденсатор перестанет эффективно работать.

Не стоит заблуждаться относительно того, что один 0,1 мкФ конденсатор будет подавлять все частоты. Небольшие конденсаторы (10 нФ и менее) могут работать более эффективно на более высоких частотах.

Развязка питания ИС

Развязка питания интегральных схем с целью подавления высокочастотного шума состоит в применении одного или нескольких конденсаторов, подключенных между выводами питания и земли. Важно, чтобы проводники, соединяющие выводы с конденсаторами, были короткими. Если это не так, то собственная индуктивность проводников будет играть заметную роль и сводить на нет выгоды от применения развязывающих конденсаторов.

Развязывающий конденсатор должен быть подключен к каждому корпусу микросхемы, независимо от того, сколько операционных усилителей находится внутри корпуса - 1, 2 или 4. Если ОУ питается двухполярным питанием, то, само собой разумеется, что развязывающие конденсаторы должны располагаться у каждого вывода питания. Значение емкости должно быть тщательно выбрано в зависимости от типа шума и помех, присутствующих в схеме.

В особо сложных случаях может появиться необходимость добавления индуктивности, включенной последовательно с выводом питания. Индуктивность должна располагаться до, а не после конденсаторов.

Другим, более дешевым способом является замена индуктивности резистором с малым сопротивлением (10...100 Ом). При этом вместе с развязывающим конденсатором резистор образует низкочастотный фильтр. Этот способ уменьшает диапазон питания операционного усилителя, который к тому же становится более зависимым от потребляемой мощности.

Обычно для подавления низкочастотных помех в цепях питания бывает достаточно применить один или несколько алюминиевых или танталовых электролитических конденсаторов у входного разъема питания. Дополнительный керамический конденсатор будет подавлять высокочастотные помехи от других плат.

РАЗВЯЗКА ВХОДНЫХ И ВЫХОДНЫХ СИГНАЛОВ

Множество шумовых проблем является результатом непосредственного соединения входных и выходных выводов. В результате высокочастотных ограничений пассивных компонентов реакция схемы на воздействие высокочастотного шума может быть достаточно непредсказуемой.

В ситуациии, когда частотный диапазон наведенного шума в значительной степени отличается от частотного диапазона работы схемы, решение просто и очевидно - размещение пассивного RC-фильтра для подавления высокочастотных помех. Однако, при применении пассивного фильтра надо быть осторожным: его характеристики (из-за неидеальности частотных характеристик пассивных компонентов) утрачивают свои свойства на частотах, в 100...1000 раз превышающих частоту среза (f 3db). При использовании последовательно соединенных фильтров, настроенных на разные частотные диапазоны, более высокочастотный фильтр должен быть ближайшим к источнику помех. Индуктивности на ферритовых кольцах также могут применяться для подавления шума; они сохраняют индуктивный характер сопротивления до некоторой определенной частоты, а выше их сопротивление становится активным.

Наводки на аналоговую схему могут быть настолько большими, что избавиться (или, по крайней мере, уменьшить) от них возможно только с помощью применения экранов. Для эффективной работы они должны быть тщательно спроектированы так, чтобы частоты, создающие наибольшие проблемы, не смогли попасть в схему. Это означает, что экран не должен иметь отверстия или вырезы с размерами, большими, чем 1/20 длины волны экранируемого излучения. Хорошая идея отводить достаточное место под предполагаемый экран с самого начала проектирования печатной платы. При использовании экрана можно дополнительно использовать ферритовые кольца (или бусинки) для всех подключений к схеме.

КОРПУСА ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ

В одном корпусе обычно размещаются один, два или четыре операционных усилителя (рис. 16).

