sonyps4.ru

Частота модуляции формула. Частотная и фазовая модуляция

К частоте модулирующего сигнала

Употребляется в документе:

ГОСТ 24375-80

Телекоммуникационный словарь . 2013 .

Смотреть что такое "Индекс частотной модуляции" в других словарях:

    индекс частотной модуляции - Отношение девиации радиочастоты к частоте модулирующего сигнала. [ГОСТ 24375 80] Тематики радиосвязь Обобщающие термины радиопередача … Справочник технического переводчика

    Индекс - 6. Индекс Кодированная импульсная последовательность, записанная на сервоповерхности вида: dddddododdo, где d означает: для сервозоны пару дибитов, для защитных зон одиночный дибит; о означает: для сервозоны отсутствующую пару дибитов, для… …

    Девиация частоты - наибольшее отклонение мгновенной частоты модулированного радиосигнала при частотной модуляции от значения его несущей частоты. Эта величина равна половине полосы качания, т. е. разности максимальной и минимальной мгновенных частот. При больших… … Википедия

    ФАЗОВАЯ МОДУЛЯЦИЯ - вид модуляции колебаний, при к ром передаваемый сигнал управляет фазой несущего ВЧ колебания. Если модулирующий сигнал синусоидальный, то спектр и форма сигналов в случае Ф. м. и частотной модуляции совпадают. Различия обнаруживаются при более… … Физическая энциклопедия

    ГОСТ 16465-70: Сигналы радиотехнические измерительные. Термины и определения - Терминология ГОСТ 16465 70: Сигналы радиотехнические измерительные. Термины и определения оригинал документа: 40. Абсолютное отклонение сигналов Максимальное значение разности мгновенных значений сигналов, взятых в один и тот же момент времени на … Словарь-справочник терминов нормативно-технической документации

    методика - 3.8 методика: Последовательность операций (действий), выполняемых с использованием инструмента и оборудования для осуществления метода. Примечание Совокупность последовательности реализации операций и правил конкретной деятельности с указанием… … Словарь-справочник терминов нормативно-технической документации

    Цветное телевидение - Телевидение, в котором осуществляется передача цветных изображений. Донося до зрителя богатство красок окружающего мира, Ц. т. позволяет сделать восприятие изображения более полным. Принцип передачи цветных изображений в… … Большая советская энциклопедия

В то время как амплитудная модуляция изменяет огибающую сигнала в «вертикальной плоскости», частотная модуляция (ЧМ) происходит в «горизонтальной плоскости» сигнала. Амплитуда несущей поддерживается постоянной, а частота изменяется пропорционально амплитуде модулирующего сигнала.

Девиация частоты

Максимальная величина, на которую частота несущей возрастает или убывает под воздействием амплитуды модулирующего сигнала, называетсядевиацией частоты . Эта величина зависит исключительно от амплитуды (пикового значения) модулирующего напряжения. При спутниковом ТВ вещании сигнал, излучаемый на Землю, имеет номинальное значение девиации частоты около 16 МГц/В и ширину полосы частот, занимаемую информацией о передаваемом изображении, около 27 МГц.

Индекс модуляции

Индекс модуляции (т) - это отношение девиации частоты fd к высшей модулирующей частоте fm:

m = fd / fm.

В отличие от амплитудной модуляции при ЧМ нет необходимости ограничивать максимальную величину индекса модуляции единицей.

Шумы Джонсона

Шум - это любое нежелательное случайное электрическое возмущение. Он проникает повсюду и является главной проблемой при разработке электроники. Такой шум возникает в обычных электрических цепях(измерьте после окончания штукатурных работ), особенно в цепях с резистором, при любых значениях температуры выше нуля по Кельвину (0 К). Этот мельчайший, но не всегда незначительный тепловой шум, называемый шумом Джонсона, обнаруживается (и может быть измерен как ЭДС) на выходных концах цепи. Причина шума - хаотические колебания молекул внутри корпуса резистора, которые невозможно прекратить. Хотя приведенное ниже выражение не является особенно важным в данном случае, его стоит рассмотреть, чтобы обнаружить связь между шумами ЭДС и температурой.

RMS-значение шума Джонсона = (4k tBR)^1/2 , где

t - абсолютная температура по Кельвину (комнатная температура составляет около 290 К);
к - постоянная Больцмана т 1,38 х 10~23;
R - величина резистора в омах;
В - ширина полосы частот прибора для измерения величины ЭДС.

Расчет шума от резистора в один мегаом при комнатной температуре приводит к величине около 0,4 мВ. Она может показаться небольшой, но ее относительное значение более важно, чем абсолютное. Если полезный сигнал будет такого же порядка, как данная величина (а он может быть и намного меньше), то он потонет в шумах. Согласно рассматриваемому выражению, которое, кстати, распространяется не только на материалы искусственного происхождения, шум зависит от температуры и полосы частот прибора для измерения его величины. Таким прибором является станция приема телевещания. Боковые полосы частот при передаче сигнала высокого качества отличаются большой шириной, поэтому приемная аппаратура также должна иметь широкую полосу частот для обработки поступающей информации. В этих условиях попадание шумов на вход цепи может серьезно ограничить качество приема.



Отношение сигнал/шум

Отношение сигнал/шум (S/N) - это отношение уровня ЭДС полезного сигнала к уровню ЭДС любого существующего шума, которое должно быть как можно более высоким. Если величина этого отношения падает до единицы или ниже, то сигнал передавать практически бесполезно. (В некоторых случаях можно использовать довольно дорогостоящий метод воссоздания компьютером «сигнальной среды», но для национальной системы спутникового ТВ вещания это неприемлемо.)

Сравнение ЧМ и АМ

Существуют два свойства АМ, из-за которых ее использование в прошлом было достаточно популярным:

  • схема демодуляции в приемном устройстве, называемая выпрямителем, достаточно проста. Требуется только диод для отсечения одной полуволны от полного сигнала и фильтр нижних частот для удаления остатков несущей частоты;
  • ширина боковых полос относительно невелика, поэтому передача сигнала не занимает слишком много пространства в частотном спектре.

Самым серьезным недостатком АМ является шум (или, по крайней мере, большая его часть), который состоит из изменений амплитуды. Иными словами, любые существующие шумы ЭДС располагаются на вершине огибающей сигнала, как это показано на рисунке.

Шумы на АМ сигналах

Поэтому для уменьшения уровня шумов необходимо либо увеличить отношение сигнал/шум путем более тщательной разработки приемных устройств, либо использовать более грубые методы, ухудшающие качество сигнала, например ограничение полосы пропускания.

С другой стороны, ЧМ часто считают свободной от шумов, что в действительности неправильно. Передача ЧМ сигнала также подвержена воздействию шумов, как и передача АМ сигнала. Однако благодаря методу, которым происходит наложение информации на несущую частоту, большая часть шумов может быть устранена схемой приемного устройства. Поскольку шумы располагаются на внешней стороне ЧМ сигнала, можно срезать края верхней и нижней частей принимаемого сигнала, не нарушая информации, которая, скорее всего, находится внутри сигнала, а не на его краях. Такой процесс отсечки называется ограничением амплитуды.

Недостатком ЧМ является требование широкой полосы частот для передачи сигнала. По сути, передача ЧМ сигнала возможна только в том случае, когда частота несущего сигнала относительно высока. Так как спутниковое вещание осуществляется на частотах значительно выше 1 ГГц, этот недостаток можно считать несущественным.

Нельзя отрицать, что схемные решения, которые требуются для извлечения информации с ЧМ несущей, являются, мягко говоря, достаточно сложными. Схема, выполняющая такую функцию, называется ЧМ демодулятором. Существуют различные схемные решения для демодуляции ЧМ сигналов, такие как дискриминаторы, детекторы отношения и схемы фазовой автоподстройки частоты (ФАПЧ).

Децибелы

С помощью децибелов (дБ) отношение между двумя мощностями можно выразить и другим, часто более удобным способом. Вместо фактического отношения используется логарифм отношения по основанию 10:

дБ = 10 log Р1 / Р2.

Результат будет с положительным знаком, если Pt больше, чем Р2, и с отрицательным, если Р{ меньше, чем Р2. Чтобы исключить проблему, связанную с вычислением отрицательных логарифмов, большую из двух мощностей ставят в числитель, а знак определяют позже в соответствии с правилом, приведенным выше.

Пример
Если Р1, = 1000, а Р2 = 10, то дБ = 10 log 1000/10 = 10 log 100 = +20 дБ.
(Если Р1, = 10, а Р2 = 1000, абсолютное значение в децибелах будет тем же самым, но записывают его как -20 дБ.).

Использование децибелов вместо фактических величин отношений имеет следующие преимущества:

  • поскольку слух человека реагирует на изменения интенсивности звука логарифмически, использование децибелов является более естественным. Например, если выходная мощность усилителя звука возрастает с 10 до 100 Вт, на слух это не будет восприниматься как десятикратное увеличение;
  • децибелы удобно использовать для уменьшения размеров в обозначениях больших чисел. Например, коэффициент усиления в 10 000 000 раз будет равен всего лишь 70 дБ;
  • при прохождении от антенны через различные каскады в приемном устройстве сигнал подвергается усилению и потерям. При выражении каждого коэффициента усиления и потерь соответственно в положительных и отрицательных значениях децибелов общий коэффициент усиления легко рассчитать при помощи алгебраического сложения. Например, (+5) + (-2) + (+3) + (-0,5) = 5,5 дБ.

Ниже приведены некоторые из наиболее часто используемых значений децибелов.

Другие величины, характеризующие ЧМ

  • Индекс частотной модуляции - отношение девиации частоты к частоте модулирующего сигнала

Метрологические аспекты

Измерения

  • Для измерения девиации частоты используются девиометры , существует также косвенный метод измерения - с помощью функций Бесселя , обеспечивающий высокую точность.
  • Эталонными мерами девиации частоты являются специальные поверочные установки - калибраторы измерителей девиации частоты (установка РЭЕДЧ-1).

Эталоны

  • Государственный специальный эталон единицы девиации частоты ГЭТ 166-2004 - находится во ВНИИФТРИ

Литература

  • Справочник по теоретическим основам радиоэлектроники . Под.ред. Б. Х. Кривицкого. В 2-х т. - М: Энергия,

Ссылки

См. также


Wikimedia Foundation . 2010 .

  • Царёв
  • Цвигун

Смотреть что такое "Девиация частоты" в других словарях:

    девиация частоты - 3.15 девиация частоты: Наибольшее отклонение частоты модулированного радиосигнала при частотной модуляции от значения его несущей частоты. Источник: РД 45.298 2002: Оборудование аналоговых транкинговых систем подвижной радиосвязи. Общие… …

    Девиация частоты - отклонение частоты колебаний от среднего значения. В частотной модуляции (См. Частотная модуляция) Д. ч. обычно называют максимальное отклонение частоты. От значения его существенно зависит состав и значения амплитуд составляющих спектра… … Большая советская энциклопедия

    Девиация частоты - 1. Наибольшее отклонение частоты модулированного сигнала от значения несущей частоты при частотной модуляции Употребляется в документе: ОСТ 45.159 2000 Отраслевая система обеспечения единства измерений. Термины и определения … Телекоммуникационный словарь