Одиночный ОУ часто также имеет дополнительные входы, например, для регулировки напряжения смещения. Сдвоенные и счетверенные ОУ имеют лишь инвертирующий и неинвертирующий входы и выход. Поэтому при необходимости иметь дополнительные регулировки надо применять одиночные операционные усилители. При использовании дополнительных выводов необходимо помнить, что по своей структуре они являются вспомогательными входами, поэтому управление ими должно осущуствляться аккуратно и в соответствии с рекомендациями производителя.

В одиночном ОУ выход располагается на противоположной стороне от входов. Это может создать затруднение при работе усилителя на высоких частотах из-за протяженных проводников обратной связи. Один из путей преодоления этого состоит в размещении усилителя и компонентов обратной связи на разных сторонах печатной платы. Это, однако, приводит к как минимум двум дополнительным отверстиям и вырезам в полигоне земли. Иногда стоит использовать сдвоенный ОУ для разрешения данной проблемы, даже если второй усилитель не используется (при этом его выводы должны быть подключены должным образом). Рисунок 17 иллюстрирует уменьшение длины проводников цепи обратной связи для инвертирующего включения.

Сдвоенные ОУ особенно часто используются в стереофонических усилителях, а счетверенные - в схемах многокаскадных фильтров. Однако, в этом есть довольно значительный минус. Несмотря на то, что современная технология обеспечивает приличную изоляцию между сигналами усилителей, расположенных на одном кремниевом кристалле, между ними все же существуют некоторые перекрестные помехи. Если необхомимо иметь очень малую величину таких помех, то необходимо использовать одиночные операционные усилители. Перекрестные помехи возникают не только при использовании сдвоенных или счетверенных усилителей. Их источником может служить очень близкое расположение пассивных компонентов разных каналов.

Сдвоенные и счетверенные ОУ, кроме вышесказанного, позволяют осуществить более плотный монтаж. Отдельные усилители как бы зеркально расположены друг относительно друга (рис. 18).

На рисунках 17 и 18 показаны не все подключения, требуемые для нормальной работы, например, формирователь среднего уровня при однополярном питании. На рисунке 19 приведена схема такого формирователя при использовании счетверенного усилителя.

На схеме показаны все необходимые подключения для реализации трех независимых инвертирующих каскадов. Необходимо обратить внимание на то, что проводники формирователя половины напряжения питания располагаются непосредственно под корпусом интегральной схемы, что позволяет уменьшить их длину. Этот пример иллюстрирует не то, как должно быть, а то, что должно быть сделано. Напряжение среднего уровня, например, могло бы быть единым для всех четырех усилителей. Пассивные компоненты могут быть соответствующего размера. Например, планарные компоненты типоразмера 0402 соответствуют расстоянию между выводами стандартного корпуса SO. Это позволяет сделать длину проводников очень короткой для высокочастотных приложений.

ОБЪЕМНЫЙ И ПОВЕРХНОСТНЫЙ МОНТАЖ

При размещении операционных усилителей в корпусах типа DIP и пассивных компонентов с проволочными выводами требуется наличие на печатной плате переходных отверстий для их монтажа. Такие компоненты в настоящее время используются, когда нет особых требований к размерам печатной платы; обычно они стоят дешевле, но стоимость печатной платы в процессе изготовления возрастает из-за сверловки дополнительных отверстий под выводы компонентов.

Кроме того, при использовании навесных компонентов увеличиваются размеры платы и длины проводников, что не позволяет работать схеме на высоких частотах. Переходные отверстия обладают собственной индуктивностью, что также накладывает ограничения на динамические характеристики схемы. Поэтому навесные компоненты не рекомендуется применять для реализации высокочастотных схем или для аналоговых схем, размещенных поблизости с высокоскоростными логическими схемами.

Некоторые разработчики, пытаясь уменьшить длину проводников, размещают резисторы вертикально. С первого взгляда может показаться что, это сокращает длину трассы. Однако при этом увеличивается путь прохождения тока по резистору, а сам резистор представляет собой петлю (виток индуктивности). Излучающая и принимающая способность возрастает многократно.

При поверхностном монтаже не требуется размещения отверстия под каждый вывод компонента. Однако возникают проблемы при тестирования схемы, и приходится использовать переходные отверстия в качестве контрольных точек, особенно при применении компонентов малого типоразмера.

НЕИСПОЛЬЗУЕМЫЕ СЕКЦИИ ОУ

При использовании сдвоенных и счетверенных операционных усилителей в схеме некоторые их секции могут остаться незадействованными и должны быть в этом случае корректно подключены. Ошибочное подключение может привести к увеличению потребляемой мощности, большему нагреву и большему шуму используемых в этом же корпусе ОУ. Выводы неиспользумых операционных усилителей могут быть подключены так, как изображено на рис. 20а. Подключение выводов с дополнительными компонентами (рис. 20б) позволит легко использовать этот ОУ при наладке.

ЗАКЛЮЧЕНИЕ

Помните следующие основные моменты и постоянно соблюдайте их при проектировании и разводке аналоговых схем.

Общие:

  • думайте о печатной плате как о компоненте электрической схемы;
  • имейте представление и понимание об источниках шума и помех;
  • моделируйте и макетируйте схемы.

Печатная плата:

  • используйте печатные платы только из качественного материала (например, FR-4);
  • схемы, выполненные на многослойных печатных платах, на 20 дБ менее восприимчивее к внешним помехам, чем схемы, выполненные на двухслойных платах;
  • используйте разделенные, неперекрывающиеся полигоны для различных земель и питаний;
  • располагайте полигоны земли и питания на внутренних слоях печатной платы.

Компоненты:

  • осознавайте частотные ограничения, вносимые пассивными компонентами и проводниками платы;
  • старайтесь избегать вертикального размещения пассивных компонентов в высокоскоростных схемах;
  • для высокочастотных схем используйте компоненты, предназначенные для поверхностного монтажа;
  • проводники должны быть чем короче, тем лучше;
  • если требуется большая длина проводника, то уменьшайте его ширину;
  • неиспользуемые выводы активных компонентов должны быть правильно подключены.

Разводка:

  • размещайте аналоговую схему вблизи разъема питания;
  • никогда не разводите проводники, передающие логические сигналы, через аналоговую область платы, и наоборот;
  • проводники, подходящие к инвертирующему входу ОУ, делайте короткими;
  • удостоверьтесь, что проводники инвертирующего и неинвертирующего входов ОУ не располагаются параллельно друг другу на большом протяжении;
  • старайтесь избегать применения лишних переходных отверстий, т.к. их собственная индуктивность может привести к возникновению дополнительных проблем;
  • не разводите проводники под прямыми углами и сглаживайте вершины углов, если это возможно.

Развязка:

  • используйте правильные типы конденсаторов для подавления помех в цепях питания;
  • для подавления низкочастотных помех и шумов используйте танталовые конденсаторы у входного разъема питания;
  • для подавления высокочастотных помех и шумов используйте керамические конденсаторы у входного разъема питания;
  • используйте керамические конденсаторы у каждого вывода питания микросхемы; если необходимо, используйте несколько конденсаторов для разных частотных диапазонов;
  • если в схеме происходит возбуждение, то необходимо использовать конденсаторы с меньшим значением емкости, а не большим;
  • в трудных случаях в цепях питания используйте последовательно включенные резисторы малого сопротивления или индуктивности;
  • развязывающие конденсаторы аналогового питания должны подключаться только к аналоговой земле, а не к цифровой.
Кому не приходилось изготавливать печатную плату? Дело это не очень сложное, а результат придаёт проекту завершённость. В этом посте я бы хотел рассказать о процессе создания печатной платы на дому. Я опишу фоторезистивный метод создания платы. Он довольно прост в применении и позволяет печатать весьма сложные платы. Более того, я обошёлся струйным принтером.

Пост содержит фотографии, видео и схемы.