    девиация частоты (фазы) прибора СВЧ - девиация частоты (фазы) Δfдев (Δφдев) Наибольшее изменение рабочей частоты (фазы) генерируемых или усиливаемых колебаний прибора СВЧ при частотной (фазовой) модуляции. [ГОСТ 23769 79] Тематики приборы и устройства защитные СВЧ… …

    Девиация частоты (фазы) прибора СВЧ - 170. Девиация частоты (фазы) прибора СВЧ Девиация частоты (фазы) Frequency (phase) deviation Δfдев (Δφдев) Наибольшее изменение рабочей частоты (фазы) генерируемых или усиливаемых колебаний прибора СВЧ при частотной (фазовой) модуляции Источник … Словарь-справочник терминов нормативно-технической документации

    Девиация частоты «вниз» - 31. Девиация частоты «вниз» Пиковое отклонение «вниз» закона модуляции при частотной модуляции. Примечание. Если fgв = fgн = fg как, например, при гармоническом законе модуляции, то величина fg называется девиацией частоты Источник … Словарь-справочник терминов нормативно-технической документации

    Девиация частоты «вверх» - 30. Девиация частоты «вверх» Пиковое отклонение «вверх» закона модуляции при частотной модуляции где переменная составляющая закона модуляции при частотной модуляции; f(t) закон модуляции при частотной модуляции (мгновенная частота); … … Словарь-справочник терминов нормативно-технической документации

    Девиация частоты «вверх» - 1. Пиковое отклонение «вверх» закона модуляции при частотной модуляции Употребляется в документе: ГОСТ 16465 70 Сигналы радиотехнические измерительные. Термины и определения … Телекоммуникационный словарь

    Девиация частоты «вниз» - 1. Пиковое отклонение «вниз» закона модуляции при частотной модуляции Употребляется в документе: ГОСТ 16465 70 Сигналы радиотехнические измерительные. Термины и определения … Телекоммуникационный словарь

    абсолютная девиация частоты - (абсолютная) девиация частоты девиация частоты Наибольшее отклонение частоты модулированного сигнала от значения несущей частоты при частотной модуляции (ОСТ 45.159 2000.1 Термины и определения (Минсвязи России)).… … Справочник технического переводчика

Лекция № 6 Модулированные сигналы

Под модуляцией понимают процесс (медленный по сравнению с периодом несущего колебания), при котором один или несколько параметров несущего колебания изменяют по закону передаваемого сообщения. Получаемые в процессе модуляции колебания называют радиосигналами.В зависимости от того, какой из названных параметров несущего колебания подвергается изменению, различают два основных вида аналоговой модуляции: амплитудную и угловую. Последний вид модуляции, в свою очередь, разделяется на частотную и фазовую.В современных цифровых системах передачи информации широкое распространение получила квадратурная (амплитудно-фазовая, или фазоамплитуд- ная - ФАМ; amplitude phase modulation) модуляция, при которой одновременно изменяются и амплитуда и фаза сигнала. Этот тип модуляции относят как к аналоговым, так и цифровым видам.

В радиосистемах часто применяются и будут применяться различные виды импульсной и цифровой модуляции, при которой радиосигналы представляются в виде так называемых радиоимульсов.

Радиосигналы с аналоговыми видами модуляции В процессе амплитудной модуляции несущего колебания (1)

его амплитуда должна изменяться по закону: (2)

где U H - амплитуда несущей в отсутствие модуляции; ω 0 - угловая частота; φ 0 - начальная фаза; ψ(t) = ω 0 + φ 0 - полная (текущая или мгновенная) фаза несущей; k А - безразмерный коэффициент пропорциональности; e(t) - модулирующий сигнал. U H (t) в радиотехнике принято называть огибающей амплитудно-модулированного сигнала (АМ-сигнала).

Подставив (2) в (1) получим общую формулу АМ- сигнала (3)

Однотональная амплитудная модуляция если модулирующий сигнал - гармоническое колебание (4)

где Е 0 - амплитуда; Ω = 2π/Т 1 = 2πF - угловая частота модуляции; F -

циклическая частота модуляции; Т 1 - период модуляции; θ 0 - начальная фаза.

Подставив формулу (4) в соотношение (3), получим выражение для АМ-сигнала (5)

Обозначив через ∆U = k A E 0 - максимальное отклонение амплитуды АМ- сигнала от амплитуды несущей U H и проведя несложные выкладки, получим (6)

Коэффициент или глубина амплитудной модуляции.

Спектр АМ-сигнала . Применив в выражении (5) тригонометрическую формулу произведения косинусов, после несложных выкладок получим (7)

Из формулы (7) видно, что при однотональной амплитудной модуляции спектр АМ-сигнала состоит из трех высокочастотных составляющих. Первая из них представляет собой исходное несущее колебание с постоянной амплитудой U H и частотой с ω 0 . Вторая и третья составляющие характеризуют новые гармонические колебания, появляющиеся в процессе амплитудной модуляции и отражающие передаваемый сигнал. Колебания с частотами ω 0 + Ω и ω 0 - Ω называются соответственно верхней (upper sideband - USB) и нижней (lower sideband - LSB) боковыми составляющими.