Идея фоторезистивного метода очень проста. Медь на печатной плате сверху покрыта специальным веществом. Если на это вещество попадает свет, то оно потом растворяется в проявителе. Если свет не попал, то в проявителе вещество остаётся красителем. Процесс изготовления платы состоит из четырёх частей:
1. Создаём прозрачную маску на которой размечено что с чем соединять
1. Светим на плату с веществом через эту маску
2. Бросаем плату в проявитель: на плате окрашены только места, размеченные на маске
3. Бросаем плату в травитель: он съест всю медь, кроме окрашеной

Создание схемы

Первый шаг создания печатной платы вполне очевиден: надо создать схему того, что будет на плате. Довольно стандартной программой для этого является Eagle CAD . Не смотря на то, что программой довольно сложно овладеть (мне так кажется, что она совершенно отвратительна в использовании), Eagle CAD пользуются очень многие. Пользователей так много, что производители и поставщики деталей иногда создают библиотеки компонентов.

В рамках этого поста мы будем делать довольно простое устройство: плату, разводящую контакты для ATTiny. Так, чтобы можно было воткнуть в плату чип, питание и программатор.
Сначала нарисуем простенькую схему, а потом, нажав «Switch to board» расположим компоненты на макете платы.


Схему и разводку платы можно .

Печать макета

Подготовим макет к печате. Надо убедиться, что включены только слои с Bottom, Pads, Vias, Dimension. В меню печати надо включить Mirror и Black. Таким образом макет будет отражен и напечатан лишь черным цветом. Не знаю, есть ли более удобный способ, но я распечатал макет в PDF, сконвертировал PDF в TIFF с довольно прилиным разрешением, а потом в текстовом редакторе размножил картинку, чтобы заполнить лист:

Отмечу, что я печатал две схемы, одну – на сегодня, а другую – на потом.

Документ готов. Печатаем на прозрачной плёнке. Я использовал плёнку от MG Chemicals . Хоть она и предназначена для лазерных принтеров, я использовал свой струйный Lexmark. Минус: чернила легко смазать рукой.

Подготовка платы

Очевидно, что для фоторезистивного процесса необходима плата, покрытая специальным веществом. Можно купить это вещество и покрывать плату самому, но я решил купить готовую . Вырежим из платы кусочек, соответствующий размерам схемы. Я использовал аппарат Dremel для вырезания:

Экспонирование

Всё готово для экспонирования платы. Опыт показывает, что струйный принтер может не дать нужной плотности (то есть чёрный с виду на самом деле будет пронизан мелкими дырочками). Бороться с этим не сложно: можно совместить два или три слоя распечатки. Вот так:

Снимем с платы защитный слой (белая тонка плёночка) и положим её на основу (книжка по электронике даёт +3 к удаче). Плату укроем плёнкой с распечаткой и прижмём это дело стеклом:

Конструкция должна простоять под сильной лампой минут 10:

Проявка

Пока плата экспонируется, разведём проявитель. На коробочке проявителя написана пропорция и рекомендуемая температура. Я взял проявитель от MG Chemicals . Он разводится в любой пластиковой посудине в соотношении 1 к 10:

Проявитель готов, десять минут уже прошло. Берём плату и кидаем её в проявитель:

Травление

Споласкиваем плату в воде и кидаем её в травитель. Я использовал хлорное железо от MG Chemicals . Рекомендуемая температура – 50° C, но я травил при комнатных 25° С. Травилось минут 20:

Получится что-то вроде этого:

Зачистка

Оставшийся краситель легко удаляется спиртованными тряпочками:

В результате остаётся чистенькая плата:

Отверстия

Дыры дырявить просто. Я использовал тот же аппарат Dremel :

Получается почти уже готовая плата:

Компоненты

Цепляем на плату необходимые компоненты и припаиваем их к медной основе:

Результат

Плата получилась что надо, хоть друзьям показывай:

Впрочем, не всем друзьям объяснишь, что это такое…

Безопасность

Процесс изготовления плат этим методом предполагает работу со всякой химической дрянью.