Реальная ширина спектра АМ-сигнала при однотональной модуляции (8)

На практике однотональные АМ-сигналы используются либо для учебных, либо для исследовательских целей. Реальный же модулирующий сигнал имеет сложный спектральный состав. Математически такой сигнал, состоящий из N гармоник, можно представить тригонометрическим рядом N (10)

Здесь амплитуды гармоник сложного модулирующего сигнала E i произвольны, а их частоты образуют упорядоченный спектр Ω 1 < Ω 2 < ...< Ω i < ...< Ω N . В отличие от ряда Фурье частоты Ω i не обязательно кратны друг другу. Подставляя (10) в (3), после несложных преобразований, получим выражение АМ-сигнала с начальной фазой несущего ф0 = О (11)

(12)

Совокупность парциальных (частичных) коэффициентов модуляции.Эти коэффициенты характеризуют влияние гармонических составляющих модулирующего сигнала на общее изменение амплитуды высокочастотного колебания. Воспользовавшись тригонометрической формулой произведения двух косинусов и проделав несложные преобразования, запишем (11) в виде (13)

Рис. 2. Спектральные диаграммы при модуляции сложным сигналом:

а - модулирующего сигнала; б - АМ-сигнала

Ширина спектра сложного АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего сигнала Ω N , т. е. (14)

Частотная модуляция

При частотной модуляции (frequency modulation; FM) мгновенное значение несущей частоты ω(t) связано с модулирующим сигналом e(t) зависимостью (15)

здесь k Ч - размерный коэффициент пропорциональности между частотой и напряжением, рад/(В-с).

Полную фазу ЧМ-сигнала в любой момент времени t определим путем интегрирования мгновенной частоты, выраженной через формулу (15),

Рис. 3. Частотная однотональная модуляция:

а - несущее колебание; б - модулирующий сигнал; в - ЧМ-сигнал

Максимальное отклонение частоты от значения ω 0 , или девиация частоты (frequency deviation) при частотной модуляции;

Максимальное отклонение от текущей фазы ω 0 t или девиация фазы несущего колебания называется индексом частотной модуляции (index of frequency modulation). Данный парамер определяет интенсивность колебаний начальной фазы радиосигнала.

С учетом полученных соотношений (1) и (16) частотно-модулированный сигнал запишется в следующем виде:

Спектр ЧМ-сигнала при однотональной модуляции. Преобразуем полученное выражение (17)

Спектр ЧМ-сигнала при m«1 (такую угловую модуляцию называют узкополосной). В этом случае имеют место приближенные равенства: (18)

Подставив формулы (18) в выражение (17), после несложных математических преобразований получим (при начальных фазах модулирующего и несущего колебаний θ 0 = 0 и φ 0 = 0): (19)

Видим, что по аналитической записи спектр ЧМ-сигнала при однотональной модуляции напоминает спектр АМ- сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (ω 0 + Ω) и (ω 0 - Ω) причем и амплитуды их рассчитываются аналогично (только вместо коэффициента амплитудной модуляции М в формуле для ЧМ-сигнала фигурирует индекс угловой модуляции m). Но есть и принципиальное отличие, превращающее амплитудную модуляцию в частотную, знак минус перед одной из боковых составляющих.

Спектр ЧМ-сигнала при m > 1 . Из математики известно (20) (21)

где J n (m) - функция Бесселя 1 -го рода n-го порядка.

В
теории функций Бесселя доказывается, что функции с положительными и отрицательными индексами связаны между собой формулой (22)

Ряды (20) и (21) подставим в формулу (17), а затем заменим произведение косинусов и синусов полусуммами косинусов соответствующих аргументов. Тогда, с учетом (22), получим следующее выражение для ЧМ-сигнала (23)

Итак, спектр ЧМ-сигнала с однотональной модуляцией при индексе

модуляции m > 1 состоит из множества высокочастотных гармоник: несущего колебания и бесконечного числа боковых составляющих с частотами ω 0 + nΩ. и ω 0 -nΩ, расположенными попарно и симметрично относительно несущей частоты ω 0 .

При этом, исходя из (22), можно отметить, что начальные фазы боковых колебаний с частотами ω 0 + nΩ. и ω 0 -nΩ совпадают, если m - четное число, и отличаются на 180°, если m - нечетное. Теоретически спектр ЧМ- сигнала (так же и ФМ-сигнала) бесконечен, однако в реальных случаях он ограничен. Практическая ширина спектра сигналов с угловой модуляцией

ЧМ- и ФМ-сигналы, применяемые на практике в радиотехнике и связи, имеют индекс модуляции m>> 1, поэтому

Полоса частот ЧМ-сигнала с однотональной модуляцией равна удвоенной девиации частоты и не зависит от частоты модуляции.

Сравнение помехоустойчивости радиосистем с амплитудной и угловой модуляцией. Следует отметить, что радиосигналы с угловой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1. Поскольку при угловой модуляции амплитуда модулированных колебаний не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитудной модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к заметному искажению передаваемого сообщения.

2. Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает при неизменной средней мощности колебаний.

Рассмотренные выше методы анализа первичных сигналов позволяют определить их спектральные и энергетические характеристики. Первичные сигналы являются основными носителями информации. Вместе с тем их спектральные характеристики не соответствуют частотным характеристикам каналов передачи радиотехнических информационных систем. Как правило, энергия первичных сигналов сосредоточена в области низких частот. Так, например, при передаче речи или музыки энергия первичного сигнала сосредоточена примерно в диапазоне частот от 20 Гц до 15 кГц. В то же время диапазон дециметровых волн, который широко используются для передачи информационных и музыкальных программ, занимает частоты от 300 до 3000 мегагерц. Возникает задача переноса спектров первичных сигналов в соответствующие диапазоны радиочастот для передачи их по радиоканалам. Эта задача решается посредствам операции модуляции.

Модуляцией называется процедура преобразования низкочастотных первичных сигналов в сигналы радиочастотного диапазона .

В процедуре модуляции участвуют первичный сигнал и некоторое вспомогательное колебание , называемое несущим колебанием или просто несущей. В общем виде процедуру модуляции можно представить следующим образом

где – правило преобразования (оператор) первичного сигнала в модулированного колебание .