Во-перых, не сливайте химическую дрянь в раковину или туалет. В интернете много советов о том, что с этой дрянью делать.

Во-вторых эта химическая дрянь портит одежду, оставляет пятна на руках и делает что-то совсем страшное с глазами. Пожалуйста, используйте средства безопасности! К примеру, я использовал резиновые перчатки, очки и передник из шторы для душа:

Я буду рад ответить на вопросы, услышать предложения как этот процесс можно улучшить, ну и, конечно, дополнить пост любой упущенной информацией.

Статьи мы вместе разобрались с работой блока питания , а также определились, какие нужны детали для его изготовления. В этой части разработаем и нарисуем печатную плату на бумаге.

Печатку будем делать дедовским способом. По-современному я попробовал и мне не понравилось. Уж больно много надо дополнительных приспособлений и навыков, плюс, изучение программы, в которой рисуется печатная плата, специальная бумага, на которую надо наносить рисунок специальным образом и тонером, а затем все это гладить утюгом, и только потом вытравливать.

А если промахнулся с тонером, бумагой, или не догладил, то приходится дорисовывать дорожки фломастером вручную. Одним словом геморрой и трата времени. Но это мое личное мнение. Во всяком случае Вам надо попробовать и понять дедовский метод, так как все с него начинали. А как поймете сам процесс, тогда вперед на освоение современных технологий.

Берем обычный тетрадный лист в клеточку, и в верхней части рисуем схему. Если схема большая, то можно этого не делать, главное, чтобы она была перед глазами.

Все электрические и принципиальные схемы рисуются и читаются слева направо, поэтому рисовать дорожки и компоновать детали на плате будем также слева направо.

Теперь запоминайте : обратная сторона бумаги является стороной платы, на которой будут установлены радиодетали. А сторона бумаги, на которой рисуются дорожки – это будет сторона печатной платы со стороны дорожек.

Поехали.
Выбираем середину листа бумаги. Берем конденсатор С1 и ножками слегка вдавливаем в лист, чтобы от них остались следы на бумаге. Карандашом рисуем габарит конденсатора и его условное обозначение, а ручкой отмечаем выводы.

Еще момент. Если у Вас конденсатор горизонтального исполнения, или слишком большой, то его нет смысла крепить на плате, так как она будет слишком большой. Достаточно сделать два отверстия под выводы, и уже при монтаже, проводами соединим конденсатор с платой.

Здесь же рядом с конденсатором, располагаем диодный мост, состоящий из диодов VD1 VD4 . Выложите на бумагу все четыре диода и определитесь, как и где они будут находиться на плате. Мне показалось, что удобным будет разместить их под конденсатором.

Берем два диода и загибаем их выводы, как показано на средней части рисунка. Можно диодами надавливать на бумагу, как это делали конденсатором, а можно просто положить диоды рядом друг с другом и выводы отметить ручкой, при этом оставляйте расстояние между корпусами диодов. Достаточно будет 1мм.

Расстояние между выводами под резисторы, диоды и постоянные конденсаторы делайте на 1мм шире, чем есть на самом деле. Пусть будет шире, чем уже.

Между парой точек рисуем обозначение диода, как на правой части рисунка.

Теперь в кучу «собираем» диодный мост и конденсатор .
Верхние два диода соединяем анодами , а нижние два диода катодами — это будет выходная часть моста (рис №1 ). Далее, катод первого диода соединяем с анодом четвертого диода, а катод второго диода соединяем с анодом третьего — это будет входная часть моста (рис №2 ).

Отмечаем два отверстия для подачи переменного напряжения и обязательно указываем, что это будет «вход » (рис №3 ). Ну и определяемся с плюсовым выводом конденсатора C1 . Выводы диодного моста «плюс» и «минус» соединяем с аналогичными выводами конденсатора (рис №4 ).