Это правило указывает, какой параметр (или несколько параметров) несущего колебания изменяются по закону изменения . Поскольку управляет изменением параметров , то, как было отмечено в первом разделе, сигнал , является управляющим (модулирующим), а – модулированным сигналами. Очевидно, соответствует оператору обобщенной структурной схемы РТИС.

Выражение (4.1) позволяет провести классификацию видов модуляции, которая представлена на рис. 4.1.

Рис. 4.1

В качестве классификационных признаков выберем вид (форму) управляющего сигнала , форму несущего колебания и вид управляемого параметра несущего колебания.

В первом разделе была проведена классификация первичных сигналов. В радиотехнических информационных системах наиболее широкое распространение в качестве первичных (управляющих) сигналов получили непрерывные и цифровые сигналы. В соответствии с этим по виду управляющего сигнала можно выделить непрерывную и дискретную модуляцию.

В качестве несущего колебания в практической радиотехнике используются гармонические колебания и импульсные последовательности. В соответствии с формой несущего колебания различают модуляцию гармонической несущей и импульсную модуляцию .

И наконец, по виду управляемого параметра несущего колебания в случае гармонической несущей различают амплитудную , частотную и фазовую модуляцию . Очевидно, в этом случае в качестве управляемого параметра выступают соответственно амплитуда, частота или начальная фаза гармонического колебания. Если в качестве несущего колебания используется импульсная последовательность, то аналогом частотной модуляции является широтная импульсная модуляция , где управляемым параметром выступает длительность импульса, а аналогом фазовой модуляции – временная импульсная модуляция , где управляемым параметром выступает положение импульса на временной оси.

В современных радиотехнических системах наиболее широко в качестве несущего колебания используется гармоническое колебание. Учитывая это обстоятельство в дальнейшем, основное внимание будет уделено сигналам с непрерывной и дискретной модуляцией гармонической несущей.

4.2. Сигналы с непрерывной амплитудной модуляцией

Рассмотрение модулированных сигналов начнем с сигналов, у которых в качестве изменяемого параметра выступает амплитуда несущего колебания. Модулированный сигнал в этом случае является амплитудно-модулированным или сигналом с амплитудной модуляцией (АМ-сигналом ).

Как уже было отмечено выше, основное внимание будет уделено сигналам, несущее колебание которых представляет собой гармоническое колебание вида

где – амплитуда несущего колебания,

– частота несущего колебания.

В качестве модулирующих сигналов сначала рассмотрим непрерывные сигналы . Тогда модулированные сигналы будут являться сигналами с непрерывной амплитудной модуляцией . Такой сигнал описывается выражением

где – огибающая АМ-сигнала,

– коэффициент амплитудной модуляции.

Из выражения (4.2) следует, что АМ-сигнал представляет собой произведение огибающей на гармоническую функцию . Коэффициент амплитудной модуляции характеризует глубину модуляции и в общем случае описывается выражением

. (4.3)

Очевидно, при сигнал представляет собой просто несущее колебание.

Для более детального анализа характеристик АМ-сигналов рассмотрим простейший АМ-сигнал, в котором в качестве модулирующего сигнала выступает гармоническое колебание

, (4.4)

где , – соответственно амплитуда и частота модулирующего (управляющего) сигнала, причем . В этом случае сигнал описывается выражением

, (4.5)

и называется сигналом однотональной амплитудной модуляции.

На рис. 4.2 изображены модулирующий сигнал , колебание несущей частоты и сигнал .

Для такого сигнала коэффициент глубины амплитудной модуляции равен

Воспользовавшись известным тригонометрическим соот-ношением

после несложных преобразований получим

Выражение (4.6) устанавливает спектральный состав однотонального АМ-сигнала. Первое слагаемое представляет собой немодулированное колебание (несущее колебание). Второе и третье слагаемые соответствуют новым гармоническим составляющим, появившимся в результате модуляции амплитуды несущего колебания; частоты этих колебаний и называются нижней и верхней боковыми частотами, а сами составляющие – нижней и верхней боковыми составляющими.

Амплитуды этих двух колебаний одинаковы и составляют величину

, (4.7)

На рис. 4.3 изображен амплитудный спектр однотонального АМ-сигнала. Из этого рисунка следует, что амплитуды боковых составляющих располагаются симметрично относительно амплитуды и начальной фазы несущего колебания. Очевидно, ширина спектра однотонального АМ-сигнала равна удвоенной частоте управляющего сигнала

В общем случае, когда управляющий сигнал характеризуется произвольным спектром, сосредоточенным в полосе частот от до , спектральный характер АМ-сигнала принципиально не отличается от однотонального.

На рис. 4.4 изображены спектры управляющего сигнала и сигнала с амплитудной модуляцией. В отличие от однотонального АМ-сигнала в спектре произвольного АМ-сигнала фигурируют нижняя и верхняя боковые полосы. При этом верхняя боковая полоса является копией спектра управляющего сигнала, сдвинутой по оси частот на

величину , а нижняя боковая полоса представляет собой зекаль-ное отображение верхней. Очевидно, ширина спектра произвольного АМ-сигнала

т.е. равна удвоенной верхней граничной частоте управляющего сигнала.

Возвратимся к сигналу однотональной амплитудной модуляции и найдем его энергетические характеристики. Средняя мощность АМ-сигнала за период управляющего сигнала определяется по формуле:

. (4.9)

Так как , а , положим , где . Подставляя выражение (4.6) в (4.9), после несложных, но достаточно громоздких преобразований с учетом того, что и с использованием тригонометрических соотношений

Здесь первое слагаемое характеризует среднюю мощность несущего колебания, а второе – суммарную среднюю мощность боковых составляющих, т.е.

Так как суммарная средняя мощность боковых составляющих делится поровну между нижней и верхней, что вытекает из (4.7), то отсюда следует

Таким образом, на передачу несущего колебания в АМ-сигнале тратится более половины мощности (с учетом того, что ), чем на передачу боковых составляющих. Так как информация заложена именно в боковых составляющих, передача составляющей несущего колебания нецелесообразна с энергетической точки зрения. Поиск более эффективных методов использования принципа амплитудной модуляции приводит к сигналам балансной и однополосной амплитудной модуляции.

4.3. Сигналы балансной и однополосной амплитудной модуляции

Сигналы балансной амплитудной модуляции (БАМ) характеризуются отсутствием в спектре составляющей несущего колебания. Перейдем сразу к рассмотрению сигналов однотональной балансной модуляции, когда в качестве управляющего колебания выступает гармонический сигнал вида (4.4). Исключение из (4.6) составляющей несущего колебания

приводит к результату

Рассчитаем среднюю мощность сигнала балансной модуляции. Подстановка (4.12) в (4.9) после преобразований дает выражение

.

Очевидно, что энергетический выигрыш при использовании сигналов балансной модуляции по сравнению с классической амплитудной модуляцией будет равен

При этот выигрыш составляет величину .

На рис. 4.5 представлен один из вариантов структурной схемы формирователя сигналов балансной амплитудной модуляции. Формирователь содержит:

  • Инв1, Инв2 – инверторы сигналов (устройства, изменяющие полярность напряжений на противоположную);
  • АМ1, АМ2 – амплитудные модуляторы;
  • SM – сумматор.

Колебание несущей частоты поступает на входы модуляторов АМ1 и АМ2 непосредственно. Что касается управляющего сигнала , то на второй вход АМ1 он поступает непосредственно, а на второй вход АМ2 – через инвертор Инв1. В результате на выходах модуляторов формируются колебания вида

На входы сумматора поступают соответственно колебания и . Результирующий сигнал на выходе сумматора составит

В случае однотональной амплитудной модуляции выражение (4.13) принимает вид

Используя формулу произведения косинусов, после преобразований получим

что с точностью до постоянного множителя совпадает с (4.12). Очевидно, ширина спектра сигналов БАМ равна ширине спектра сигналов АМ.

Балансная амплитудная модуляция позволяет исключить передачу несущего колебания, что приводит к энергетическому выигрышу. Вместе с тем, обе боковые полосы (боковые составляющие в случае однотональной АМ) несут одну и ту же информацию. Напрашивается вывод о целесообразности формирования и передачи сигналов с подавленной одной из боковых полос. В этом случае мы приходим к однополосной амплитудной модуляции (ОАМ).

Если из спектра сигнала БАМ исключить одну из боковых составляющих (скажем верхнюю боковую составляющую), то в случае гармонического управляющего сигнала получим

Так как средняя мощность сигнала БАМ делится поровну между боковыми составляющими, то очевидно, что средняя мощность сигнала ОАМ составит

Энергетический выигрыш по сравнению с амплитудной модуляцией составит

а при он будет равен .

Формирование однополосного АМ-сигнала может быть осуществлено на базе формирователей сигналов балансной модуляции. Структурная схема формирователя однополосного АМ-сигнала представлена на рис. 4.6.

В состав формирователя сигнала однополосной амплитудной модуляции входят:

На входы БАМ1 поступают сигналы:

Тогда на его выходе в соответствии с (4.15) формируется сигнал

На входы БАМ2 поступают сигналы

и .

С выхода БАМ2 снимается колебание, описываемое в соответствии с (4.14) с заменой косинусов на синусы

С учетом известного тригонометрического соотношения

выходной сигнал БАМ2 преобразуется к виду

Сложение сигналов (4.17) и (4.18) в сумматоре SM дает

что с точностью до постоянного множителя совпадает с (4.16). Что касается спектральных характеристик, то ширина спектра сигналов ОАМ вдвое меньше спектра АМ или БАМ сигналов.

Таким образом, при одинаковых и однополосная АМ обеспечивает существенный энергетический выигрыш по сравнению с классической АМ и балансной модуляцией. Вместе с тем, реализация сигналов балансной амплитудной и однополосной амплитудной модуляции сопряжена с некоторыми трудностями, касающимися необходимости восстановления несущего колебания при обработке сигналов на приемной стороне. Эта задача решается устройствами синхронизации передающей и приемной сторон, что в общем плане приводит к усложнению аппаратуры.

4.4. Сигналы с непрерывной угловой модуляцией

4.4.1. Обобщенное представление сигналов с угловой модуляцией

В предыдущем разделе была рассмотрена процедура модуляции, когда информационным параметром, изменяемым в соответствии с законом управляющего (модулирующего) сигнала являлась амплитуда несущего колебания. Однако помимо амплитуды несущее колебание характеризуется также частотой и начальной фазой

где – полная фаза несущего колебания, которая определяет текущее значение фазового угла.

Изменение либо , либо в соответствии с управляющим сигналом соответствует угловой модуляции . Таким образом, понятие угловой модуляции включает в себя как частотную (ЧМ), так и фазовую (ФМ) модуляцию.

Рассмотрим обобщенные аналитические соотношения для сигналов с угловой модуляцией. При частотной модуляции в соответствии с управляющим сигналом изменяется мгновенная частота несущего колебания в пределах от нижней до граничных частот

Наибольшее значение частотного отклонения от называется девиацией частоты

.

Если граничные частоты расположены симметрично относительно , то девиация частоты

. (4.22)

Именно такой случай частотной модуляции будет рассматриваться в дальнейшем.

Закон изменения полной фазы определяется как интеграл от мгновенной частоты. Тогда, с учетом (4.21) и (4.22), можно записать

Подставляя (4.23) в (4.20), получим обобщенное аналитическое выражение сигнала с частотной модуляцией

Слагаемое представляет собой составляющую полной фазы, обусловленную наличием частотной модуляции. Нетрудно убедится в том, что полная фаза сигнала с частотной модуляцией изменяется по закону интеграла от .