Следующим по схеме идут резистор R1 и диод VD5 .
Кладем их на лист бумаги (рис №1 ), размечаем, как они будут располагаться на плате, отмечаем выводы и рисуем условные обозначения резистора и диода, как показано на рисунке №2 . Внутри резистора указываем его номинал. В нашем случае это 10кОм .

Теперь согласно схеме эти элементы соединяем между собой дорожками. На рисунке №3 эти дорожки указаны стрелками.

У нас получается, что по схеме «минус» от конденсатора С1 приходит на верхний вывод резистора R1 , значит, соответствующий вывод конденсатора соединяем дорожкой с соответствующим выводом резистора.

Нижний вывод резистора R1 и катод диода VD5 соединены между собой, значит, соединяем эти выводы дорожкой (средняя стрелка). Ну и анод диода VD5 соединяем с плюсом диодного моста. Надеюсь, принцип понятен? Идем дальше.

Следующими в схеме идут транзистор VT1 , стабилитрон VD6 и резистор R2 .
Кладем новые и предыдущие детали (резистор R1 и диод VD5) на бумагу, располагаем их, размечаем положение, и отмечаем отверстия под выводы. У резистора указываем номинал 360 Ом , а у транзистора отмечаем выводы базы , коллектора и эмиттера .

Теперь эти элементы соединяем согласно схеме. Базу транзистора соединяем с резистором R1 и катодом диода VD5 (рис №1 ). Анод стабилитрона VD6 соединяем с нижним выводом резистора R2 (рис №2 ), и с коллектором транзистора VT1 (рис №3 ). Верхний по схеме вывод резистора R2 соединяем с верхним выводом резистора R1 или минусовой шиной (рис №3 ).

Следующим идет переменный резистор R3 . Его на плате крепить не будем, а сделаем только три отверстия под выводы. Резистор, как и конденсатор, соединять с платой будем проводами.

Кладем на бумагу стабилитрон VD6 и рядом с ним отмечаем три отверстия (рис №1 ). Анод и катод стабилитрона соединяем с верхним и нижним выводами переменного резистора (рис №2 ). И здесь же, катод стабилитрона VD6 соединяем с анодом диода VD5 и общей плюсовой шиной (рис №2 ).

Следующими по схеме идут управляющий транзистор VT2 и его нагрузочный резистор R4 . Кладем их на бумагу, размечаем и отмечаем (рис №1 и №2 ). Средний вывод переменного резистора R3 соединяем с базой транзистора VT2 . Верхний вывод резистора R4 VT2 , а нижний вывод резистора R4 – с нижним выводом переменного резистора R3 и плюсовой шиной.

Теперь размечаем отверстия для мощного транзистора VT3 . Он так же, как и резистор R3 , не будет располагаться на плате, а соединяться с ней проводами.
Базу транзистора VT3 соединяем с эмиттером транзистора VT2 .
Коллектор VT3 соединяем с коллектором VT2 , верхним выводом резистора R2 и общей минусовой шиной (рис №3 ).

Нам осталось определиться с расположением нагрузочного резистора R5 и до конца соединить оставшиеся детали. Верхний вывод резистора R5 соединяется с эмиттером транзистора VT3 и эмиттером транзистора VT1 , а нижний вывод резистора R5 соединяется с резистором R4 и плюсовой шиной.

Не забываем отметить два отверстия под выходные гнезда ХТ1 и ХТ2 .

Ну вот, Вы разработали и нарисовали на бумаге (пока еще) свою первую печатную плату . Но это только начало, так как ее еще надо довести до ума. А это: проверить на ошибки, просверлить отверстия под детали, нанести рисунок дорожек на медную поверхность, затем плата вытравливается в хлорном железе, после вытравливания наносится припой на дорожки, и только потом на плату припаиваются детали. Всем этим займемся в части.
Удачи!



Загрузка...