При фазовой модуляции , в соответствии с модулирующем сигналом , изменяется начальная фаза несущего колебания в пределах от нижнего до верхнего граничных значений фазы

Наибольшее отклонение фазового сдвига от называется девиацией фазы . Если и расположены симметрично относительно , то . В этом случае полная фаза сигнала с фазовой модуляцией

Тогда, подставляя (4.26) в (4.20), получим обобщенное аналитическое выражение сигнала с фазовой модуляцией

Рассмотрим, как изменяется мгновенная частота сигнала при фазовой модуляции. Известно, что мгновенная частота и текущая пол-

ная фаза связаны соотношением

.

Подставляя в это выражение формулу (4.26) и проведя операцию дифференцирования, получим

где – составляющая частоты, обусловленная наличием фазовой модуляции несущего колебания (4.20).

Таким образом, изменение начальной фазы несущего колебания приводит к изменению мгновенных значений частоты по закону производной от по времени.

Практическая реализация устройств формирования сигналов угловой модуляции может осуществляться одним из двух методов: прямым или косвенным. При прямом методе в соответствии с законом изменения управляющего сигнала изменяются параметры колебательного контура генератора несущего колебания. Выходной сигнал при этом оказывается промодулированным по частоте. Для получения сигнала фазовой модуляции на входе частотного модулятора включается дифференцирующая цепь.

Сигналы фазовой модуляции при прямом методе формируются путём изменения параметров колебательного контура усилителя, подключённого к выходу генератора несущего колебания. Для преобразования сигналов фазовой модуляции в сигнал частотной модуляции управляющее колебание подаётся на вход фазового модулятора через интегрирующую цепь.

Косвенные методы не предполагают непосредственного воздействия управляющего сигнала на параметры колебательного контура. Один из косвенных методов базируется на преобразовании амплитудно-модулированных сигналов в сигналы фазовой модуляции, а те, в свою очередь, - в сигналы частотной модуляции. Более подробно, вопросы формирования сигналов частотной и фазовой модуляции будут рассмотрены ниже.

4.4.2. Сигналы с частотной модуляцией

Анализ характеристик сигналов с угловой модуляцией мы начнём с рассмотрения однотональной частотной модуляции. Управляющий сигнал в этом случае представляет собой колебание единичной амплитуды (к этому виду всегда можно привести )

, (4.29)

а модулируемым параметром несущего колебания является мгновенная частота. Тогда, подставляя (4.29) в (4.24), получим:

Выполнив операцию интегрирования, приходим к следующему выражению сигнала однотональной частотной модуляции

Отношение

называется индексом частотной модуляции и имеет физический смысл части девиации частоты , приходящуюся на единицу частоты модулирующего сигнала. Так например, если девиация частоты несущего колебания МГц составляет , а частота управляющего сигнала кГц, то индекс частотной модуляции составит . В выражении (4.30) начальная фаза не учитывается как не имеющая принципиального значения.

Временная диаграмма сигнала при однотональной ЧМ представлена на рис. 4.7

Рассмотрение спектральных характеристик ЧМ-сигнала начнём с частного случая малого индекса частотной модуляции . Воспользовавшись соотношением

представим (4.30) в виде

Поскольку , то можно воспользоваться приближёнными представлениями

и выражение (4.31) приобретает вид

Воспользовавшись известным тригонометрическим соотношением

и полагая и , получим:

Это выражение напоминает выражение (4.6) для однотонального АМ – сигнала. Отличие состоит в том, что, если в однотональном АМ – сигнале начальные фазы боковых составляющих одинаковы , то в однотональном ЧМ сигнале при малых индексах частотной модуляции они отличаются на угол , т.е. находятся в противофазе.

Спектральная диаграмма такого сигнала показана на рис. 4.8

В скобках указаны значения начальной фазы боковых составляющих. Очевидно, ширина спектра ЧМ – сигнала при малых индексах частотной модуляции равна

.

Сигналы с частотной модуляцией с малым в практической радиотехнике применяются достаточно редко.

В реальных радиотехнических системах индекс частотной модуляции существенно превышает единицу.

Так например, в современных аналоговых системах мобильной связи, использующих для передачи речевых сообщений сигналы частотной модуляции при верхней частоте речевого сигнала кГц и девиации частоты кГц, индекс , как нетрудно убедиться, достигает значения ~3-4. В системах же радиовещания метрового диапазона индекс частотной модуляции может превышать значения, равного 10. Поэтому рассмотрим спектральные характеристики ЧМ сигналов при произвольных значениях величины .

Возвратимся к выражению (4.32). Известны следующие виды разложения

где – фунция Бесселя первого рода -го порядка.

Подставляя эти выражения в (4.32), после несложных, но довольно громоздких преобразований с использованием уже неоднократно упомянутых выше соотношений произведений косинусов и синусов, получим

(4.36)

где .

Полученное выражение представляет собой разложение однотонального ЧМ – сигнала на гармонические составляющие, т.е. амплитудный спектр. Первое слагаемое этого выражения является спектральной составляющей колебания несущей частоты с амплитудой . Первая сумма выражения (4.35) характеризует боковые составляющие с амплитудами и частотами , т.е. нижнюю боковую полосу, а вторая сумма – боковые составляющие с амплитудами и частотами , т.е. верхнюю боковую полосу спектра.

Спектральная диаграмма ЧМ – сигнала при произвольном представлена на рис. 4.9.

Проанализируем характер амплитудного спектра ЧМ – сигнала. В первую очередь отметим, что спектр является симметричным относительно частоты несущего колебания и теоретически является бесконечным.

Составляющие боковых боковых полос расположены на расстоянии Ω друг от друга, а их амплитуды зависят от индекса частотной модуляции. И наконец, у спектральных составляющих нижней и верхней боковых частот с чётными индексами начальные фазы совпадают, а у спектральных составляющих с нечётными индексами отличаются на угол .

В таблице 4.1 приведены значения функции Бесселя для различных i и . Обратим внимание на составляющую несущего колебания . Амплитуда этой составляющей равна . Из таблицы 4.1 следует, что при амплитуда , т.е. спектральная составляющая несущего колебания в спектре ЧМ – сигнала отсутствует. Но это не означает отсутствия несущего колебания в ЧМ – сигнале (4.30). Просто энергия несущего колебания перераспределяется между составляющими боковых полос.

Таблица 4.1

Как уже подчёркивалось выше спектр ЧМ – сигнала теоретически является бесконечным. На практике же полоса пропускания радиотехнических устройств всегда ограничена. Оценим практическую ширину спектра, при котором воспроизведение ЧМ – сигнала можно считать неискажённым.

Средняя мощность ЧМ – сигнала определяется как сумма средних мощностей спектральных составляющих

Проведённые расчёты показали, что около 99% энергии ЧМ – сигнала сосредоточено в частотных составляющих с номерами . А это означает, что частотными составляющими с номерами можно пренебречь. Тогда практическая ширина спектра при однотональной ЧМ с учётом его симметрии относительно

а при больших значения

Т.е. равна удвоенной девиации частоты.

Таким образом, ширина спектра ЧМ – сигнала приблизительно в раз больше ширины спектра АМ – сигнала. Вместе с тем, для передачи информации используется вся энергия сигнала. В этом состоит преимущества сигналов частотной модуляции над сигналами амплитудной модуляции.

4.5. Сигналы с дискретной модуляцией

Рассмотренные выше сигналы с непрерывной модуляцией, в основном используются в системах радиовещания, радиотелефонии, телевидения и других. Вместе с тем, переход на цифровые технологии в радиотехнике, в том числе и в перечисленных областях, обусловил широкое использование сигналов с дискретной модуляцией или манипуляцией. Так как исторически сигналы дискретной модуляции впервые были использованы для передачи телеграфных сообщений, такие сигналы ещё называют сигналами амплитудной (АТ), частотной (ЧТ), и фазовой (ФТ) телеграфии. Ниже при описании соответствующих сигналов будет использована эта аббревиатура, что позволит отличать их от сигналов с непрерывной модуляцией.

4.5.1. Сигналы с дискретной амплитудной модуляцией

Сигналы дискретной амплитудной модуляции характеризуются тем, что амплитуда несущего колебания изменяется в соответствии с управляющим сигналом, который представляет собой последовательности импульсов, обычно прямоугольной формы. При исследовании характеристик сигналов с непрерывной модуляцией в качестве управляющего сигнала рассматривался гармонический сигнал. По аналогии с этим для сигналов с дискретной модуляцией в качестве управляющего сигнала используем периодическую последовательность прямоугольных импульсов

Очевидно, как следует из (4.39), длительность импульса составляет , а скважность .

На рис. 4.10 представлены эпюры управляющего сигнала , несущего колебания и амплитудно-манипулированного сигнала . Здесь и далее будем полагать амплитуду импульсов управляющего сигнала равной , а начальную фазу несущего колебания . Тогда сигнал с дискретной амплитудной модуляцией можно записать следующим образом

Ранее было получено разложение последовательности прямоугольных импульсов в ряд Фурье (2.13). Для рассматриваемого случая и выражение (2.13) принимает вид

Подставляя (4.41) в (4.40) и используя формулу произведения косинусов, получим:

На рис. 4.11 изображён амплитудный спектр сигнала, модулированного по амплитуде последовательностью прямоугольных импульсов. Спектр содержит составляющую несущей частоты с амплитудой и две боковые полосы каждая из которых состоит из бесконечного числа гармонических составляющих, располагающихся на частотах , амплитуды которых изменяются по закону . Боковые полосы, так же как и при непрерывной АМ, расположены зеркально по отношению к спектральной составляющей несущей частоты. Нули амплитудного спектра сигнала АТ соответствуют нулям амплитудного спектра сигнала , но сдвинуты влево и вправо на величину .

Ввиду того, что основная часть энергии управляющего сигнала сосредоточена в пределах первого лепестка спектра, практическую ширину спектра в рассматриваемом случае, исходя из рис. 4.11, можно определить как

. (4.43)

Этот результат согласуется с расчётами спектра, приведёнными в [Л.4], где показано, что большая часть мощности сосредоточена в боковых составляющих с частотами и .

4.5.2. Сигналы с дискретной частотной модуляцией

При анализе сигналов с дискретной угловой модуляцией удобно в качестве модулирующего сигнала использовать периодическую последовательность прямоугольных импульсов вида “меандр”. Тогда управляющий сигнал на интервале времени принимает значение , а на интервале времени - значение . Снова, как и при анализе сигналов АТ будем полагать .

Как следует из подраздела 4.3.1 сигнал с частотной модуляцией описывается выражением (4.24). Тогда с учётом того, что на интервале управляющий сигнал , а на интервале управляющий сигнал , проведя операцию интегрирования, получим выражение сигнала ЧТ

На рис 4.12 приведены временные диаграммы управляющего сигнала , несущего колебания и сигнала дискретной частотной модуляции .

С другой стороны сигнал ЧТ, как это следует из рис. 4.12, может быть представлен суммой двух сигналов дискретной амплитудной модуляции и , частоты несущих колебаний которых соответственно равны

,



Загрузка...